RU2559100C1 - Способ регулирования температуры природного газа в линии подачи топлива газотурбинного двигателя - Google Patents

Способ регулирования температуры природного газа в линии подачи топлива газотурбинного двигателя Download PDF

Info

Publication number
RU2559100C1
RU2559100C1 RU2014106211/06A RU2014106211A RU2559100C1 RU 2559100 C1 RU2559100 C1 RU 2559100C1 RU 2014106211/06 A RU2014106211/06 A RU 2014106211/06A RU 2014106211 A RU2014106211 A RU 2014106211A RU 2559100 C1 RU2559100 C1 RU 2559100C1
Authority
RU
Russia
Prior art keywords
natural gas
temperature
methane
fuel supply
combustion chamber
Prior art date
Application number
RU2014106211/06A
Other languages
English (en)
Inventor
Клаус КНАПП
Петер МАРКС
Карл РЕЙЗЕР
Мария-Белен ГАССЕР-ПАГАНИ
Original Assignee
Альстом Текнолоджи Лтд
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Альстом Текнолоджи Лтд filed Critical Альстом Текнолоджи Лтд
Application granted granted Critical
Publication of RU2559100C1 publication Critical patent/RU2559100C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • F02C7/224Heating fuel before feeding to the burner
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/40Control of fuel supply specially adapted to the use of a special fuel or a plurality of fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/002Regulating fuel supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/80Diagnostics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Изобретение относится к энергетике. В способе регулирования температуры природного газа для линии подачи топлива газотурбинного двигателя, содержащем этапы, на которых измеряют с помощью инфракрасного анализа процентное содержание природного газа, состоящего из метана (CH4), этана (C2H6), пропана (C3H8), бутана (C4H10), двуокиси углерода (CO2), рассчитывают процентное содержание азота (N2) как дополнение до 100% измеренного процентного содержания метана (CH4), этана (C2H6), пропана (C3H8), бутана (C4H10), двуокиси углерода (CO2), рассчитывают индекс, обозначающий энергетическое содержание природного газа, и регулируют температуру природного газа на основе этого индекса. Изобретение позволяет повысить эффективность и надежность электростанции. 2 н. и 4 з.п. ф-лы, 2 ил.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к способу для регулирования температуры природного газа в линии подачи топлива газотурбинного двигателя и к газотурбинному двигателю.
Известный уровень техники
Электростанция с комбинированным циклом имеет газотурбинный двигатель и паровой турбинный двигатель. В газотурбинный двигатель может поступать природный газ, который был предварительно нагрет (то есть его температуру регулируют перед подачей в камеру сгорания газотурбинного двигателя) для оптимизации эффективности; обычно предварительный нагрев достигается путем нагрева природного газа до максимальной допустимой температуры, используя пар или питающую воду из парового цикла.
Гибкость в отношении состава природного газа является важным свойством для таких электростанций с комбинированным циклом, в которые подают природный газ из разных газопроводов, из порта СПГ (сжиженного природного газа) или из трубопровода, в котором дополнительно была установлена установка очистки природного газа.
Обычно, когда источник природного газа меняется, состав природного газа также меняется. Изменение состава природного газа может привести к изменению поведения процесса горения. Например, природный газ с высоким содержанием инертных газов и, следовательно, более низкой теплотворной способностью требует повышенного давления подачи; что может привести к изменениям реактивности газа и качества при смешивании.
По этой причине измеряют состав природного газа, подаваемого в электростанцию с комбинированным циклом (в частности, в газовую турбину такой электростанции).
Для измерения состава природного газа известны разные устройства, а именно:
