CN106022603B - 一种确定燃机电厂燃气实时高低位热值的方法 - Google Patents

一种确定燃机电厂燃气实时高低位热值的方法 Download PDF

Info

Publication number
CN106022603B
CN106022603B CN201610331546.4A CN201610331546A CN106022603B CN 106022603 B CN106022603 B CN 106022603B CN 201610331546 A CN201610331546 A CN 201610331546A CN 106022603 B CN106022603 B CN 106022603B
Authority
CN
China
Prior art keywords
combustion gas
gas
power plant
real
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610331546.4A
Other languages
English (en)
Other versions
CN106022603A (zh
Inventor
罗睿
王智微
吴涛
柴胜凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guodian Investment Zhuhai Hengqin Thermal Power Co ltd
Xian TPRI Power Station Information Technology Co Ltd
Original Assignee
Xian TPRI Power Station Information Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian TPRI Power Station Information Technology Co Ltd filed Critical Xian TPRI Power Station Information Technology Co Ltd
Priority to CN201610331546.4A priority Critical patent/CN106022603B/zh
Publication of CN106022603A publication Critical patent/CN106022603A/zh
Application granted granted Critical
Publication of CN106022603B publication Critical patent/CN106022603B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/80Management or planning
    • Y02P90/82Energy audits or management systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Theoretical Computer Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Health & Medical Sciences (AREA)
  • Marketing (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Primary Health Care (AREA)
  • Water Supply & Treatment (AREA)
  • Development Economics (AREA)
  • Educational Administration (AREA)
  • General Health & Medical Sciences (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

一种确定燃机电厂的燃气实时高低位热值的计算方法,通过对燃机电厂的燃气物理属性的实时采集,计算当前燃气的实际高位热值与低位热值,为燃机电厂的燃气热值化验值分析作必要参考和补充,并为电厂的热耗、气耗等耗差分析提供更精确的计算数据,提升电厂的精细化管理水平。

