RU2534320C1 - Способ получения нанопорошков индивидуальных оксидов лантаноидов - Google Patents

Способ получения нанопорошков индивидуальных оксидов лантаноидов Download PDF

Info

Publication number
RU2534320C1
RU2534320C1 RU2013134670/02A RU2013134670A RU2534320C1 RU 2534320 C1 RU2534320 C1 RU 2534320C1 RU 2013134670/02 A RU2013134670/02 A RU 2013134670/02A RU 2013134670 A RU2013134670 A RU 2013134670A RU 2534320 C1 RU2534320 C1 RU 2534320C1
Authority
RU
Russia
Prior art keywords
lanthanide
powders
magnetic field
ceo
nanopowders
Prior art date
Application number
RU2013134670/02A
Other languages
English (en)
Inventor
Екатерина Григорьевна Горячева
Елена Евгеньевна Едренникова
Зоя Васильевна Еременко
Юрий Николаевич Пархоменко
Александр Андреевич Полисан
Андрей Андреевич Полисан
Фатима Христофоровна Чибирова
Original Assignee
Открытое акционерное общество "Государственный научно-исследовательский и проектный институт редкометаллической промышленности ОАО "Гиредмет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Государственный научно-исследовательский и проектный институт редкометаллической промышленности ОАО "Гиредмет" filed Critical Открытое акционерное общество "Государственный научно-исследовательский и проектный институт редкометаллической промышленности ОАО "Гиредмет"
Priority to RU2013134670/02A priority Critical patent/RU2534320C1/ru
Application granted granted Critical
Publication of RU2534320C1 publication Critical patent/RU2534320C1/ru

Links

Images

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

Изобретение относится к гидрометаллургии лантаноидов, а именно к получению кристаллических нанопорошков оксидов лантаноидов. Способ получения порошков индивидуальных оксидов лантаноидов включает осаждение соли лантаноидов из азотнокислых растворов твердой щавелевой кислотой при непрерывном введении полиакриламида, отделение ее, промывку, сушку, термообработку полученного осадка и последующую обработку в слабом переменном магнитном поле с частотой 20÷50 Гц и амплитудой 0,05÷0,1 Тл. Способ позволяет получать порошки оксидов лантаноидов с наноразмерными частицами, однородным гранулометрическим составом и повышенной устойчивостью к взаимодействию с влагой. 1 ил., 1 табл., 1 пр.