Инфракрасные анализаторы - эти устройства позволяют выполнять измерения углеводородов; кроме того, они имеют преимущество, состоящее в том, что их отклик получают достаточно быстро; это является полезным, поскольку подача природного газа (и, таким образом, состав природного газа) может меняться еженедельно ежедневно или каждый час или даже намного быстрее, если, например, в установке СПГ происходит смещение высоких углеводородов, в соответствии с состоянием подаваемого топлива. Инфракрасные анализаторы имеют недостаток, состоящий в том, что они не позволяют измерять в составе природного газа содержание азота (N2, количество N2 в природном газе может быть довольно большим), поскольку это соединение не реагирует на инфракрасное излучение.
Хроматографические анализаторы - эти устройства позволяют измерять содержание углеводородов, а также содержание азота (N2) в природном газе. Недостаток хроматографических анализаторов состоит в том, что их отклик является очень медленным, поскольку может потребоваться несколько минут для анализа с их помощью состава природного газа. Такой медленный отклик может привести к нестабильности сгорания в газотурбинном двигателе.
Изменения состава природного газа могут происходить медленно, если планируется переключение линии подачи газа (обычно в пределах 5-30 минут), или они могут происходить быстро, если незапланированное событие инициирует изменение природного газа (обычно приблизительно 30 секунд).
Сущность изобретения
Аспект раскрытия включает в себя предоставление способа для регулирования температуры природного газа (температуры предварительного нагрева) для оптимизации надежности и эффективности.
Предпочтительно для непрерывной надежной работы электростанции с комбинированным циклом, с флуктуацией состава газа, при оптимальной комбинированной эффективности цикла, измеряют фактический состав газа и определяют максимальную допустимую температуру топливного газа и ею управляют в линии подачи топлива или в других линиях подачи топлива.
Предпочтительно способ позволяет обеспечить быстрый отклик работы газотурбинного двигателя на изменение состава природного газа.
Эти и другие аспекты достигаются путем предоставления способа и газовой турбины в соответствии с приложенной формулой изобретения.
Подробное описание чертежей
Дополнительные характеристики и преимущества будут более понятны из описания предпочтительных, но не исключающих вариантов осуществления способа и газотурбинного двигателя, представленных в качестве неограничительного примера на приложенных чертежах, на которых:
На фиг.1 и 2 показаны схематичные виды разных газотурбинных двигателей.
Подробное описание изобретения
Способ регулирования температуры природного газа в линии подачи топлива газотурбинного двигателя содержит следующие этапы:
- измеряют, используя инфракрасный анализ, процентное содержание природного газа (предпочтительно молярный или объемный процент, но также и весовой процент) метана (CH4), этана (C2H6), пропана (C3H8), бутана (C4H10), двуокиси углерода (CO2),
- рассчитывают процентное содержание азота (N2) как дополнение к 100 процентам измеренного процентного содержания метана (CH4), этана (C2H6), пропана (C3H8), бутана (C4H10), двуокиси углерода (CO2); другими словами:
[% N2]=100%-[% CH4]-[% C2H6]-[% C3H8]-[% C4H10]-[CO2%]
Самая большая часть содержания природного газа определена метаном, этаном, пропаном, бутаном, двуокисью углерода и азотом, таким образом, даже если дополнительные компоненты, такие как аргон, содержатся в природном газе, они не оказывают отрицательного влияния на измерение азота с требуемой точностью. Кроме того, поскольку содержание углеводородов измеряют, используя инфракрасной анализ, и рассчитывают содержание азота, состав природного газа можно отслеживать с быстрым откликом. Дополнительные этапы способа включают в себя этапы, на которых:
- рассчитывают индекс, обозначающий содержание энергии природного газа, и
- корректируют температуру природного газа на основе этого индекса.
