RU2532636C2 - Способ и устройство для оптимизации условий горения в котле с псевдоожиженным слоем - Google Patents

Способ и устройство для оптимизации условий горения в котле с псевдоожиженным слоем Download PDF

Info

Publication number
RU2532636C2
RU2532636C2 RU2012109222/06A RU2012109222A RU2532636C2 RU 2532636 C2 RU2532636 C2 RU 2532636C2 RU 2012109222/06 A RU2012109222/06 A RU 2012109222/06A RU 2012109222 A RU2012109222 A RU 2012109222A RU 2532636 C2 RU2532636 C2 RU 2532636C2
Authority
RU
Russia
Prior art keywords
combustible gas
oxygen
level
oxygen content
furnace
Prior art date
Application number
RU2012109222/06A
Other languages
English (en)
Other versions
RU2012109222A (ru
Inventor
Микко ВАРОНЕН
Теро ЛУОМАХАРЬЮ
Original Assignee
Валмет Пауэр Ой
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Валмет Пауэр Ой filed Critical Валмет Пауэр Ой
Publication of RU2012109222A publication Critical patent/RU2012109222A/ru
Application granted granted Critical
Publication of RU2532636C2 publication Critical patent/RU2532636C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B15/00Fluidised-bed furnaces; Other furnaces using or treating finely-divided materials in dispersion
    • F27B15/02Details, accessories, or equipment peculiar to furnaces of these types
    • F27B15/10Arrangements of air or gas supply devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/02Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed
    • F23C10/04Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone
    • F23C10/08Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone characterised by the arrangement of separation apparatus, e.g. cyclones, for separating particles from the flue gases
    • F23C10/10Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone characterised by the arrangement of separation apparatus, e.g. cyclones, for separating particles from the flue gases the separation apparatus being located outside the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/18Details; Accessories
    • F23C10/20Inlets for fluidisation air, e.g. grids; Bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/18Details; Accessories
    • F23C10/28Control devices specially adapted for fluidised bed, combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
    • F23C6/045Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection with staged combustion in a single enclosure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • F23L7/007Supplying oxygen or oxygen-enriched air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L9/00Passages or apertures for delivering secondary air for completing combustion of fuel 
    • F23L9/02Passages or apertures for delivering secondary air for completing combustion of fuel  by discharging the air above the fire
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L9/00Passages or apertures for delivering secondary air for completing combustion of fuel 
    • F23L9/04Passages or apertures for delivering secondary air for completing combustion of fuel  by discharging the air beyond the fire, i.e. nearer the smoke outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2201/00Staged combustion
    • F23C2201/10Furnace staging
    • F23C2201/101Furnace staging in vertical direction, e.g. alternating lean and rich zones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L2900/00Special arrangements for supplying or treating air or oxidant for combustion; Injecting inert gas, water or steam into the combustion chamber
    • F23L2900/07001Injecting synthetic air, i.e. a combustion supporting mixture made of pure oxygen and an inert gas, e.g. nitrogen or recycled fumes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L2900/00Special arrangements for supplying or treating air or oxidant for combustion; Injecting inert gas, water or steam into the combustion chamber
    • F23L2900/07007Special arrangements for supplying or treating air or oxidant for combustion; Injecting inert gas, water or steam into the combustion chamber using specific ranges of oxygen percentage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2237/00Controlling
    • F23N2237/18Controlling fluidized bed burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2237/00Controlling
    • F23N2237/24Controlling height of burner
    • F23N2237/26Controlling height of burner oxygen-air ratio
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Dispersion Chemistry (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