Description

Изобретение относится к технологии лантаноидов, а именно к получению кристаллических нанопорошков оксидов лантаноидов, которые являются перспективным материалом, находящим применение в различных областях промышленности: для производства ВТСП-2 проводов; для химико-механической обработки поверхности кремниевых пластин в микроэлектронике; для полировки оптических покрытий; для производства оптической керамики.
Очень важным параметром при использовании оксидов порошков в некоторых областях техники является устойчивость их к взаимодействию с влагой.
Примером такого использования может быть получение буферных слоев ВТСП-2 проводов, где формирование эпитаксиальных буферных пленок, например CeO2 и La2Zr2O7, может осуществляться нанесением наночастиц с помощью водных растворов полимеров. По способу получения многослойного высокотемпературного сверхпроводящего материала, заявленному в патенте RU №2387050 (опубл. 20.04.2010), наночастицы заданного состава, например CeO2, вводятся в водный раствор водорастворимых термочувствительных полимеров. Основным требованием к получаемым покрытиям является их пространственная и структурная однородность. Структурная однородность покрытия задается структурной однородностью наночастиц, а пространственная однородность - однородностью пространственного распределения наночастиц в устойчивых золях водных растворов полимеров, которые, в свою очередь, помогают сохранить пространственную однородность в процессе формирования целевых покрытий.
Технической задачей, решаемой заявляемым изобретением, является создание технологии получения наноразмерных порошков оксидов лантаноидов однородного гранулометрического состава, сохраняющих однородность и стабильность фракционного и химического состава при взаимодействии с влагой.
Известно, что порошки оксидов металлов редкоземельных металлов различного гранулометрического состава получают осаждением из нитратных растворов редкоземельных металлов с последующей фильтрацией осадка, сушкой и термообработкой его до получения порошка оксида (А.И. Михайличенко, Е.Б. Михлин, Ю.Б. Патрикеев. Редкоземельные металлы. - М.: Металлургия, 1987 г., стр.135-138).
Известен способ получения порошков диоксида церия из растворов нитрата церия в присутствии азодикарбонамида (AZO) и тетраметиламмония гидроксида (TMAOH). Соотношение Ce(NO3)3·9H2O:AZO:TMAOH=1:1:1. Растворы, содержащие смесь компонентов, обрабатывали ультразвуком частотой 20 кГц в течение 3 часов при комнатной температуре. В течение облучения температура реакционной смеси достигала 80°C. Полученную суспензию центрифугировали, осадок промывали и сушили в вакууме [Journal of Colloid and Interface Science, 246, 78-84 (2002)].
Недостатком способа является то, что полученные порошки CeO2 сильно агрегированы. Добавление TMAOH в реакционную смесь и обработка ее ультразвуком не снижает агрегирования частиц и не позволяет получать кристаллическую структуру порошка с наноразмерными частицами и использовать их, например, в производстве эпитаксиальных пленок жидкофазным способом.
Известен способ получения порошка индивидуальных оксидов лантаноидов, включающий разбавление нитрата лантаноида спиртом до молярного соотношения спирта и нитрата лантаноида 20:1-300:1 с последующим сжиганием полученного раствора в емкости или впрыскиванием его, получение порошка прекурсора, который затем собирают и подвергают термообработке при температуре 400-1200°C с получением оксида лантаноида, который затем размалывают и получают нанопорошок оксида лантаноидов [Патент CN №101113009 А, C01F 17/00, опубл. 30.01.2008].
Недостатком способа является невозможность получить порошки однородного гранулометрического состава, что не позволяет использовать их для получения однородных золей, необходимых в производстве эпитаксиальных пленок жидкофазным способом.
Известен способ получения мелкодисперсного порошка оксида иттрия, включающий осаждение карбонатов иттрия из раствора азотно-кислого иттрия раствором карбоната аммония, фильтрацию, сушку и прокалку осадка до оксида иттрия, при этом осаждение ведут из раствора азотно-кислого иттрия концентрацией 60-80 г/л по оксиду в присутствии высаливателя NH4NO3 в количестве 3-4 н. [Патент РФ №2194014, опубл. 10.12.2002].
Указанным способом получают порошки оксида иттрия с размером частиц 15-30 нм. Однако такие порошки в силу наноразмерности обладают повышенной гигроскопичностью, что затрудняет их использование в жидкофазных способах.