Description

一种确定燃机电厂燃气实时高低位热值的方法
技术领域
本发明属于动力工程行业,具体涉及一种确定燃机电厂燃气实时高低位热值的方法。
背景技术
近年来,火电厂厂级监控信息(简称SIS系统)已成为火力发电厂信息化建设中的必备项目,基于SIS系统的耗差分析和节能分析已广泛应用,其中燃料的热值数据非常关键。但燃机电厂燃气的热值一般为电厂离线测量,并不能实时反映燃气参数的实时波动,同时电厂测量结果常常局限于高位发热量或低位发热量之一,这会严重影响电厂性能计算的基础数据缺乏及后续计算的准确度。因此如何利用电厂现成的信息数据实时评估燃料的高低位热值就显得尤为重要。
发明内容
本发明的目的在于提供一种确定燃机电厂燃气实时高低位热值的方法。
为达到上述目的,本发明采用的技术方案是:
1)确定燃机燃气中可燃气体实时成分
基于火电厂厂级监控信息平台,实时采集燃气成分参数,包括不可燃气体成分CO2摩尔分数X1、N2摩尔分数X2、O2摩尔分数X3、......、其他不可燃气体摩尔分数Xn的n个参数,以及实时获取的燃气中可燃气体含量,包括甲烷摩尔分数C1、乙烷摩尔分数C2、丙烷摩尔分数C3、......、其他可燃气体摩尔分数Cm的m个参数;
2)确定燃气各可燃成分的高位发热量
通过燃气各可燃成分完全燃烧的化学反应方程式及反应焓值,得到燃气相应成分的高位发热量
3)计算燃气燃烧中的水分含量及汽化潜热
水的汽化潜热rw根据汽化潜热表中对应的燃机或余热锅炉的排气压力PEX与排气温度TEX确定;
4)计算燃气实时的高位发热量及低位发热量
燃气高位发热量Qgw由燃气中可燃成分的含量及相应的燃烧反应热得到;
燃气低位发热量Qdw通过高位发热量与燃气燃烧过程中发生的汽化潜热之差得到。
所述步骤1)若电厂中可燃气体成分及相应组分的摩尔分数均有测量的实时数据,且则引入燃气的可燃系数λ,定义为燃气中可燃成分占总成分的摩尔比,计算如下,
那么燃气中剩余的不明成分中可燃成分Cm+2H2m+4的摩尔分数为
其对应的燃气相应成分的高位发热量为
所述的不明成分中可燃成分的假设分子式Cm+2H2m+4如果存在同分异构体,则统一按照最长碳链结构确定其化学反应的燃烧热。
本发明通过对燃机电厂的燃气物理属性的实时采集,计算当前燃气的实际高位热值与低位热值,为燃机电厂的燃气热值化验值分析作必要参考和补充,并为电厂的热耗、气耗等耗差分析提供更精确的计算数据,提升电厂的精细化管理水平。
具体实施方式
本发明包括以下步骤:
1)计算燃机燃气中可燃气体的实时成分
基于火电厂厂级监控信息(简称SIS系统)平台,实时采集燃气成分参数,包括不可燃气体成分CO2摩尔分数X1、燃气中N2摩尔分数X2、......、其他不可燃气体摩尔分数Xn共n个参数,以及实时获取的燃气中可燃气体含量,包括甲烷摩尔分数C1、乙烷摩尔分数C2、丙烷摩尔分数C3、......、其他可燃气体摩尔分数Cm等m个参数。
如果电厂中可燃气体成分及相应组分的摩尔分数均有测量的实时数据,且则燃气的实时可燃成分即确定。
2)确定燃气各可燃成分的高位发热量
通过燃气各可燃成分完全燃烧的化学反应方程式及反应焓值,得到燃气相应成分的高位发热量
如果则引入燃气的可燃系数λ,定义为燃气中可燃成分占总成分的摩尔比。计算如下,
那么燃气中剩余的不明成分中可燃成分Cm+2H2m+4的摩尔分数为
其对应的燃气相应成分的高位发热量为
若不明成分中可燃成分的假设分子式Cm+2H2m+4如果存在同分异构体,则统一按照最长碳链结构确定其化学反应的燃烧热。
举例说明,如果电厂实时采集的燃气中可燃成分已知的只有甲烷及其摩尔分数,且甲烷及其他不可燃成分摩尔分数和小于1,此时m=1,则需要确定CH4及C3H6的高位发热量。甲烷和丙烯的完全燃烧反应方程如下:
可以认为完全燃烧化学反应的燃烧热即为该可燃组分气体的高位发热量,
3)计算燃气燃烧过程中水分含量及汽化潜热
燃气燃烧过程中的水分直接影响燃气高位发热量与低位发热量的相互转换。该水分为燃气燃烧后生成的水W1。水的汽化潜热rw将由燃机的排气压力PEX与排气温度TEX来确定,通过查询水的汽化潜热表并插值得出,rw=r(PEX,TEX),单位kJ/kg。函数r为压力、温度与水的汽化潜热关系表。
1Nm3燃气燃烧生成的水通过可燃成分的反应方程式得出,
其中,Vm,STP是标准状况下气体的摩尔体积,为22.4L/mol。比如,1mol燃气中CH4生成的水量为2C1mol,C3H6燃烧生成的水量为3C2mol。那么1Nm3燃气燃烧过程总的水的物质的量为
1Nm3燃气燃烧需要提供总的汽化潜热Qw由下式得出,单位kJ/Nm3,其中,是水分子的摩尔质量,单位g/mol。
4)计算燃气实时的高位发热量Qgw及低位发热量Qdw
(1)燃气高位发热量
燃气高位发热量由可燃组分的燃烧热加权得到,单位为kJ/Nm3
当k=m,燃气可燃成分为电厂可实时采集到的组分。当k=m+1,燃气可燃成分由电厂可实时采集到的组分和不明可燃成分Cm+2H2m+4组成。
(2)燃气低位发热量
燃气低位发热量由高位发热量减掉水的汽化潜热得到,单位kJ/Nm3
Qdw=Qgw-Qw (10)
联立方程(8)~(10)可得低位发热量,
采用上述技术方案及数学模型,能够准确地计算出燃机电厂的燃气实时高低位发热量,补充并为燃气测量热值提供参考,为电厂的运行指标和考核提供更完整的数据依据,对提高机组的经济性和安全性运行的精细管理具有重要的指导意义。