Например, регулирование температуры природного газа включает в себя определение множества диапазонов для индекса, ассоциирующих одну максимальную температуру с каждым диапазоном, и поддержание температуры природного газа ниже или на уровне максимальной температуры, соответствующей диапазону, в который попадает рассчитанный индекс. Это может быть предпочтительно выполнено с использованием справочных таблиц. Справочные таблицы могут быть подготовлены во время проверочных тестов газотурбинного двигателя.
Для учета состава природного газа индекс может быть рассчитан следующим образом:
- рассчитывают нижнее значение теплотворной способности смеси, включающей в себя измеренное количество метана (CH4), этана (C2H6), пропана (C3H8), бутана (C4H10), двуокиси углерода (CO2) и рассчитанное количество азота (N2), рассчитывают молекулярный вес смеси, включающей в себя измеренное количество метана (CH4), этана (C2H6), пропана (C3H8), бутана (C4H10), двуокиси углерода (CO2) и рассчитанное количество азота (N2). Это может быть выполнено путем суммирования молекулярного веса каждого учитываемого компонента в соответствии с его процентным содержанием в смеси.
Рассчитывают индекс NGI (взаимной замены природного газа)
NGI=(LHVng/LHVch4)*(Mng/Mch4)½,
в котором LHVng представляет собой расчетное нижнее значение теплотворной способности смеси;
LHVch4 представляет собой нижнее значение теплотворной способности метана;
Mng представляет собой молекулярный вес смеси;
Mch4 представляет собой молекулярный вес метана.
В этом случае ссылка на индекс представляет топливо, представляющее собой метан.
В качестве альтернативы индекс может быть рассчитан со ссылкой на расчетные условия для газотурбинного двигателя.
В этом случае индекс IGN рассчитывают следующим образом:
NGI=(LHVng/LHVdes)*(Mng/Mdes)1/2,
где LHVng представляет собой расчетное нижнее значение теплотворной способности смеси;
LHVdes представляет собой конструктивное нижнее значение теплотворной способности;
Mng представляет собой молекулярный вес смеси;
Mdes представляет собой расчетный молекулярный вес.
Если газотурбинный двигатель имеет множество линий подачи топлива для разных камер сгорания и/или разных каскадов камеры сгорания, температуру природного газа по меньшей мере в одной из линий подачи топлива можно регулировать независимо от температуры природного газа в другой линии подачи топлива.
Способ, описанный выше, может быть воплощен в газотурбинном двигателе 1, содержащем компрессор 2, камеру 3 сгорания и турбину 4.
Камера 3 сгорания имеет линию 6 подачи топлива с теплообменником 7 для регулирования температуры природного газа (то есть для предварительного нагрева природного газа, который подают через линию 6 в камеру 3 сгорания газовой турбины 1).
Теплообменники могут быть разных типов, и в них можно подавать разные теплые текучие среды, такие как, например, пар, теплый воздух из кондиционера, охлаждающего воздух, или теплую воду.
Кроме того, газотурбинный двигатель 1 имеет датчик 9 для измерения путем инфракрасного анализа процентного содержания природного газа, состоящего из метана (CH4), этана (C2H6), пропана (C3H8), бутана (C4H10), двуокиси углерода (CO2); поскольку используется инфракрасной анализ, это измерение выполняется очень быстро (за секунды).
Датчик 9 соединен с контроллером 10 для расчета процентного содержания азота (N2) как дополнения до 100% измеренного процентного содержания метана (CH4), этана (C2H6), пропана (C3H8), бутана (C4H10), двуокиси углерода (CO2).
Кроме того, контроллер 10 также рассчитывает индекс, обозначающий содержание энергии природного газа, и на основе этого индекса контроллер 10 управляет активаторами для теплообменника для регулирования температуры природного газа.
Активаторы обычно выполнены как клапаны, которые регулируют поток пара или поток теплого воздуха, или поток тепловой воды. Другие виды активаторов также возможны.
Когда способ воплощен в газотурбинном двигателе, таком, как описано выше, можно использовать справочные таблицы.
Таким образом, если рассчитанное значение NGI составляет, например, 0,75, максимальная температура природного газа, который требуется подавать в камеру 3 сгорания газотурбинного двигателя по фиг.1, представляет собой заданную температуру в соответствии со справочной таблицей. Природный газ будет предварительно нагрет до этой заданной температуре или до температуры, ниже, чем эта заданная температура.