Изобретение относится к области энергетики. Способ оптимизации условий горения в котле с псевдоожиженным слоем, где кислородсодержащий горючий газ подают на два или более уровней по высоте, первый из которых представляет собой первичный уровень (Р), расположенный на высоте днища печи, и второй представляет собой вторичный уровень (S), расположенный на высоте вблизи уровня (F) подачи топлива, причем над вторичным уровнем (S) могут быть обеспечены еще другие уровни (Т,…). Горючие газы (15а, 15b; 16а, 16b; 28а, 28b) с различным содержанием кислорода получают путем смешивания воздуха, и/или чистого кислорода, и/или циркулирующего дымового газа при таком отношении, что каждый горючий газ имеет требуемое содержание кислорода, и посредством подачи горючих газов (15а, 15b; 16а, 16b; 28а, 28b) с различным содержанием кислорода на по меньшей мере один из указанных уровней (Р, S, Т,…) подачи горючего газа в различных точках в горизонтальном направлении печи (11) формируют зоны с различным содержанием кислорода в горизонтальном направлении печи (11). Первичный уровень (Р) в горизонтальном направлении разделяют на две или более зоны и по меньшей мере в одну из этих зон подают горючий газ (15а) с содержанием кислорода, отличающимся от содержания кислорода в горючем газе (15b), направляемом по меньшей мере в зону, прилегающую к ней. Вторичный уровень (S) и/или один из уровней (Т,…) над ним разделяют на две или более зоны в горизонтальном направлении и по меньшей мере в одну из этих зон подают горючий газ (16а; 28а) с содержанием кислорода, отличающимся от содержания кислорода в горючем газе (16b; 28b), направляемом по меньшей мере в зону, прилегающую к ней. Несколько точек (30) подачи топлива располагают на высоте уровня (F) подачи топлива и формируют снизу и/или сверху каждой точки (30) подачи топлива зону, в которую по меньшей мере на одном уровне (Р, S, Т,…) подачи горючего газа подают горючий газ (15а, 15b; 16а, 16b; 28а, 28b) с содержанием кислорода, отличающимся от содержания кислорода в горючем газе, подаваемом в зоны, расположенные дальше от точки (30) подачи топлива на том же уровне (Р, S, Т…) подачи горючего газа. Технический результат - улучшение регулирования условий горения и восстановления оксидов азота в котле с псевдоожиженным слоем. 2 н. и 6 з.п. ф-лы, 7 ил.

Description

Изобретение относится к способу оптимизации условий горения в котле с псевдоожиженным слоем, где кислородсодержащий горючий газ подают на два или более уровней по высоте, первый из которых представляет собой первичный уровень, расположенный на высоте днища печи, и второй представляет собой вторичный уровень, расположенный на высоте вблизи уровня подачи топлива, причем над вторичным уровнем могут быть обеспечены еще другие уровни подачи горючего газа. Изобретение также относится к устройству для осуществления этого способа.
Беспокойство изменением климата вызвало поиск новых способов снижения выбросов диоксида углерода при выработке энергии, которые вызывают глобальное потепление. Одним из способов, предложенных для снижения выбросов парниковых газов, является сжигание кислородного топлива. Когда топливо сжигают традиционным способом посредством воздуха, дымовой газ содержит значительное количество азота, поступающего из воздуха. Извлечение диоксида углерода из такого дымового газа является дорогостоящим и технически трудным. Когда воздух, используемый при сжигании, заменяют смесью чистого кислорода и циркулирующего дымового газа, дымовой газ, образовавшийся в результате сжигания, в основном содержит диоксид углерода, кислород, пары воды и некоторые примеси. Сжигание кислородного топлива обеспечивает возможность относительно простого извлечения диоксида углерода. После того как воду, содержащуюся в топливе или образовавшуюся в реакциях горения, удаляют из дымового газа конденсацией, оставшийся диоксид углерода можно сжижать путем охлаждения и сжатия. Сжигание кислородного топлива можно использовать как при сжигании распыленного топлива, так и при сжигании в псевдоожиженном слое.
При сжигании в псевдоожиженном слое горение протекает в суспензии твердых веществ, которая находится в псевдоожиженном состоянии, и ее циркуляцию осуществляют с помощью потока газа, подаваемого снизу. Псевдоожиженный слой состоит из псевдоожиженного материала в виде частиц (например, песка), топлива, горючего газа, а также дымового газа и золы, образовавшихся при горении. В данном контексте термин «горючий газ» относится к первичному и вторичному газу, который обычно является воздухом или какой-либо другой смесью кислородсодержащих газов. Поток первичного газа подают из нижней части печи, а поток вторичного газа направляют в печь через сопла на стенках печи над колосниковой решеткой. В котле со стационарным кипящим псевдоожиженным слоем (СКПС) псевдоожиженный материал остается в зоне псевдоожижения, тогда как в котле с циркулирующим псевдоожиженным слоем (ЦПС) происходит унос псевдоожиженного материала вместе с дымовым газом из зоны псевдоожижения, и, чтобы обеспечить стабильное состояние, его возвращают в печь через устройства для разделения и циркуляции.