Известен способ получения порошка индивидуальных оксидов лантаноидов, включающий осаждение соли лантаноида из азотнокислых растворов с концентрацией 30-50 г/л по оксиду лантаноида твердой щавелевой кислотой при непрерывном введении полиакриламида в виде раствора с концентрацией 0,005-0,015% в количестве 5,0-10,0 мг на 1,0 кг оксида лантаноида, отделение ее, промывку, сушку при 60-65°C до остаточной влажности 5-6%, термообработку полученного осадка в течение 2,0-2,2 часов в интервале температур 380-825°C в зависимости от свойств индивидуальных лантаноидов [Патент РФ №2414330, опубл. 20.03.2011]. Полученные порошки оксидов лантаноидов характеризуются наноразмерными частицами и однородностью гранулометрического состава. Способ принят за прототип.
Общим недостатком всех указанных способов, в том числе и прототипа, является то, что с уменьшением размеров порошков оксидов редкоземельных металлов усиливается их взаимодействие с компонентами воздуха, поскольку все оксиды редкоземельных металлов гигроскопичны [В.В. Серебренников, Г.М. Якунина, В.В. Козик, А.Н. Сергеев. Редкоземельные элементы и их соединения в электронной технике. - Томск, ТГУ, 1979, 141; В.А. Кочедыков, И.Д. Закирьянова, Л.А. Акашев. Аналитика и контроль. 2006, Т.10, №2, с.172-174]. Повышенная гигроскопичность затрудняет использование таких порошков в водных золях, например, в производстве эпитаксиальных пленок для ВТСП-2 проводов жидкофазным способом.
Техническим результатом заявленного изобретения является получение кристаллических порошков оксидов лантаноидов с наноразмерной крупностью частиц с повышенной устойчивостью к взаимодействию с влагой с сохранением однородного фракционного и химического состава.
Технический результат достигается тем, что в способе получения наноразмерных порошков индивидуальных оксидов лантаноидов, включающем осаждение соли лантаноидов из азотнокислых растворов твердой щавелевой кислотой при непрерывном введении полиакриламида, отделение ее, промывку, сушку и термообработку, согласно изобретению полученный после термообработки материал подвергают обработке в слабом переменном магнитном поле с частотой 20÷50 Гц с амплитудой 0,05÷0,1 Тл.
Технологическая операция магнитной обработки твердых тел с целью изменения их свойств широко используется в различных областях техники. Результат этой обработки определяется процессами, происходящими в материале при обработке, и зависит от свойств обрабатываемого материала и режимов магнитной обработки. Так, например, магнитная обработка используется для упрочнения металлообрабатывающего инструмента [Патент РФ 2213152, МКИ B23P 15/00, B32P 15/28. Бойко В.М. Способ упрочнения металлообрабатывающего инструмента магнитной обработкой. Заявл. 22.10.01. Опубл. 27.09.2003. Бюл. №27], для изменения пластичности, прочности, текучести кристаллов [Урусовская А.А. Эффекты магнитного воздействия на механические свойства и реальную структуру немагнитных кристаллов. Кристаллография. 2003. №5. С.855-872.; Алъшиц В.И., Даринская Е.В., Петржик Е.А. Микропластичность диамагнитных кристаллов в постоянном магнитном поле. Изв. вузов. Черная металлургия. 1990. №10, с.85-87], для повышения структурного совершенства и улучшения электрофизических характеристик полупроводниковых кристаллов [М.Н. Левин, Г.В. Семенова, Т.П. Сушкова, Э.А. Долгополова, В.В. Постников. Воздействие импульсных магнитных полей на реальную структуру кристаллов арсенида индия. Письма в ЖТФ, 28 (19), сс. 50-55 (2002); М.Н. Левин, А.В. Татаринцев, О.А. Косцова, A.M. Косцов. Активация поверхности полупроводников воздействием импульсного магнитного поля. ЖТФ, 73 (10), 85-87, (2003)]. Изменения структурного совершенства в объеме кристалла тесно связано с изменениями на его поверхности. По мере уменьшения размера кристалла роль поверхности возрастает и в порошках кристаллов при определенных режимах магнитной обработки изменения свойств поверхности могут стать определяющими.
В заявляемом способе технический результат достигается при использовании этого явления за счет целенаправленного изменения дефектной структуры наноразмерных порошков оксидов лантаноидов обработкой в магнитном поле в режимах, обеспечивающих повышение их устойчивости к взаимодействию с влагой.
