RU2558579C2 - Производство кондиционного синтез-газа для синтеза аммиака с криогенной очисткой - Google Patents

Производство кондиционного синтез-газа для синтеза аммиака с криогенной очисткой Download PDF

Info

Publication number
RU2558579C2
RU2558579C2 RU2012112641/05A RU2012112641A RU2558579C2 RU 2558579 C2 RU2558579 C2 RU 2558579C2 RU 2012112641/05 A RU2012112641/05 A RU 2012112641/05A RU 2012112641 A RU2012112641 A RU 2012112641A RU 2558579 C2 RU2558579 C2 RU 2558579C2
Authority
RU
Russia
Prior art keywords
nitrogen
synthesis gas
section
cryogenic
stream
Prior art date
Application number
RU2012112641/05A
Other languages
English (en)
Other versions
RU2012112641A (ru
Inventor
ФИЛИППИ Эрманно
Фредерик СКИННЕР Джеффри
Original Assignee
Касале Са
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41560872&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2558579(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Касале Са filed Critical Касале Са
Publication of RU2012112641A publication Critical patent/RU2012112641A/ru
Application granted granted Critical
Publication of RU2558579C2 publication Critical patent/RU2558579C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/025Preparation or purification of gas mixtures for ammonia synthesis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/382Multi-step processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/506Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification at low temperatures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • C01B3/58Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction
    • C01B3/586Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction the reaction being a methanation reaction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0219Refinery gas, cracking gas, coke oven gas, gaseous mixtures containing aliphatic unsaturated CnHm or gaseous mixtures of undefined nature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0276Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of H2/N2 mixtures, i.e. of ammonia synthesis gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04539Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the H2/CO synthesis by partial oxidation or oxygen consuming reforming processes of fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • F25J3/04587Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating for the NH3 synthesis, e.g. for adjusting the H2/N2 ratio
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0211Processes for making hydrogen or synthesis gas containing a reforming step containing a non-catalytic reforming step
    • C01B2203/0216Processes for making hydrogen or synthesis gas containing a reforming step containing a non-catalytic reforming step containing a non-catalytic steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/0445Selective methanation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/046Purification by cryogenic separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/068Ammonia synthesis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/74Refluxing the column with at least a part of the partially condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/20H2/N2 mixture, i.e. synthesis gas for or purge gas from ammonia synthesis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/904External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by liquid or gaseous cryogen in an open loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/80Retrofitting, revamping or debottlenecking of existing plant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49716Converting