Способ также может использоваться в газотурбинном двигателе с последовательным сгоранием.
На фиг.2 показан газотурбинный двигатель с последовательным сгоранием; на фиг.2 такие же номера ссылочных позиций, как и на фиг.1, обозначают те же или аналогичные компоненты, то есть газотурбинный двигатель 1 имеет компрессор 2, камеру 3 сгорания, турбину 4, теплообменник 7, датчик 9 и контроллер 10.
Кроме того, газотурбинный двигатель 1 включает в себя последовательную камеру 15 сгорания, в которую подают топочные газы из турбины 4, и вторую турбину 16 для расширения горячих газов, генерируемых в последовательной камере 15 сгорания.
В этом примере линия подачи топлива в камеру 3 сгорания обозначена номером 6a ссылочной позиции и линия подачи топлива последовательной камеры сгорания обозначена номером 6b ссылочной позиции.
Линия 6b подачи топлива имеет теплообменник 17 для регулирования температуры природного газа.
Контроллер 10 выполняет привод активаторов теплообменника 7 линии 6a подачи топлива камеры 3 сгорания независимо от активаторов теплообменника 17 линии 6b подачи топлива камеры 15 последовательного сгорания.
Когда способ воплощен в газотурбинном двигателе, таком, как описано выше, можно использовать справочные таблицы.
Таким образом, если рассчитанное значение NGI составляет, например, 0,75, максимальная температура природного газа, предназначенного для подачи в камеру 3 сгорания, представляет собой заданную температуру, и максимальная температура природного газа, предназначенного для подачи в камеру 15 сгорания, представляет собой эту заданную температуру.
Работа газотурбинного двигателя очевидна из описанного и представленного выше и по существу представляет собой следующее (со ссылкой на фиг.2).
Воздух сжимают в компрессоре 2 и подают в камеру 3 сгорания, в которую также подают природный газ. Природный газ сгорает, генерируя горячий газ, который расширяется в турбине 4. Выхлопной газ из турбины 4 подают в последовательную камеру 15 сгорания, куда подают дополнительный природный газ и генерируют сгоревший горячий газ. Этот горячий газ расширяется во второй турбине 16 и затем его выпускают.
По общей линии подают топливо к линиям 6a и 6b подачи топлива. Датчик 9 измеряет содержание (процент) метана, этана, пропана, бутана, двуокиси углерода; это измерение выполняется очень быстро (за секунды). Информацию о процентном содержании метана, этана, пропана, бутана, двуокиси углерода предоставляют в контроллер 10, который рассчитывает содержание (процент) азота и молекулярный вес смеси, имеющей измеренный процент метана, этана, пропана, бутана, двуокиси углерода и расчетное процентное отношение азота. Общее количество необязательно должно равняться точно 100%, но это не влияет на регулировку.
Затем рассчитывают индекс NGI и, например, на основе справочных таблиц определяют максимальную температуру для природного газа, подаваемого к камеру 3 сгорания и последовательную камеру 15 сгорания (эти значения температуры обычно являются разными, но также могут быть одинаковыми).
Температура природного газа не может быть выше, чем максимальная определенная температура, то есть температура природного газа может быть ниже, чем максимальная температура, но по причинам эффективности предпочтительно температуру природного газа (предварительный нагрев) регулируют до максимальной температуры или до значения, близкого к ней.
Естественно, что свойства, описанные выше, могут быть предоставлены независимо друг от друга.
На практике используемые материалы и размеры могут быть выбраны в соответствии с требованиями и в соответствии с состоянием уровня техники.
Список ссылочных позиций
1 - газотурбинный двигатель
2 - компрессор
3 - камера сгорания
4 - турбина
6 - линия подачи топлива
6a, 6b - линия подачи топлива
7 - теплообменник
9 - датчик
10 - контроллер
15 - последовательная камера сгорания
16 - вторая турбина
17 - теплообменник