В котле с псевдоожиженным слоем используют низкую температуру горения (700-900°С) по сравнению с горением при распылении топлива, которая вместе со ступенчатой подачей воздуха обеспечивает низкое количество выбросов оксида азота. Оксид азота (NOХ) относится к оксиду азота (NО) и диоксиду азота (NO2), которые в основном образуются из азота, содержащегося в горючем газе, при горении в псевдоожиженном слое. При ступенчатой подаче воздуха обеспечивают восстановительные условия в нижней части слоя, тем самым получают меньшее количество оксидов азота. Оставшуюся часть воздуха, требующуюся для полного сгорания, подают как вторичный и, при необходимости, третичный воздух. Технология сжигания в псевдоожиженном слое также обеспечивает возможность десульфуризации дымовых газов уже в котле, путем подачи извести или доломита непосредственно в печь. В US 4704084 и US 4962711 описаны примеры котлов с циркулирующим псевдоожиженным слоем уровня техники, которые направлены на снижение выбросов NOХ посредством ступенчатой подачи воздуха для сжигания.
Топливо подают в печь над первичным уровнем, вблизи вторичного уровня. Различные типы топлива распространяются в печи различным образом. Легкие фракции топлива, такие как мелкий торф или бумага и куски пластика, легко поднимаются, в виде единой массы, вверх от места их загрузки, без особенного распространения в стороны. Это особенно ярко выражено при сжигании в циркулирующем псевдоожиженным слое, где скорость псевдоожижения является высокой по сравнению с конечной скоростью частиц горючего, в результате чего топливо уносится вместе с псевдоожиженным газом вверх. Горизонтально равномерная подача вторичного воздуха подходит для хорошо распространяющегося топлива, такого как уголь или сырая древесина. Вместе с легкими фракциями, столб СО поднимается вверх от точек подачи топлива, и между точками подачи топлива образуются секции, обогащенные кислородом. Поскольку это явление нельзя регулировать с помощью современных технологий, профили распределения газа и температуры верхней части зоны горения изменяются неконтролируемым образом, когда меняется качество топлива. Это является недостатком, например, при регулировании профиля температуры и при регулировании выбросов, в частности NOX, когда является существенным обеспечение подходящего содержания СО в дымовых газах, чтобы снизить количество NО в зоне горения и получить более низкое количество выбросов оксидов азота.
В US 5660125 описан способ минимизации образования оксидов азота в котле с циркулирующим псевдоожиженным слоем, в котором подачу вторичного воздуха осуществляют как в вертикальном, так и в горизонтальном направлении. Каждый из каналов, через которые подают воздух для горения во вторичные сопла, снабжен заслонкой, с помощью которой возможно регулировать подачу воздуха для горения через соответствующее сопло в печь. Целью является локальное сохранение соотношения компонентов при горении в диапазоне 70-90% от стехиометрического, при этом образование NOX является наименьшим. Проблема данного устройства состоит в том, что при увеличении и уменьшении подачи вторичного воздуха, проникновение воздуха в псевдоожиженный слой также изменяется.
При сжигании кислородного топлива воздух для горения заменяют смесью кислорода и циркулирующего дымового газа. Если процесс проводят при стандартной концентрации кислорода, как обычно при горении в присутствии воздуха, уменьшение количества первичного газа для обеспечения восстановительной зоны снижает внутреннюю и внешнюю циркуляцию псевдоожиженного материала, тем самым теплопередача на стенки печи и к наружному теплообменнику также снижается. Более того, температура в псевдоожиженном слое может подняться слишком высоко, что приводит к спеканию твердых частиц.
Первичный газ обычно подают в нижнюю часть печи с помощью воздушной коробки. Воздушная коробка может быть разделена на два или более блоков, чтобы увеличить пульсацию слоя. Однако в каждый блок подают один и тот же горючий газ, который при обычном сжигании в воздушной атмосфере является воздухом, а при сжигании кислородного топлива представляет собой смесь кислорода и циркулирующего дымового газа.
Возможно достичь улучшения восстановления оксидов азота при сжигании кислородного топлива посредством снижения содержания кислорода в первичном газе. Тогда ниже сопел подачи вторичного газа образуются восстановительные условия, которые улучшают восстановление оксидов азота, поступивших вместе с первичным газом, до азота. Проблема данного устройства состоит в том, что когда снижают подачу кислорода, температура слоя может слишком снизиться. Если в равной степени увеличивают содержание кислорода во вторичном газе, чтобы обеспечить полное сгорание, температурный максимум возникает на втором уровне, что является неблагоприятным для выбросов и способствует образованию агломератов.