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

Изобретение относится к способу и соответствующему оборудованию для получения кондиционного синтез-газа для производства аммиака с криогенной очисткой. Способ включает конверсию углеводородного исходного сырья с последующими стадиями конверсии СО, удаления СО2 и метанирования с получением потока сырого кондиционного синтез-газа, содержащего водород и азот, обработку сырого синтез-газа в секции криогенной очистки с получением потока очищенного синтез-газа, подачу жидкого потока, обогащенного азотом, при криогенной температуре в секцию криогенной очистки, обеспечение косвенного теплообмена между синтез-газом и жидким потоком, обогащенным азотом, в криогенной секции, причем поток, обогащенный азотом, частично испаряют для обеспечения охлаждения криогенной секции, и обработку воздушного потока в устройстве разделения воздуха с получением жидкого потока, обогащенного азотом, и потока, обогащенного кислородом. Изобретение обеспечивает рентабельный способ получения синтез-газа для производства аммиака. 3 н. и 9 з.п. ф-лы, 2 ил.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к производству кондиционного (добавляемого/свежего) синтез-газа для производства аммиака с криогенной очисткой. Более подробно, предлагаемое изобретение относится к производству сырого кондиционного синтез-газа для производства аммиака посредством паровой конверсии (риформинга) углеводородного сырья, такого как природный газ, и обработке сырого синтез-газа криогенной очисткой.
Уровень техники
Известно производство аммиака реакцией так называемого кондиционного синтез-газа для производства аммиака, содержащего водород и азот в соотношении около 3:1, в соответствующем контуре синтеза высокого давления.
Кондиционный синтез-газ обычно получают каталитической паровой конверсией углеводородного сырья в головной секции установки для производства аммиака. Традиционным оборудованием головной секции являются: установка (аппарат) первичной конверсии, установка вторичной конверсии, устройство охлаждения/конверсии CO (шифт конверсии), секция отделения CO2 и секция метанирования. Головная секция работает при давлении не более 60-80 бар, обычно в диапазоне от 15 до 35 бар, тогда как контур синтеза аммиака работает при более высоком давлении, например более 100 бар. Следовательно, дополнительным компонентом головной секции является главный компрессор синтез-газа, обычно многоступенчатого типа, для питания контура синтеза.
Криогенная обработка синтез-газа также известна в уровне техники. US 3572046 раскрывает устройство для очистки сырого синтез-газа, в криогенной секции которого удаляют избыток азота, и общее охлаждение в криогенной секции обеспечивают расширением синтез-газа.
В US 5736116 раскрывается способ модернизации устройства разделения воздуха, обеспечивающего потоки, обогащенные кислородом и азотом. Поток, обогащенный кислородом, используют для обогащения воздушного сырья установки вторичной конверсии и увеличения содержания водорода в кондиционном синтез-газе по существу выше проектных показателей стехиометрии и производительности; поток, обогащенный азотом, подают в контур синтеза для получения требуемого соотношения водорода к азоту в сырьевом синтез-газе конвертеров аммиака и компенсации избытка водорода в кондиционном газе.
Производительность головной секции имеет решающее значение для производительности всей установки для синтеза аммиака. Не прекращаются попытки увеличения производительности установок для производства аммиака и, следовательно, их головной секции, имея ввиду размер и стоимость оборудования. С этими проблемами сталкиваются при реализации новых установок для производства аммиака на основе паровой конверсии углеводорода, а также при модернизации действующих установок.
Существенное увеличение мощности установки первичной конверсии может обойтись довольно дорого. Старые трубы установки конверсии можно обновить монтажом новых труб, изготовленных из более стойкого материала и, следовательно, имеющих больший диаметр и меньшую толщину (обеспечивая, таким образом, участок с большей пропускной способностью), чем трубы исходной конструкции. Однако это возможно лишь для немногих устаревших установок. Возможет монтаж дополнительных труб, но с учетом размера первоначальной установки конверсии; также возможно увеличение размера установки конверсии, но, разумеется, это дорого и требует больших затрат времени. Другим решением проблемы является уменьшение соотношения пар/углерод, что может быть эффективным только на старых установках, и в любом случае, включает соответствующую реконструкцию секции обработки ниже по потоку или монтаж дополнительной установки предварительной конверсии, что, однако, дает относительно низкую выгоду в 10-15% от производительности.
Объемный расход в установках конверсии и в следующем за ними оборудовании, таком как конвертеры CO и устройства удаления CO2, часто ограничивает максимально достигаемый объем производства. Многие недостатки связаны с более высоким расходом в головной секции и могут суммироваться следующим образом: необходимость увеличения производительности компрессора воздушного потока и компрессора потока синтез-газа и их приводных турбин; более значительные потери давления в головной секции; необходимость увеличения производительности устройства удаления CO2. Увеличение объемного расхода в головной секции также сопровождается более высоким падением давления и ростом нагрузки секции удаления CO2. Как правило, падение давления можно уменьшить лишь проведением дорогостоящих модификаций, так как замена некоторых клапанов, преобразованием осевых реакторов в осевые-радиальные устройства и т.п. Кроме того, секция удаления CO2, как правило, требует значительной реконструкции (например, замены одной или нескольких колонн, монтажа новых колонн) для значительного увеличения производительности.
Другая задача заключается в увеличении воздушного потока из воздушного компрессора для большей подачи кислорода в установку вторичной конверсии. Монтаж нового внутрикорпусного устройства компрессора и, возможно, приводной турбины компрессора сам по себе эффективен, но дорог, так же как обеспечение дополнительным компрессором, работающим параллельно с имеющимся. Монтаж дожимного компрессора, т.е. предварительного компрессора, для увеличения давления на всасывании главного воздушного компрессора менее дорог, но также менее эффективен.
Производительность главного компрессора синтез-газа также является критической точкой. Этот компрессор представляет собой специальное и дорогостоящее оборудование, предназначенное, главным образом, для работы с синтез-газом. Обычно предпочитают не устанавливать какой-либо дожимной компрессор или дополнительный компрессор, работающий параллельно с главным компрессором, так как выход из строя любого дополнительного оборудования может снизить надежность всей установки и причинить серьезный ущерб главному компрессору. Компрессор можно реконструировать путем замены внутрикорпусного устройства компрессора и турбины, однако подобная модификация довольно дорого обходится.