Claims (6)

1. Способ регулирования температуры природного газа в линии (6) подачи топлива газотурбинного двигателя (1), содержащий этапы, на которых:
- измеряют, используя инфракрасный анализ, процентное содержание природного газа, состоящего из метана (CH4), этана (C2H6), пропана (C3H8), бутана (C4H10), двуокиси углерода (CO2),
- рассчитывают процентное содержание азота (N2) как дополнение до 100 процентов измеренного процентного содержания метана (CH4), этана (C2H6), пропана (C3H8), бутана (C4H10), двуокиси углерода (CO2);
рассчитывают индекс, обозначающий энергетическое содержание природного газа,
регулируют температуру природного газа на основе этого индекса.
2. Способ по п.1, отличающийся тем, что регулирование температуры природного газа включает в себя: определение множества диапазонов для индекса, ассоциирующих одну максимальную температуру с каждым диапазоном, и поддерживающие температуры природного газа ниже или на уровне максимальной температуры, соответствующей диапазону, в который попадает рассчитанный индекс.
3. Способ по п.1, отличающийся тем, что индекс рассчитывают следующим образом:
- рассчитывают нижнее значение теплотворной способности смеси, включающей в себя измеренное количество метана (CH4), этана (C2H6), пропана (C3H8), бутана (C4H10), двуокиси углерода (CO2) и рассчитанное количество азота (N2),
- рассчитывают молекулярный вес смеси, включающей в себя измеренное количество метана (CH4), этана (C2H6), пропана (C3H8), бутана (C4H10), двуокиси углерода (CO2) и рассчитанное количество азота (N2),
- рассчитывают индекс либо по NGI = (LHVng/LHVch4) * (Mng/Mch4)1/2, или
NGI = (LHVng/LHVdes) * (Mng/Mdes)1/2,
в котором LHVng представляет собой расчетное нижнее значение теплотворной способности смеси;
LHVch4 представляет собой нижнее значение теплотворной способности метана;
Mng представляет собой молекулярный вес смеси;
Mch4 представляет собой молекулярный вес метана;
Mdes представляет собой расчетный молекулярный вес.
4. Способ по п.1, отличающийся тем, что газотурбинный двигатель (1) имеет множество линий (6a, 6b) подачи топлива для разных камер (3, 15) сгорания и/или разных каскадов камеры сгорания, и
температуру природного газа по меньшей мере в одной из линий (6a) подачи топлива регулируют независимо от температуры природного газа в другой линии (6b) подачи топлива.
5. Газотурбинный двигатель (1), содержащий компрессор (2), камеру (3) сгорания и турбину (4), при этом камера сгорания (3) имеет линию (6) подачи топлива с теплообменником (7) для регулирования температуры природного газа, причем газотурбинный двигатель (1) дополнительно включает в себя:
по меньшей мере, датчик (9) для измерения, используя инфракрасной анализ, процентного содержания природного газа, состоящего из метана (CH4), этана (C2H6), пропана (C3H8), бутана (C4H10), двуокиси углерода (CO2), и
контроллер (10), предназначенный для расчета процентного содержания азота (N2) как дополнения до 100% измеренного процентного содержания метана (CH4), этана (C2H6), пропана (C3H8), бутана (C4H10), двуокиси углерода (CO2),
контроллер (10), предназначенный для дополнительного расчета индекса, обозначающего энергетическое содержание природного газа, и на его основе привода активаторов для теплообменника (7) для регулирования температуры природного газа на основе этого индекса.
6. Газотурбинный двигатель по п.5, отличающийся тем, что он включает в себя:
последовательную камеру (15) сгорания, в которую подают топливные газы из турбины (4), и вторую турбину (16) для расширения горячих газов, генерируемых в последовательной камере (15) сгорания, при этом последовательная камера (15) сгорания имеет линию (6b) подачи топлива с теплообменником (17) для регулирования температуры природного газа, и контроллер (10) управляет активаторами теплообменника (7) линии (6a) подачи топлива в камеру (3) сгорания независимо от активаторов теплообменника (17) линии (6b) подачи топлива в последовательную камеру (15) сгорания.
RU2014106211/06A 2013-02-25 2014-02-19 Способ регулирования температуры природного газа в линии подачи топлива газотурбинного двигателя RU2559100C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP13156508.7 2013-02-25
EP13156508.7A EP2770182B1 (en) 2013-02-25 2013-02-25 Method for adjusting a natural gas temperature for a fuel supply line of a gas turbine engine and gas turbine