Claims (2)

1.一种确定燃机电厂的燃气实时高低位热值的计算方法,包括以下步骤:
1)确定燃机燃气中可燃气体实时成分
基于火电厂厂级监控信息平台,实时采集燃气成分参数,包括n个不可燃气体成分摩尔分数Xj,j=1,……,n,以及实时获取的燃气中可燃气体含量,包括m个可燃气体摩尔分数Ci,l=1,……,m;
2)确定燃气各可燃成分的高位发热量
通过燃气各可燃成分完全燃烧的化学反应方程式及反应焓值,得到燃气相应成分的高位发热量
3)计算燃气燃烧中的水分含量及汽化潜热
水的汽化潜热rw根据汽化潜热表中对应的燃机或余热锅炉的排气压力PEX与排气温度TEX确定;
4)计算燃气实时的高位发热量及低位发热量
燃气高位发热量Qgw由燃气中可燃成分的含量及相应的燃烧反应热得到;
燃气低位发热量Qdw通过高位发热量与燃气燃烧过程中发生的汽化潜热之差得到;
其特征在于:所述步骤1)若电厂中可燃气体成分及相应组分的摩尔分数均有测量的实时数据,且则引入燃气的可燃系数λ,定义为燃气中可燃成分占总成分的摩尔比,计算如下,
那么燃气中剩余的不明成分中可燃成分Cm+2H2m+4的摩尔分数为
其对应的燃气相应成分的高位发热量为
2.根据权利要求1所述的确定燃机电厂的燃气实时高低位热值的计算方法,其特征在于:所述的不明成分中可燃成分的假设分子式Cm+2H2m+4如果存在同分异构体,则统一按照最长碳链结构确定其化学反应的燃烧热。
CN201610331546.4A 2016-05-18 2016-05-18 一种确定燃机电厂燃气实时高低位热值的方法 Active CN106022603B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610331546.4A CN106022603B (zh) 2016-05-18 2016-05-18 一种确定燃机电厂燃气实时高低位热值的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610331546.4A CN106022603B (zh) 2016-05-18 2016-05-18 一种确定燃机电厂燃气实时高低位热值的方法

Publications (2)

Publication Number Publication Date
CN106022603A CN106022603A (zh) 2016-10-12
CN106022603B true CN106022603B (zh) 2019-09-03

Family

ID=57097848

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610331546.4A Active CN106022603B (zh) 2016-05-18 2016-05-18 一种确定燃机电厂燃气实时高低位热值的方法

Country Status (1)

Country Link
CN (1) CN106022603B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113436033B (zh) * 2021-07-07 2023-03-31 西安热工研究院有限公司 一种实时计算天然气可燃物主成分比例的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1584572A (zh) * 2004-06-03 2005-02-23 西安交通大学 燃油冷凝式锅炉反平衡热效率测量方法
CN102012968A (zh) * 2010-11-24 2011-04-13 东北电力大学 煤粉锅炉热效率和煤质数据实时监测方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2770182B1 (en) * 2013-02-25 2015-10-14 Alstom Technology Ltd Method for adjusting a natural gas temperature for a fuel supply line of a gas turbine engine and gas turbine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1584572A (zh) * 2004-06-03 2005-02-23 西安交通大学 燃油冷凝式锅炉反平衡热效率测量方法
CN102012968A (zh) * 2010-11-24 2011-04-13 东北电力大学 煤粉锅炉热效率和煤质数据实时监测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
燃气热值测定的误差分析;郑威;《煤气与热力》;19871028;第48页,第50页第4节左栏
燃气高热值锅炉的发展前景分析;俞建洪 等;《工业锅炉》;20001231(第62期);第2-4页