Суммируя вышеизложенное, можно сделать вывод, что увеличение производительности головной секции установки для производства аммиака паровой конверсией сталкивается с рядом ограничений с технико-экономической точки зрения.
Другой технической проблемой, подлежащей обсуждению, является количество загрязнений, таких как неконвертированный метан и оксиды углерода, а также инертные примеси, такие как аргон, который содержится в подаче синтез-газа в контур синтеза. Контур синтеза очень чувствителен к подобным загрязнениям, и таким образом существует необходимость в обеспечении максимально возможной очистки синтез-газа.
Вышеуказанный способ модернизации, раскрытый в US 5736116, дает частичное решение вышеупомянутых проблем, описывая конверсию обогащенным воздухом в сочетании с вводом азота в контур синтеза. Однако он не обеспечивает удовлетворительного решения вышеприведенных проблем и не принимает во внимание влияние на контур аммиака ниже по потоку и проблему загрязнений, содержащихся в синтез-газе.
Раскрытие изобретения
Задачей, лежащей в основе предлагаемого изобретения, является предложить способ решения проблемы вышеперечисленных ограничений рентабельным способом. Эту задачу решают с помощью способа, установки и способа модернизации (реконструкции), в соответствии с нижеследующим описанием.
Способ производства кондиционного синтез-газа, в соответствии с предлагаемым изобретением, включает следующие стадии, на которых выполняют:
конверсию углеводородного исходного сырья с последующими стадиями конверсии CO (шифт конверсии), удаления CO2 и метанирования с получением потока сырого кондиционного синтез-газа для производства аммиака, содержащего водород и азот,
обработку сырого синтез-газа в секции криогенной очистки с получением очищенного потока синтез-газа,
подачу жидкого потока, обогащенного азотом, при криогенной температуре в секцию криогенной очистки,
обеспечение косвенного теплообмена между синтез-газом и жидким потоком, обогащенным азотом, в криогенной секции, причем жидкий поток, обогащенный азотом, по меньшей мере частично испаряют для обеспечения охлаждения криогенной секции.
Жидкий поток, обогащенный азотом, предпочтительно по существу представляет собой чистый азот в жидком состоянии, имеющий температуру предпочтительно от 185°C до 190°C ниже нуля (около 88-93 K). Предпочтительно этот поток, обогащенный азотом, по меньшей мере частично испаряют для охлаждения криогенной секции.
Поток, обогащенный азотом, предпочтительно получают на выходе из секции криогенной очистки после испарения и нагрева в самой криогенной секции, и смешивают с очищенным синтез-газом для обеспечения по меньшей мере частью азота, требуемой для корректировки соотношения водород/азот кондиционного синтез-газа для производства аммиака.
Жидкий поток, обогащенный азотом, предпочтительно получают из устройства разделения воздуха. В предпочтительном варианте осуществления предложенного в изобретении способа поток, обогащенный азотом, и дополнительный поток, обогащенный кислородом, получают в устройстве разделения воздуха, причем поток, обогащенный кислородом, используют как окислитель в секции конверсии, предпочтительно вводом в установку (аппарат) вторичной конверсии секции конверсии для увеличения производства кондиционного синтез-газа.
Более предпочтительно, в устройстве разделения воздуха получают жидкий азот при криогенной температуре и дополнительно второй поток азота при температуре окружающей среды. Количество азота, требуемое для корректировки соотношения HN кондиционного синтез-газа для производства аммиака, частично обеспечивают испаренным жидким потоком, обогащенным азотом, полученным на выходе из криогенной секции, и частично потоком, обогащенным азотом, при температуре окружающей среды.
Вышеупомянутый вариант осуществления изобретения является предпочтительным по следующим причинам. Количество азота, необходимое для корректировки соотношения HN, обычно больше, чем количество жидкого азота, которое нужно испарить для охлаждения криогенной секции. Чем больше фракция жидкого азота, тем выше энергопотребление в устройстве разделения воздуха. Таким образом, чтобы снизить энергопотребление, предпочтительно получить в жидком виде лишь минимальное количество азота, необходимое для криогенного процесса, остальной азот получить при температуре окружающей среды.
Другими предпочтительными аспектами предложенного в изобретении способа являются следующие. Сырой синтез-газ охлаждают до криогенной температуры в главном теплообменнике криогенной секции, утилизируя холод холодного очищенного синтез-газа и по меньшей мере частично испаренного потока, обогащенного азотом. Получают охлажденный сырой синтез-газ, который подают в контактное устройство для отделения загрязнений путем криогенного ожижения. В этом контактном устройстве получают частично очищенный синтез-газ, который далее охлаждают и очищают в холодильнике, охлаждаемом потоком, обогащенным азотом; на выходе из холодильника отбирают дополнительно очищенный синтез-газ и сконденсированную фракцию, затем синтез-газ повторно нагревают в главном теплообменнике теплообменом с входящим сырым синтез-газом и потоком азота из холодильника.
Предпочтительно, контактное устройство представляет собой криогенную колонну. Холодильник может быть частью колонны или отдельным элементом, предпочтительно расположенным сверху колонны. Охлаждение холодильника осуществляется общим или частичным испарением жидкого потока, обогащенного азотом.
Более подробно, и в предпочтительном варианте осуществления изобретения, синтез-газ обрабатывают в колонне для криогенного сжижения, которая является частью криогенной секции, и очищенный синтез-газ, который отводят сверху этой колонны, дополнительно охлаждают в холодильнике, который охлаждается частичным или полным испарением жидкого потока, обогащенного азотом. В этом холодильнике фракцию, содержащую метан и другие загрязнения, сжижают и подают обратно в колонну; на выходе из холодильника отбирают дополнительно очищенный синтез-газ и повторно нагревают его в главном теплообменнике, охлаждая входящий сырой синтез-газ. Поток азота на выходе из холодильника и/или жидкий поток, содержащий метан, азот и загрязнения, который отводят снизу колонны, можно также использовать как дополнительную теплообменную среду, например, подаваемую в тот же главный теплообменник для охлаждения входящего потока сырого синтез-газа.