Целью изобретения является предотвращение указанных выше проблем. Основной целью является улучшение регулирования условий горения и восстановления оксидов азота в котле с псевдоожиженным слоем.
Для достижения данных целей способ в соответствии с изобретением отличается тем, что представлено в отличительной части п.1 формулы изобретения. Равным образом, устройство в соответствии с изобретением отличается тем, что представлено в отличительной части п.5 формулы изобретения.
В способе в соответствии с изобретением по меньшей мере на одном уровне подачи горючего газа в различных местах печи в горизонтальном ее направлении подают горючие газы с различным содержанием кислорода так, что могут быть сформированы зоны с различным содержанием кислорода в горизонтальном направлении печи.
В одном из воплощений изобретения первичный уровень разделяют в горизонтальном направлении на две или более зоны и по меньшей мере в одну из этих зон направляют горючий газ с содержанием кислорода, отличным от содержания кислорода в горючем газе, направляемом по меньшей мере в одну из соседних зон. Это обеспечивают, например, разделением воздушной коробки, через которую подают горючий газ, на два или более блоков и подачей по меньшей мере в один блок горючего газа с содержанием кислорода, отличным от содержания кислорода в горючем газе, подаваемом в соседний блок, тем самым формируя по меньшей мере одну окислительную зону и по меньшей мере одну восстановительную зону на дне печи.
В другом воплощении изобретения вторичный уровень и/или один из уровней выше разделен/разделены в горизонтальном направлении на две или более зоны, и по меньшей мере в одну из этих зон направляют горючий газ с содержанием кислорода, отличающимся от содержания кислорода горючего газа, направляемого по меньшей мере в одну из соседних зон.
Преимущественно, подача топлива по высоте включает несколько точек подачи топлива, и зону формируют ниже и/или выше каждой точки подачи, где по меньшей мере на одном уровне подачи горючего газа обеспечивают подачу горючего газа с содержанием кислорода, отличающимся от содержания кислорода в зонах, более отдаленных от точки подачи топлива на том же уровне подачи.
С помощью регулировки содержания кислорода в первичном газе, подаваемом в различные блоки/камеры, в частности, возможно воздействовать на температуру печи и восстановление оксидов азота. Содержание кислорода и скорость псевдоожижения каждого блока можно регулировать независимо или совместно с некоторыми другими блоками. Блоки/камеры, обеспечивающие различную подачу горючего газа, можно чередовать в продольном или поперечном направлении печи. Альтернативно, можно располагать питающую камеру ниже точки подачи топлива на первичном уровне, посредством которой в печь подают первичный газ с содержанием кислорода, отличающимся от содержания кислорода в первичном газе, подаваемом по краям печи и/или между точками подачи.
С помощью регулировки содержания кислорода в различных блоках в воздушной коробке можно создать преимущественные условия восстановления NOX и S в зоне ниже вторичного уровня. Таким образом, хорошее восстановление оксидов азота обеспечивают благодаря зонам восстановления, а достаточную температуру обеспечивают благодаря окислительным зонам. Окислительные зоны обеспечивают отсутствие ослабления восстановления серы. Регулировка содержания кислорода в блоках в воздушной коробке является новым дополнительным параметром регулирования профиля температур печи. Вследствие улучшенного восстановления NOX и S, возникающего в печи, требования по использованию способов очистки вторичных дымовых газов менее высокие, чем ранее. Тогда очистка и сжижение диоксида углерода являются более экономически эффективными.
Когда газовые сопла вторичного и/или третичного уровня разделены по меньшей мере на две группы и в каждую группу подают горючие газы с различным содержанием кислорода, можно регулировать количество подачи и содержание кислорода горючего газа локально в горизонтальном направлении. Обычно, оптимальный поток газа вблизи точки подачи топлива необходимо распределять и перемешивать топливо для обеспечения однородного горения. Когда содержание кислорода такого газового потока регулируют отдельно, легче, чем ранее, регулировать условия горения и температуру в случае различного топлива.
Скорость псевдоожижения можно поддерживать постоянной или ее можно регулировать независимо, в широком диапазоне. Когда уменьшают содержание кислорода в первичном газе, долю кислорода во вторичном газе можно эквивалентно увеличивать, чтобы обеспечить требуемое общее содержание кислорода.