Publications (1)

Publication Number Publication Date
RU2559100C1 true RU2559100C1 (ru) 2015-08-10

Family

ID=47901759

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014106211/06A RU2559100C1 (ru) 2013-02-25 2014-02-19 Способ регулирования температуры природного газа в линии подачи топлива газотурбинного двигателя

Country Status (8)

Country Link
US (2) US9677764B2 (ru)
EP (1) EP2770182B1 (ru)
JP (1) JP5837111B2 (ru)
KR (1) KR101567293B1 (ru)
CN (1) CN104005855B (ru)
CA (1) CA2841755C (ru)
IN (1) IN2014DE00452A (ru)
RU (1) RU2559100C1 (ru)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2789915A1 (en) * 2013-04-10 2014-10-15 Alstom Technology Ltd Method for operating a combustion chamber and combustion chamber
US10401340B2 (en) * 2014-01-31 2019-09-03 Honeywell International Inc. Measurement of hazardous gases in hydraulic fracking sites
US20160068777A1 (en) * 2014-09-05 2016-03-10 General Electric Company Gas turbine fuel blending using inferred fuel compositions
US20170051682A1 (en) * 2015-08-20 2017-02-23 General Electric Company System and method for abatement of dynamic property changes with proactive diagnostics and conditioning
FR3048074B1 (fr) * 2016-02-18 2019-06-07 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Methode pour eviter l'evaporation instantanee de gaz naturel liquefie en cours de transport.
CN106022603B (zh) * 2016-05-18 2019-09-03 西安西热电站信息技术有限公司 一种确定燃机电厂燃气实时高低位热值的方法
US11199327B2 (en) * 2017-03-07 2021-12-14 8 Rivers Capital, Llc Systems and methods for operation of a flexible fuel combustor
US11471839B2 (en) * 2019-08-06 2022-10-18 Uop Llc High selectivity membranes for hydrogen sulfide and carbon dioxide removal from natural gas
GB2602037A (en) * 2020-12-16 2022-06-22 Siemens Energy Global Gmbh & Co Kg Method of operating a combustor for a gas turbine
CN114687866A (zh) * 2020-12-30 2022-07-01 华能北京热电有限责任公司 一种可调节天然气热值的燃气轮机系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1214981A1 (en) * 1999-06-02 2002-06-19 Toyo Kasei Kogyo Company Limited Centrifugal separator
RU81561U1 (ru) * 2008-09-04 2009-03-20 Валерий Герасимович Гнеденко Установка для получения электроэнергии
EP2204561A2 (en) * 2008-12-31 2010-07-07 General Electric Company System and method for automatic fuel blending and control for combustion gas turbine
RU2426945C2 (ru) * 2007-01-02 2011-08-20 Сименс Акциенгезелльшафт Горелка и устройство топливоподачи для газовой турбины
EP2557297A1 (en) * 2011-08-09 2013-02-13 Alstom Technology Ltd Method for operating a gas turbine and gas turbine unit for carrying out said method