Азот, необходимый для корректировки соотношения H/N кондиционного синтез-газа для синтеза аммиака, т.е. жидкий азот, испаренный в криогенной секции, и/или второй поток азота, полученный в устройстве разделения воздуха (УРВ) при температуре окружающей среды, можно смешать с очищенным синтез-газом выше по потоку от главного компрессора синтез-газа, питающего нижерасположенный контур синтеза аммиака, или ниже по потоку от главного компрессора синтез-газа, обеспечивая отдельное сжатие азота. Возможны оба варианта осуществления изобретения, однако предпочтительнее отдельное сжатие N2. Подобным образом получают чистый кондиционный синтез-газ, состоящий, по существу, из азота и водорода в соответствующем соотношении 3:1 с очень низким содержанием загрязняющих примесей.
Углеводородным исходным сырьем предпочтительно является природный газ или заменитель природного газа (ЗПГ), однако, можно использовать любой соответствующий конвертируемый углеводород.
Аспектом предлагаемого изобретения также является способ производства аммиака, в котором кондиционный синтез-газ, получаемый вышеприведенным способом, реагирует по сути в известном контуре синтеза аммиака. Таким образом, в соответствии с предлагаемым изобретением, установка для синтеза кондиционного синтез-газа для производства аммиака по меньшей мере включает:
головную секцию, включающую в себя секцию конверсии, приспособленную к конверсии углеводородного исходного сырья и получению потока сырого синтез-газа для производства аммиака,
секцию криогенной очистки для обработки сырого синтез-газа, полученного в головной секции,
средства подачи жидкого потока, обогащенного азотом, при криогенной температуре в упомянутую секцию криогенной очистки для использования в качестве теплообменной среды для охлаждения секции криогенной очистки,
по меньшей мере один теплообменник для косвенного теплообмена между синтез-газом и жидким потоком, обогащенным азотом, в криогенной секции, причем жидкий поток, обогащенный азотом, по меньшей мере частично испаряют в упомянутом теплообменнике(ах) для обеспечения охлаждения криогенной секции.
В соответствии с предпочтительным аспектом предлагаемого изобретения, упомянутые средства подачи потока, обогащенного азотом, в криогенную секцию включают в себя по меньшей мере устройство разделения воздуха, обозначаемое также УРВ. В устройстве разделения воздуха получают поток, обогащенный азотом, и дополнительный поток, обогащенный кислородом, который предпочтительно используют как окислитель в секции конверсии. В УРВ можно также получить поток, обогащенный азотом, при температуре окружающей среды для корректировки соотношения HN с вышеназванными преимуществами в отношении экономии энергии. В УРВ можно использовать традиционный процесс, такой как криогенная дистилляция.
В предпочтительном варианте осуществления изобретения головная секция включает в себя установку (аппарат) первичной конверсии, установку вторичной конверсии и оборудование для конверсии CO, удаления CO2 и метанирования. Поток, обогащенный кислородом, получаемый в устройстве разделения воздуха, предпочтительно подают в установку вторичной конверсии секции конверсии.
В соответствии с предпочтительным устройством криогенной секции эта секция включает в себя по меньшей мере контактное устройство, такое как криогенный холодильник; холодильник, принимающий частично очищенный синтез-газ, полученный в контактном устройстве и охлажденный потоком, обогащенным азотом; главный теплообменник, в котором входящий сырой синтез-газ охлаждается теплообменом с одним или несколькими следующими потоками, имеющимися в распоряжении: потоком азота, очищенного синтез-газа и, возможно, жидкой фракции, отделенной в контактном устройстве.
Предлагаемое изобретение также можно использовать для модернизации действующей установки для производства аммиака или ее головной секции.
В частности, изобретение обеспечивает способ модернизации головной секции установки для производства аммиака, включающей по меньшей мере установки (аппараты) первичной конверсии и вторичной конверсии для конверсии углеводородного исходного сырья в сырой кондиционный синтез-газ для производства аммиака, и криогенную секцию для обработки сырого синтез-газа; способ включает по меньшей мере стадии: монтажа установки разделения воздуха, работающей параллельно с головной секцией; обеспечения средствами подачи потока, обогащенного азотом, полученного в устройстве разделения воздуха, в криогенную секцию для использования в качестве охлаждающей среды; обеспечения новой линией подачи потока, обогащенного кислородом, полученного в устройстве разделения воздуха, в установку вторичной конверсии для увеличения производительности этой секции конверсии. В случае отсутствия в исходной установке, при реконструкции можно также предусмотреть новую криогенную секцию.
Было установлено, что использование потока, обогащенного азотом, в качестве охлаждающей среды для криогенной секции является эффективной мерой для увеличения производительности установки и улучшения общего КПД процесса. Первое преимущество заключается в том, что в предлагаемом изобретении используют поток, обогащенный азотом, как охлаждающую среду для обеспечения общего охлаждения в криогенной секции вместо энергоемкого расширения сырого синтез-газа, как предполагалось в уровне техники. Однако, в предлагаемом изобретении не исключается расширение по меньшей мере части сырого синтез-газа и может быть использовано, в случае необходимости, как дополнительное средство охлаждения криогенной секции. В этом случае охлажденный синтез-газ, или по меньшей мере его часть, расширяют в соответствующем детандере или турбине.
Другое преимущество заключается в том, что поток, обогащенный азотом, используют высокоэффективным способом, т.е. вначале как охлаждающую среду для криогенной секции и затем для корректировки соотношения H/N очищенного синтез-газа, исключая подачу существенного количества инертного азота в очистное оборудование ниже по потоку от установок конверсии. Таким образом получают значительное преимущество без нежелательного существенного увеличения объемного расхода, обрабатываемого в установках конверсии, реакторе(ах) конверсии CO и устройстве удаления CO2.
Подача подогретого потока азота ниже по потоку от головной секции, предпочтительно на впуск главного компрессора синтез-газа, снижает увеличение объемного расхода во всей головной секции и связанные с этим проблемы, включая падение давления и нагрузку устройства удаления CO2 и секции метанирования. Действительно, головная секция принимает лишь чистый поток кислорода, необходимый для увеличения мощности конверсии, тогда как поток азота, который проходит через головную секцию по существу как инертный газ, соответственно подают лишь в контур синтеза, где он необходим как один из реагентов для производства аммиака и для обеспечения надлежащего соотношения H/N кондиционного синтез-газа.
Кроме того, предлагаемое изобретение эффективно, в частности, для удаления метана и других загрязнений из синтез-газа, благодаря обработке в криогенной секции, охлаждаемой азотом. Меньшее содержание инертных примесей означает более эффективную конверсию реагентов - азота и водорода - в аммиак, снижение рециркуляции непрореагировавшего синтез-газа и уменьшение энергопотребления.