Сущность изобретения заключается в том, что полученные гидрохимическим способом порошки индивидуальных оксидов лантаноидов осаждением соли лантаноидов из азотнокислых растворов с последующим отделением ее, промывкой, сушкой и термообработкой подвергают воздействию переменного магнитного поля с частотой с частотой 20÷50 Гц с амплитудой 0,05÷0,1 Тл, что повышает устойчивость порошков оксидов лантаноидов к взаимодействию с влагой.
При воздействии на порошки переменного магнитного поля с частотой менее 20 Гц и с частотой более 50 Гц, а также с амплитудой менее 0,05 Тл и более 0,1 Тл приводит к резкому снижению эффективности воздействия переменного магнитного поля и как следствие к отсутствию снижения дисперсности частиц в водном золе. Длительность магнитной обработки может составлять несколько минут, зависит от вида исходного оксида и подбирается экспериментально. Завышенная длительность магнитной обработки может также привести к снижению эффективности воздействия магнитного поля.
Устойчивость наноразмерных порошков оксидов лантаноидов к взаимодействию с влагой определяется по дисперсности оксидных частиц лантаноидов в устойчивых водных золях, приготовленных из этих порошков.
Ниже приведены примеры реализации заявляемого изобретения. Примеры иллюстрируют осуществление способа для получения наноразмерных порошков одного из самых распространенных и востребованных оксидов лантаноидов - CeO2.
Пример осуществления способа.
В качестве исходного вещества использовали оксид церия высокой чистоты. Оксид церия растворяли в азотной кислоте. Получали раствор азотнокислого церия с концентрацией 50 г/л по CeO2 при pH=2. Осаждение оксалатов церия проводили раствором щавелевой кислоты с концентрацией 250 г/л при температуре 60°C±10°C и интенсивном перемешивании при непрерывном добавлении неионогенного полиакриламида. Полученный осадок фильтровали, промывали дистиллированной водой при температуре 30°C, сушили при комнатной температуре в течение 50 ч, после чего подвергали термообработке в течение 2,0-2,2 часов при температуре 380°C. Полученный нанодисперсный порошок оксида церия кристаллической структуры подвергали обработке в слабом переменном магнитном поле в режимах, указанных в таблице 1.
Таблица 1
№ образца CeO2 Параметры магнитной обработки образцов CeO2 Средневзвешенный размер частиц CeO2 в водном золе, нм
Амплитуда магнитного поля В, Тл Частота магнитного поля ω, Гц Время магнитной обработки, мин.
- - - 57,2
2 0,10 20 3 10,14
3 0,10 50 3 17,15
4 0,05 20 3 12,32
5 0,05 50 3 20,11
Устойчивость к взаимодействию с влагой наноразмерных порошков CeO2, обработанных и необработанных в магнитном поле, оценивалась по распределению частиц CeO2 по размерам и по средневзвешенному размеру частиц в приготовленных из этих порошков устойчивых водных золях. Водные золи были получены путем помещения наночастиц CeO2 в воду и длительной поэтапной ультразвуковой обработки с частотами 25-32 кГц. Концентрация полученных золей была 0,005 М. Средневзвешенный размер наночастиц CeO2 в полученных водных золях определяли методом динамического рассеяния света с помощью лазерного анализатора «Microtrac Nanotrac Ultra 253» на твердотельном лазере с длиной волны 780 нм. Результаты измерений представлены в таблице 1 и на фигуре 1.
На фигуре 1 показано распределение по размерам и средневзвешенный размер D(n) частиц CeO2 в водном золе, полученном из исходного нанопорошка оксида церия CeO2 (A) и обработанного в магнитном поле с напряженностью В=0,10 Тл и частотами 20 Гц (B) и 50 Гц (С).
Сравнение средневзвешенных размеров частиц CeO2 в водных золях, полученных из нанопорошков CeO2, обработанных 3 минуты в магнитном поле с напряженностью 0,10 Тл и 0,05 Тл частотами 20 Гц и 50 Гц, показывает, что:
- обработка нанопорошков CeO2 в магнитном поле с напряженностью 0,10 Тл и частотами 20 Гц и 50 Гц уменьшает средневзвешенный размер частиц CeO2 в золе на 82% и на 70% соответственно,
- обработка нанопорошков CeO2 в магнитном поле с напряженностью 0,05 Тл и частотами 20 Гц и 50 Гц уменьшает средневзвешенный размер частиц CeO2 в золе на 78% и на 64% соответственно.
Таким образом, заявленное изобретение позволяет получать порошки оксидов лантаноидов кристаллической структуры с наноразмерной крупностью частиц с повышенной устойчивостью к взаимодействию с влагой и как следствие с уменьшенным средневзвешенным размером частиц в водном золе.