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6082092A (en) * 1998-04-08 2000-07-04 General Electric Co. Combustion dynamics control for variable fuel gas composition and temperature based on gas control valve feedback
JP4495971B2 (ja) * 2002-01-25 2010-07-07 アルストム テクノロジー リミテッド ガスタービン群を運転するための方法
US6896707B2 (en) 2002-07-02 2005-05-24 Chevron U.S.A. Inc. Methods of adjusting the Wobbe Index of a fuel and compositions thereof
DE10308384A1 (de) 2003-02-27 2004-09-09 Alstom Technology Ltd Betriebsverfahren für eine Gasturbine
EP1524423A1 (de) 2003-10-13 2005-04-20 Siemens Aktiengesellschaft Verfahren und Vorrichung zum Ausgleichen von Schwankungen der Brennstoffzusammensetzung in einer Gasturbinenanlage
ES2897425T3 (es) * 2004-01-12 2022-03-01 Combustion Science & Eng Inc Sistema y método para la estabilización y el control de la llama
EP1645804A1 (de) 2004-10-11 2006-04-12 Siemens Aktiengesellschaft Verfahren zum Betrieb eines Brenners, insbesondere eines Brenners einer Gasturbine, sowie Vorrichtung zur Durchführung des Verfahrens
JP4564376B2 (ja) 2005-02-23 2010-10-20 株式会社東芝 Lng利用発電プラントおよびその運転方法
US7690204B2 (en) 2005-10-12 2010-04-06 Praxair Technology, Inc. Method of maintaining a fuel Wobbe index in an IGCC installation
US7854110B2 (en) * 2006-11-16 2010-12-21 Siemens Energy, Inc. Integrated fuel gas characterization system
US7905082B2 (en) 2007-01-30 2011-03-15 General Electric Company Method and system for increasing Modified Wobbe Index control range
ITMI20071047A1 (it) 2007-05-23 2008-11-24 Nuovo Pignone Spa Metodo ed apparato per il controllo della combustione in una turbina a gas
US7980082B2 (en) 2007-08-01 2011-07-19 General Electric Company Wobbe control and enhanced operability through in-line fuel reforming
US7966802B2 (en) 2008-02-05 2011-06-28 General Electric Company Methods and apparatus for operating gas turbine engine systems
US8484981B2 (en) 2008-08-26 2013-07-16 Siemens Energy, Inc. Integrated fuel gas characterization system
US8145403B2 (en) 2008-12-31 2012-03-27 General Electric Company Operating a turbine at baseload on cold fuel with hot fuel combustion hardware
US20100307157A1 (en) 2009-06-08 2010-12-09 General Electric Company Methods relating to turbine engine control and operation
US20100319359A1 (en) * 2009-06-19 2010-12-23 General Electric Company System and method for heating turbine fuel in a simple cycle plant
US20110146288A1 (en) 2009-12-23 2011-06-23 General Electric Company Method of controlling a fuel flow to a turbomachine
US8528335B2 (en) 2010-02-02 2013-09-10 General Electric Company Fuel heater system including hot and warm water sources
US8783040B2 (en) 2010-02-25 2014-07-22 General Electric Company Methods and systems relating to fuel delivery in combustion turbine engines
US8731797B2 (en) 2010-04-30 2014-05-20 Alstom Technology Ltd. Employing fuel properties to auto-tune a gas turbine engine
US8627668B2 (en) 2010-05-25 2014-01-14 General Electric Company System for fuel and diluent control
US20110296844A1 (en) 2010-06-02 2011-12-08 General Electric Company Gas turbine combustion system with rich premixed fuel reforming and methods of use thereof
FR2961261B1 (fr) 2010-06-11 2017-12-22 Ge Energy Products France Snc Procede et dispositif de demarrage ou d'arret d'une turbine a gaz
US8881530B2 (en) 2010-09-02 2014-11-11 General Electric Company Fuel heating system for startup of a combustion system
US8355819B2 (en) * 2010-10-05 2013-01-15 General Electric Company Method, apparatus and system for igniting wide range of turbine fuels
EP2444631A1 (en) * 2010-10-19 2012-04-25 Alstom Technology Ltd Power plant and method for its operation
US20120102914A1 (en) 2010-11-03 2012-05-03 General Electric Company Systems, methods, and apparatus for compensating fuel composition variations in a gas turbine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1214981A1 (en) * 1999-06-02 2002-06-19 Toyo Kasei Kogyo Company Limited Centrifugal separator
RU2426945C2 (ru) * 2007-01-02 2011-08-20 Сименс Акциенгезелльшафт Горелка и устройство топливоподачи для газовой турбины
RU81561U1 (ru) * 2008-09-04 2009-03-20 Валерий Герасимович Гнеденко Установка для получения электроэнергии
EP2204561A2 (en) * 2008-12-31 2010-07-07 General Electric Company System and method for automatic fuel blending and control for combustion gas turbine
EP2557297A1 (en) * 2011-08-09 2013-02-13 Alstom Technology Ltd Method for operating a gas turbine and gas turbine unit for carrying out said method