В частности, эффективна интеграция с устройством разделения воздуха, где также получают поток, обогащенный кислородом, который преимущественно вводят в установку вторичной конверсии, увеличивая таким образом производительность головной секции в отношении производства сырого синтез-газа.
Преимущества будут более очевидны при следующем подробном описании предпочтительного варианта осуществления изобретения.
Краткое описание чертежей
На фиг.1 показана упрощенная блок-схема головной секции установки для производства аммиака, работающей в соответствии с предлагаемым изобретением;
на фиг.2 показана более подробная схема предпочтительного варианта осуществления изобретения.
Подробное описание осуществления изобретения
Со ссылкой на фиг.1, головная секция установки (оборудования) для производства аммиака включает в себя секцию 1 конверсии, где протекает реакция углеводородного исходного сырья 11 и потока 12 с получением сырого потока 13 синтез-газа, содержащего водород, азот плюс некоторые количества CO, CO2, H2O, остаточный метан, аргон и другие загрязнения. Секция 1 конверсии включает в себя, например, установку (аппарат) первичной конверсии, установку вторичной конверсии и известное оборудование для обработки конвертированного газа с технологическими стадиями конверсии CO, удаления CO2 и метанирования.
Поток 13 сырого синтез-газа подают в криогенную секцию 2, где его подвергают криогенному сжижению и удалению загрязнений с получением в секции 2 очищенного синтез-газа 17. Очищенный синтез-газ 17 сжимают в компрессоре синтез-газа и подают в контур синтеза аммиака.
Согласно предлагаемому изобретению, жидкий поток, обогащенный азотом, по существу, чистый жидкий азот 32, используют в качестве охлаждающей среды для обеспечения общего охлаждения криогенной секции 2. Жидкий азот 32 по меньшей мере частично испаряют для обеспечения требуемого охлаждения криогенной секции 2 и выводят из криогенной секции в виде потока 34, который используют для корректировки, по меньшей мере частично, соотношения водород/азот кондиционного синтез-газа, т.е. его смешивают с очищенным синтез-газом 17 или подают в контур синтеза аммиака.
Содержание азота по существу в чистом потоке 32 азота, предпочтительно полученном в устройстве 3 разделения воздуха (УРВ), составляет более 99 мол.%. УРВ 3 принимает воздушное сырье 31 и обеспечивает получение потока 32 жидкого азота и потока 35, обогащенного кислородом, который подают в качестве окислителя во вторую установку конверсии секции 1. В УРВ 3 также получают поток 32а азота при температуре окружающей среды. Азот, требуемый для корректировки соотношения H/N синтез-газа, частично обеспечивает поток 34 и частично поток 32а при температуре окружающей среды.
На фиг.2 показан предпочтительный вариант криогенной секции 2, осуществленный в изобретении, и использование потока 32 азота.
Криогенная секция 2, в основном, включает в себя главный теплообменник 201 с косвенным теплообменом, колонну 202 промывки газа и холодильник 203. Сырой синтез-газ охлаждают до криогенной температуры в главном теплообменнике 201, охлажденный сырой синтез-газ 14 подают в колонну 202, где имеет место криогенное отделение метана, азота и других загрязнений. Теплообменник 201 утилизирует холод очищенного синтез-газа 16, полученного в колонне 202 и предварительно охлажденного в холодильнике 203, потока 33 газообразного азота и жидкого потока 20, отделенного внизу колонны 202.
Более подробно, продуктовый газ 15, который отводят с верха колонны 202, далее охлаждают в холодильнике 203, который в свою очередь охлаждают испарением холодного, по меньшей мере частично жидкого потока 32 азота, с получением очищенного синтез-газа 16 и дополнительным удалением метана, азота и других загрязнений, которые рециркулируют в колонну 202 в виде жидкого рециркулирующего потока 18.
Поток 32 азота по меньшей мере частично испаряют в холодильнике 203 и выводят в виде потока 33, который нагревают в главном теплообменнике 201, охлаждая таким образом входящий сырой синтез-газ 13.
Жидкий поток 19, состоящий, главным образом, из метана и азота, отводят с низа колонны 202, расширяют и, возможно, испаряют в устройстве 22, таком как расширительный клапан или турбина, получая поток 20. Поток 20 также подогревают в главном теплообменнике 201 и выводят из него как поток 21, который можно использовать в качестве топлива. Расширение потока 19 в турбине позволяет утилизировать некоторую полезную работу.
Таким образом, главный теплообменник 201 охлаждают потоком азота 33, холодным очищенным синтез-газом 16 и потоком метана 20, все эти потоки вносят свой вклад в охлаждение входящего сырого синтез-газа 13.
Подогретый и очищенный синтез-газ 17, выходящий из криогенной секции 2 при температуре около температуры окружающей среды, подают в главный компрессор 40 синтез-газа и затем в контур синтеза аммиака. Поток 34 газообразного подогретого азота подают в соответствующий компрессор 41 азота и смешивают со сжатым очищенным синтез-газом вместе с азотом 32а при температуре окружающей среды, который получают в устройстве 3, для корректировки соотношения HN в контуре синтеза аммиака. Сжатый азот 35 смешивают с выпуском компрессора 40 синтез-газа с получением потока 23 синтез-газа с надлежащим соотношением H:N около 3:1.
На фиг.2 показан предложенный в изобретении вариант осуществления отделения-сжатия, в котором синтез-газ и азот сжимают по-отдельности в компрессорах 40 и 41, соответственно. В других вариантах осуществления изобретения азот можно также смешать с очищенным синтез-газом выше по потоку (например, на впуске) от главного компрессора 40 синтез-газа. В последнем случае при реконструкции действующей установки компрессор синтез-газа, возможно, придется модифицировать, чтобы приспособиться к дополнительному азоту.
Одним из аспектов предлагаемого изобретения является способ модернизации головной секции действующей установки для производства аммиака. Головную секцию, включающую в себя по меньшей мере установку первичной конверсии, установку вторичной конверсии и криогенную секцию 2 для обработки сырого синтез-газа, модернизируют, например, по меньшей мере следующими операциями: монтажом устройства 3 разделения воздуха, работающего параллельно с головной секцией; обеспечением средствами подачи жидкого потока 32, обогащенного азотом, полученным в устройстве 3 разделения воздуха, в криогенную секцию 2, обеспечением подающей линией для потока 35, обогащенного кислородом, полученного в том же устройстве 3, в установку вторичной конверсии головной фракции для увеличения производительности секции 1 конверсии. Как известно специалистам, вышеизложенное представляет собой основные стадии, и в соответствии с конкретными потребностями будет обеспечено снабжение дополнительным оборудованием, таким как клапаны, трубопроводы, вспомогательные средства и т.п.