Also Published As

Publication number Publication date
CN106022603A (zh) 2016-10-12

Similar Documents

Publication Publication Date Title
Xiang et al. Numerical study of the physical and chemical effects of hydrogen addition on laminar premixed combustion characteristics of methane and ethane
Wang et al. Emission factors of gaseous carbonaceous species from residential combustion of coal and crop residue briquettes
Capriolo et al. An experimental and kinetic study of propanal oxidation
Veloo et al. Experimental and modeling study of the oxidation of n-and iso-butanal
CN104008297A (zh) 煤粉与高炉煤气混烧锅炉的热效率计算方法
CN103528846A (zh) 煤气锅炉热效率与煤气特性的实时监测方法
Vancoillie et al. Laminar burning velocity correlations for methanol-air and ethanol-air mixtures valid at SI engine conditions
Cordtz et al. Modeling the distribution of sulfur compounds in a large two stroke diesel engine
CN103995987A (zh) 掺烧高炉煤气的煤粉锅炉的热效率测算方法
Mendiburu et al. Thermodynamic analysis and comparison of downdraft gasifiers integrated with gas turbine, spark and compression ignition engines for distributed power generation
Pachler et al. Reduction and validation of a chemical kinetic mechanism including necessity analysis and investigation of CH4/C3H8 oxidation at pressures up to 120 bar using a rapid compression machine
Misra et al. Energy and exergy analyses of a CI engine fuelled with palm biodiesel based on experimental data
CN103728071B (zh) 一种火电机组最大出力测量方法
CN104615895A (zh) 煤粉与高炉煤气混烧锅炉空气预热器漏风率的测算方法
CN106022603B (zh) 一种确定燃机电厂燃气实时高低位热值的方法
CN1771439B (zh) 化石燃料换能设备的在线监测方法
Fosudo et al. The impact of LPG composition on performance, emissions, and combustion characteristics of a pre-mixed spark-ignited CFR engine
Paulus et al. Establishing the energy content of natural gas residential consumption: example with Belgian field-test applications
Biswas et al. Exploring the nox-soot emission trade-off of a single cylinder crdi coupled diesel engine with cngdiesel dual fuel strategies: A DoE based RSM optimization approach
Park et al. Predicting the performance and NOx emissions of a turbocharged spark-ignition engine generator fueled with biogases and hydrogen addition under down-boosting condition
CN104570766A (zh) 船舶主机系统可用能分布及火用损失分布的模拟方法
Zhang et al. A new method for boiler combustion calculation
Skorek-Osikowska et al. Modeling of energy crops gasification based on experimental data
Junwu et al. Study on the Simplification Calculation Model of Marine Diesel Engine Exhaust Flow Based on Air‐Fuel Ratio
Martinez-Morett et al. A reduced chemical kinetic mechanism for CFD simulations of high BMEP, lean-burn natural gas engines

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230615

Address after: 519031 No. 6, Qinhai West Road, Hengqin New District, Zhuhai City, Guangdong Province

Patentee after: Guodian Investment (Zhuhai Hengqin) Thermal Power Co.,Ltd.

Patentee after: XI'AN TPRI POWER STATION INFORMATION TECHNOLOGY Co.,Ltd.

Address before: Block a, Boyuan science and Technology Plaza, 99 Yanxiang Road, Xi'an City, Shaanxi Province 710054

Patentee before: XI'AN TPRI POWER STATION INFORMATION TECHNOLOGY Co.,Ltd.