Also Published As

Publication number Publication date
JP2014163388A (ja) 2014-09-08
KR101567293B1 (ko) 2015-11-09
US20170261207A1 (en) 2017-09-14
JP5837111B2 (ja) 2015-12-24
EP2770182A1 (en) 2014-08-27
CA2841755A1 (en) 2014-08-25
CN104005855A (zh) 2014-08-27
EP2770182B1 (en) 2015-10-14
CN104005855B (zh) 2017-07-11
IN2014DE00452A (ru) 2015-06-12
KR20140106413A (ko) 2014-09-03
CA2841755C (en) 2016-04-05
US9810428B2 (en) 2017-11-07
US9677764B2 (en) 2017-06-13
US20140238035A1 (en) 2014-08-28

Similar Documents

Publication Publication Date Title
RU2559100C1 (ru) Способ регулирования температуры природного газа в линии подачи топлива газотурбинного двигателя
US20120036863A1 (en) Method, apparatus and system for delivery of wide range of turbine fuels for combustion
JP5129839B2 (ja) 燃料の熱エネルギ量を制御するシステム及び方法
EP2846022B1 (en) Gas turbine combustion system
US8261529B2 (en) Gas turbine combustor and gaseous fuel supply method for gas turbine combustor
CN101907043B (zh) 高频燃烧不稳定性全过程模拟试验自动调节系统及方法
EP3324119A1 (en) System and method for determining fuel composition fuel used in gas turbines
CN101910728B (zh) 燃料提供装置
US11208959B2 (en) System and method for flexible fuel usage for gas turbines
US20060185367A1 (en) LNG power plant and operation method thereof
CN104048313A (zh) 热电比可变型热电联产系统
KR101690444B1 (ko) 가스 터빈 시스템, 제어 장치 및 가스 터빈 운전 방법
RU2008120465A (ru) Способ и устройство для управления сгоранием в газовой турбине
US20120102967A1 (en) Method and system for preventing combustion instabilities during transient operations
JP6378477B2 (ja) 燃焼器燃料を加熱するシステム及び方法
JP4991777B2 (ja) ガスタービンおよびガスタービンの燃料流量制御方法
US20130008172A1 (en) Systems and Methods for Modified Wobbe Index Control With Constant Fuel Temperature
US20150315979A1 (en) Gas turbine fuel supply method and arrangement
CN102947572A (zh) 起动或停止燃气涡轮发动机的方法和设备
JP2002267157A (ja) 燃焼の制御方法
JP2021156288A (ja) ガスタービンエンジンおよびガスタービンエンジンからの排出物を制御する方法
WO2015033769A1 (ja) ガスタービンプラント、その制御装置、及びガスタービンの運転方法
JPH11210496A (ja) ガスタービン燃料制御装置

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
PC41 Official registration of the transfer of exclusive right

Effective date: 20170426