Claims (12)

1. Способ получения кондиционного синтез-газа для производства аммиака, включающий стадии, на которых осуществляют:
конверсию углеводородного исходного сырья (11) с последующими стадиями конверсии СО, удаления СО2 и метанирования с получением потока (13) сырого кондиционного синтез-газа для производства аммиака, содержащего водород и азот;
обработку сырого синтез-газа в секции (2) криогенной очистки с получением потока (17) очищенного синтез-газа;
подачу жидкого потока (32), обогащенного азотом, при криогенной температуре в секцию криогенной очистки;
обеспечение косвенного теплообмена между синтез-газом и жидким потоком, обогащенным азотом, в криогенной секции, причем поток, обогащенный азотом, по меньшей мере частично испаряют для обеспечения охлаждения криогенной секции, и
дополнительно включающий стадию обработки воздушного потока (31) в устройстве (3) разделения воздуха с получением жидкого потока (32), обогащенного азотом, и потока (35), обогащенного кислородом.
2. Способ по п. 1, в котором жидкий поток (32), обогащенный азотом, по меньшей мере после частичного испарения в криогенной секции, получают на выходе из криогенной секции и смешивают с очищенным синтез-газом для обеспечения по меньшей мере частью азота, требуемой для корректировки соотношения водород/азот кондиционного синтез-газа для производства аммиака.
3. Способ по п. 1, в котором устройство (3) разделения воздуха обеспечивает получение жидкого потока (32), обогащенного азотом, и дополнительного потока (32а), обогащенного азотом, при температуре окружающей среды и в газообразном состоянии, причем количество азота, требуемое для корректировки соотношения H/N кондиционного синтез-газа для производства аммиака, частично обеспечивают испаренным жидким потоком (34), обогащенным азотом, полученным на выпуске из криогенной секции, и частично потоком (32а), обогащенным азотом, при температуре окружающей среды.
4. Способ по п. 1, в котором поток (35), обогащенный кислородом, используют как дополнительный окислитель в процессе конверсии посредством ввода его в аппарат вторичной конверсии секции (1) конверсии.
5. Способ по любому из предыдущих пунктов, в котором:
охлаждают сырой синтез-газ (13) до криогенной температуры в главном теплообменнике (201) криогенной секции (2) с получением охлажденного сырого синтез-газа (14);
подают охлажденный сырой синтез-газ (14) в контактное устройство (202), в котором криогенным ожижением получают жидкую фракцию (19), содержащую загрязнения, и отделяют из синтез-газа;
получают очищенный синтез-газ (15) из контактного устройства (202) и дополнительно подвергают охлаждению и очистке в холодильнике (203), который охлаждают по меньшей мере частичным испарением жидкого потока (32), обогащенного азотом;
отбирают дополнительно очищенный синтез-газ (16) на выходе из холодильника и повторно нагревают в главном теплообменнике (201) посредством теплообмена с входящим сырым синтез-газом (13) и испаренным потоком (33) азота, отобранным из упомянутого холодильника.
6. Способ по п. 5, в котором жидкую фракцию, содержащую загрязнения, дополнительно используют как охлаждающую среду (20) для главного теплообменника (201) криогенной секции (2).
7. Способ по п. 1, в котором жидкий поток, обогащенный азотом, и/или поток, обогащенный азотом, при температуре окружающей среды, по существу представляют собой чистый азот.
8. Установка для получения кондиционного синтез-газа для производства аммиака, содержащая:
головную секцию, включающую секцию (1) конверсии, приспособленную для осуществления конверсии углеводородного исходного сырья и получения потока сырого синтез-газа для производства аммиака;
секцию (2) криогенной очистки для обработки сырого синтез-газа, полученного в головной секции;
средства подачи жидкого потока (32), обогащенного азотом, при криогенной температуре в секцию криогенной очистки для использования в качестве теплообменной среды для охлаждения секции криогенной очистки;
по меньшей мере один теплообменник (203, 201), предназначенный для косвенного теплообмена между синтез-газом и жидким потоком, обогащенным азотом, в криогенной секции (2) и выполненный с возможностью по меньшей мере частичного испарения в нем жидкого потока, обогащенного азотом, для обеспечения охлаждения криогенной секции, и
устройство (3) разделения воздуха для обеспечения жидкого потока (32), обогащенного азотом, и второго потока (32а) азота при температуре окружающей среды для корректировки соотношения H/N, и дополнительно потока (35), обогащенного кислородом, для подачи в качестве окислителя в секцию (1) конверсии,
причем головная секция дополнительно включает оборудование для конверсии СО, удаления СО2 и метанирования.
9. Установка по п. 8, дополнительно содержащая средства для получения испаренного потока (34), обогащенного азотом, на выходе из секции криогенной очистки и смешения этого потока, обогащенного азотом, с очищенным синтез-газом (17) для обеспечения по меньшей мере частью азота, требуемой для корректировки соотношения водород/азот кондиционного синтез-газа для производства аммиака.
10. Установка по п. 9, в которой головная секция включает аппарат первичной конверсии, аппарат вторичной конверсии, причем поток (35), обогащенный кислородом, подается в аппарат вторичной конверсии секции конверсии.
11. Установка по любому из пп. 8-10, в которой криогенная секция (2) включает: контактное устройство, такое как колонна (202) криогенного холодильника; холодильник (203), выполненный с возможностью приема частично очищенного синтез-газа (15), полученного в контактном устройстве, и охлаждения жидким потоком (32), обогащенным азотом; главный теплообменник (201), выполненный с возможностью охлаждения входящего сырого синтез-газа (13) посредством теплообмена с одним или несколькими потоками, включающими потоки (33) азота, испаренного в упомянутом холодильнике, очищенного синтез-газа (16) и нижнего продукта (20), выходящего из контактного устройства.
12. Способ модернизации головной секции установки для производства аммиака, содержащей секцию (1) конверсии с по меньшей мере аппаратами первичной и вторичной конверсии для конверсии углеводородного исходного сырья в сырой кондиционный синтез-газ для производства аммиака, включающий по меньшей мере следующие стадии:
монтаж устройства (3) разделения воздуха, работающего параллельно с головной секцией;
обеспечение криогенной секции для обработки сырого синтез-газа, в том случае, если она отсутствовала в исходной установке;
обеспечение средств подачи жидкого потока (32), обогащенного азотом, полученного в устройстве разделения воздуха, в криогенную секцию для использования в качестве охлаждающей среды;
обеспечение по меньшей мере одного теплообменника (203, 201), предназначенного для косвенного теплообмена между синтез-газом и жидким потоком, обогащенным азотом, в криогенной секции (2) и выполненного с возможностью по меньшей мере частичного испарения в нем жидкого потока, обогащенного азотом, для обеспечения охлаждения криогенной секции, и
обеспечение подающей линии для потока (35), обогащенного кислородом, полученного в устройстве разделения воздуха, для увеличения производительности секции конверсии.
RU2012112641/05A 2009-09-02 2010-08-25 Производство кондиционного синтез-газа для синтеза аммиака с криогенной очисткой RU2558579C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP09169289A EP2292554A1 (en) 2009-09-02 2009-09-02 Production of ammonia make-up syngas with cryogenic purification
EP09169289.7 2009-09-02
PCT/EP2010/062417 WO2011026771A1 (en) 2009-09-02 2010-08-25 Production of ammonia make-up syngas with cryogenic purification