Claims (1)

  1. Способ получения наноразмерных порошков индивидуальных оксидов лантаноидов, включающий осаждение соли лантаноидов из азотнокислых растворов твердой щавелевой кислотой при непрерывном введении полиакриламида, ее отделение, промывку, сушку и термообработку, отличающийся тем, что полученный после термообработки материал подвергают обработке переменным магнитным полем с частотой 20-50 Гц, с амплитудой 0,05-0,1 Тл.
RU2013134670/02A 2013-07-24 2013-07-24 Способ получения нанопорошков индивидуальных оксидов лантаноидов RU2534320C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013134670/02A RU2534320C1 (ru) 2013-07-24 2013-07-24 Способ получения нанопорошков индивидуальных оксидов лантаноидов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013134670/02A RU2534320C1 (ru) 2013-07-24 2013-07-24 Способ получения нанопорошков индивидуальных оксидов лантаноидов

Publications (1)

Publication Number Publication Date
RU2534320C1 true RU2534320C1 (ru) 2014-11-27

Family

ID=53383010

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013134670/02A RU2534320C1 (ru) 2013-07-24 2013-07-24 Способ получения нанопорошков индивидуальных оксидов лантаноидов

Country Status (1)

Country Link
RU (1) RU2534320C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988010009A1 (en) * 1987-06-09 1988-12-15 E.I. Du Pont De Nemours And Company Improved process for making superconductors
US5981445A (en) * 1996-06-17 1999-11-09 Corporation De I'ecole Polytechnique Process of making fine ceramic powders from aqueous suspensions
CN101113009A (zh) * 2007-06-29 2008-01-30 中国科学院上海光学精密机械研究所 稀土氧化物纳米颗粒的制备方法
US20110056123A1 (en) * 2006-09-05 2011-03-10 Cerion Technology, Inc. Method of preparing cerium dioxide nanoparticles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988010009A1 (en) * 1987-06-09 1988-12-15 E.I. Du Pont De Nemours And Company Improved process for making superconductors
US5981445A (en) * 1996-06-17 1999-11-09 Corporation De I'ecole Polytechnique Process of making fine ceramic powders from aqueous suspensions
US20110056123A1 (en) * 2006-09-05 2011-03-10 Cerion Technology, Inc. Method of preparing cerium dioxide nanoparticles
CN101113009A (zh) * 2007-06-29 2008-01-30 中国科学院上海光学精密机械研究所 稀土氧化物纳米颗粒的制备方法

Similar Documents

Publication Publication Date Title
Govender et al. Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution
US7384560B2 (en) Method for reducing the size of metallic compound particles
Zhou et al. Biosynthesis of CdS nanoparticles in banana peel extract
Wang et al. Defects-induced room temperature ferromagnetism in ZnO nanorods grown from ε-Zn (OH) 2
Gonçalves et al. Synthesis of Pr3+-doped CaTiO3 using polymeric precursor and microwave-assisted hydrothermal methods: A comparative study
Il’ves et al. Properties of the amorphous-nanocrystalline Gd 2 O 3 powder prepared by pulsed electron beam evaporation
Arslan et al. Swift synthesis, functionalization and phase-transfer studies of ultrastable, visible light emitting oleate@ ZnO quantum dots
Shao et al. Novel synthesis and luminescence properties of t-LaVO 4: Eu 3+ micro cube
Fu et al. Uniform Eu 3+-doped YF 3 microcrystals: inorganic salt-controlled synthesis and their luminescent properties
RU2534320C1 (ru) Способ получения нанопорошков индивидуальных оксидов лантаноидов
Cowley et al. Fabrication and characterisation of GaAs nanopillars using nanosphere lithography and metal assisted chemical etching
RU2404125C2 (ru) Способ получения нанопорошка диоксида циркония
Caicedo et al. Aspect ratio improvement of ZnO nanowires grown in liquid phase by using step-by-step sequential growth
Maurin et al. A protected annealing process for the production of high quality colloidal oxide nanoparticles with optimized physical properties
JP2001163619A (ja) 酸化亜鉛粉末の製造方法及びそのための製造用中間体
Egorysheva et al. Crystallization in the Bi 2 O 3-Fe 2 O 3-NaOH system upon microwave-assisted hydrothermal synthesis
Wang et al. Property of YAG: Ce 3+ nanophosphors prepared by solvothermal method using triethylene-tetramine as a reaction solvent
Bismibanu et al. Investigations on structural, optical and multiferroic properties of bismuth ferrite nanoparticles synthesized by sonochemical method
KR102632104B1 (ko) 연마용 슬러리 조성물, 이의 제조방법 및 이를 이용한 반도체 박막의 연마방법
Jia et al. Kinetic mechanism of ZnO hexagonal single crystal slices on GaN/sapphire by a layer-by-layer growth mode
RU2612174C1 (ru) Способ изготовления керамических пьезоматериалов из нано- или ультрадисперсных порошков фаз кислородно-октаэдрического типа
Solodova et al. Magneto-optical properties of nanoparticle dispersions based on Fe3O4, obtained by pulse laser ablation in a liquid
CN113905988B (zh) 稀土类碳酸盐微粒的制造方法及稀土类碳酸盐微粒
Allaedini et al. Comparative study on the microstructure and photoluminescence properties of SnO2 nano particles prepared by different methods
Buynachev et al. Influence of the pH value on the properties of LYH and products of their thermal decomposition