Publications (2)

Publication Number Publication Date
RU2012112641A RU2012112641A (ru) 2013-10-10
RU2558579C2 true RU2558579C2 (ru) 2015-08-10

Family

ID=41560872

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012112641/05A RU2558579C2 (ru) 2009-09-02 2010-08-25 Производство кондиционного синтез-газа для синтеза аммиака с криогенной очисткой

Country Status (5)

Country Link
US (3) US20120161079A1 (ru)
EP (2) EP2292554A1 (ru)
CN (1) CN102498058B (ru)
RU (1) RU2558579C2 (ru)
WO (1) WO2011026771A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2709866C2 (ru) * 2015-10-15 2019-12-23 Касале Са Способ получения синтез-газа риформингом углеводорода, включающий извлечение диоксида углерода при высоком давлении

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9083020B2 (en) * 2009-09-04 2015-07-14 Lg Fuel Cell Systems Inc. Reducing gas generators and methods for generating reducing gas
US20150129806A1 (en) 2013-11-08 2015-05-14 Ammonia Casale Sa Process for Producing Ammonia Synthesis Gas and a Method for Revamping a Front-End of an Ammonia Plant
CN105314596A (zh) * 2015-06-16 2016-02-10 浙江科技学院 一种甲烷二氧化碳自热重整制备合成气的方法及设备
IT201600081328A1 (it) * 2016-08-02 2018-02-02 Saipem Spa Recupero di anidride carbonica da gas di sintesi in impianti per la produzione di ammoniaca per mezzo di separazione gravimetrica
EP3333124B1 (de) * 2016-12-09 2019-06-26 L'air Liquide, Société Anonyme Pour L'Étude Et L'exploitation Des Procédés Georges Claude Anlage und verfahren zur erzeugung von synthesegas
EP3333123B1 (de) * 2016-12-09 2019-11-27 L'air Liquide, Société Anonyme Pour L'Étude Et L'exploitation Des Procédés Georges Claude Verfahren und anlage zur erzeugung von synthesegas
US10870810B2 (en) * 2017-07-20 2020-12-22 Proteum Energy, Llc Method and system for converting associated gas
CN118251517A (zh) * 2021-10-29 2024-06-25 福特斯丘未来工业私人有限公司 一种生产氨的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1156003A (en) * 1965-10-22 1969-06-25 Braun & Co C F Ammonia Synthesis Gas Purification Process and Apparatus.
US5736116A (en) * 1995-10-25 1998-04-07 The M. W. Kellogg Company Ammonia production with enriched air reforming and nitrogen injection into the synthesis loop
DE102005046790A1 (de) * 2005-09-29 2007-04-05 Linde Ag Verfahren zur Reinigung eines Gasgemisches
RU2331575C2 (ru) * 2003-07-17 2008-08-20 Келлогг Браун Энд Рут, Инк. Установка очистки с низким δ р для удаления азота, метана и аргона из сингаза

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL207434A (ru) * 1955-06-02
US2865864A (en) * 1955-08-19 1958-12-23 Texas Co Process for the production of ammonia synthesis feed gas
GB833551A (en) 1957-09-06 1960-04-27 Texaco Development Corp Production of ammonia synthesis feed gas
US3442613A (en) * 1965-10-22 1969-05-06 Braun & Co C F Hydrocarbon reforming for production of a synthesis gas from which ammonia can be prepared
US3572046A (en) 1965-10-22 1971-03-23 Braun & Co C F Apparatus for purification of raw ammonia synthesis gas
JPS5479169A (en) 1977-12-07 1979-06-23 Hitachi Ltd Cold-compensating method for nitrogen-washing apparatus
DE3802552A1 (de) 1988-01-28 1989-08-10 Linde Ag Verfahren zum reinigen eines gasgemisches
DE3816401A1 (de) * 1988-05-13 1989-11-16 Linde Ag Verfahren zur reinigung von rohgas fuer die ammoniaksynthese
US5775128A (en) 1997-05-02 1998-07-07 Praxair Technology, Inc. Process for producing ammonia and recovering argon using low purity oxygen
US8075646B2 (en) * 2006-02-09 2011-12-13 Siemens Energy, Inc. Advanced ASU and HRSG integration for improved integrated gasification combined cycle efficiency

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1156003A (en) * 1965-10-22 1969-06-25 Braun & Co C F Ammonia Synthesis Gas Purification Process and Apparatus.
US5736116A (en) * 1995-10-25 1998-04-07 The M. W. Kellogg Company Ammonia production with enriched air reforming and nitrogen injection into the synthesis loop
RU2331575C2 (ru) * 2003-07-17 2008-08-20 Келлогг Браун Энд Рут, Инк. Установка очистки с низким δ р для удаления азота, метана и аргона из сингаза
DE102005046790A1 (de) * 2005-09-29 2007-04-05 Linde Ag Verfahren zur Reinigung eines Gasgemisches

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2709866C2 (ru) * 2015-10-15 2019-12-23 Касале Са Способ получения синтез-газа риформингом углеводорода, включающий извлечение диоксида углерода при высоком давлении

Also Published As

Publication number Publication date
US20120161079A1 (en) 2012-06-28
US10273155B2 (en) 2019-04-30
CN102498058B (zh) 2016-01-20
EP2292554A1 (en) 2011-03-09
WO2011026771A1 (en) 2011-03-10
US20160068389A1 (en) 2016-03-10
CN102498058A (zh) 2012-06-13
EP2473440B1 (en) 2016-12-21
EP2473440A1 (en) 2012-07-11
RU2012112641A (ru) 2013-10-10
US20170253481A1 (en) 2017-09-07

Similar Documents

Publication Publication Date Title
RU2558579C2 (ru) Производство кондиционного синтез-газа для синтеза аммиака с криогенной очисткой
KR100419763B1 (ko) 농축공기개질및합성루프에로의질소주입에의한암모니아제법
EP1503160B1 (en) Method to purify syngas
EP2196448B1 (en) Method of coproducing methanol and ammonia
US10040691B2 (en) Hydrogen and nitrogen recovery from ammonia purge gas
US8591770B2 (en) Process for the production of syngas for ammonia synthesis
KR102217256B1 (ko) 일산화탄소를 생성하는 방법 및 장치
CN106595221B (zh) 制氧系统和制氧方法
EP2464601B1 (en) Process for revamping an ammonia plant with nitrogen-based washing of a purge stream
US5935544A (en) Moderate excess nitrogen Braun Purifier™ process and method for retrofitting non-Braun Purifier™ ammonia plants
US20240043273A1 (en) Method for production of h2 with high carbon capture ratio and efficiency
BR112020024532A2 (pt) processo para a produção de metanol
JPS62265115A (ja) アンモニアの製造方法
RU2680047C1 (ru) Способ получения синтез-газа для производства аммиака
EP3237328B1 (en) Plant and process for ammonia production with cryogenic purification, and related method of revamping
US11015866B2 (en) Process and plant for the combination production of a mixture of hydrogen and nitrogen and also of carbon monoxide by cryogenic distillation and cryogenic scrubbing
US20210172678A1 (en) Method for generating refrigeration for a carbon monoxide cold box
JPH03103302A (ja) アンモニア―水素回収―稀ガス複合系のメタンと稀ガスの含量を個々に調節する方法
AU2012101392A4 (en) System and method for syngas processing
WO2019043875A1 (ja) 高窒素含有天然ガスを用いたアンモニアの製造方法

Legal Events

Date Code Title Description
HZ9A Changing address for correspondence with an applicant