Возможно подавать горючий газ на нескольких различных уровнях по высоте и можно обеспечить различное содержание кислорода на различных уровнях, чтобы несгоревший материал, выходящий из зон восстановления, не вызвал высокий пик температуры на вторичном уровне. Таким образом, возможно предотвратить образование горячей кислородной зоны на вторичном уровне, что может легко привести к образованию оксидов азота.
Изобретение обеспечивает простой способ, основанный на рабочем режиме восстановления оксидов азота в котле с циркулирующим псевдоожиженным слоем. Изменяя содержание кислорода в первичных и вторичных газах, можно регулировать температуру печи, что является важным для восстановления серы, помимо прочего.
В связи со сжиганием кислородного топлива важно, что эффективное восстановление оксидов азота снижает риск взаимодействия NOX с водой и кислородом с получением щелочи и азотной кислоты при увеличении давления дымового газа, что может вызвать проблемы в устройствах очистки и повышения давления диоксида углерода.
Посредством изобретения процесс можно лучше регулировать при работе с различными видами топлива. Помимо снижения выбросов NOx, преимуществом изобретения является снижение риска позднего горения в циклоне.
Далее изобретение описано со ссылками на прилагаемые чертежи, которыми изобретение не ограничено.
На Фиг.1 схематически показано действие котла с циркулирующим псевдоожиженным слоем и подача горючих газов в печь.
На Фиг.2 представлена подача первичного газа по зонам.
На Фиг.3 схематически показан вид сбоку передней зоны печи и уровни подачи горючих газов.
На Фиг.4 показан вид спереди передней зоны печи и уровни подачи горючих газов.
На Фиг.5 показан вид сверху передней зоны печи в разрезе в месте первичного уровня Р.
На Фиг.6 представлен вид сверху передней зоны печи в разрезе в месте вторичного уровня S.
На Фиг.7 показан вид сверху передней зоны печи в разрезе в месте третичного уровня Т.
Котел 10 с циркулирующим псевдоожиженным слоем, представленный на Фиг.1, включает печь 11, в которой топливо сжигают в циркулирующем псевдоожиженном слое, циклонный сепаратор 12, в котором псевдоожиженный материал отделяют от дымового газа, и возвратный канал 13, по которому псевдоожиженный материал циркулирует обратно в печь 11. Топливо 14 подают в печь 11, в которую также подают кислородсодержащий псевдоожиженный и горючий газ в качестве первичного газа 15 и вторичного газа 16. Горение осуществляют в псевдоожиженном слое, в котором обеспечивают псевдоожижение и циркуляцию посредством первичного потока 15 газа, подаваемого снизу.
Псевдоожиженный слой состоит из твердого инертного материала, который обычно является песком, добавляемого в него топлива, золы топлива, возможно, известняка, горючего газа и дымового газа, получаемого при горении. Потоки 15, 16 газа обеспечивают такими мощными, что часть псевдоожиженного материала выходит вместе с дымовым газом из верхней зоны печи 11 в циклонный сепаратор 12. Циклонный сепаратор 12 обеспечивает отделение твердых частиц от дымового газа, и их возвращают в печь 11 по возвратному каналу 13 и, возможно, через внешний теплообменник (не показан на чертеже), присоединенный к этому каналу.
После отделения твердого вещества, дымовой газ направляют из циклонного сепаратора 12 на регенерацию 17 тепла и отделение 18 зольной пыли, которое можно осуществить, например, с помощью электростатических фильтров или пылеуловительных камер с рукавными фильтрами. После отделения 18 зольной пыли, дымовой газ можно направлять через вытяжную трубу наружу или, в случае сжигания кислородного топлива, в конденсатор 19, в котором воду и газообразные примеси отделяют посредством конденсации. После конденсатора 19 дымовой газ 20, полученный при сжигании кислородного топлива, в основном содержит диоксид углерода, который можно очистить и повысить его давление с помощью способов, известных как таковых.
Первичный поток 15 газа подают из днища печи 11 через воздушную коробку (не показана на чертеже) или подобное устройство. Один или более вторичных потоков 16 газа подают выше днища посредством инжекционных сопел (не показаны на чертеже) на стенках печи 11. Горючие газы 15, 16 включают воздух, и/или кислород, и/или циркулирующий дымовой газ, смешанные в требуемом отношении. При сжигании кислородного топлива основными компонентами циркулирующего дымового газа являются диоксид углерода и, возможно, пары воды, в дополнении к которым дымовой газ включает небольшое количество оксидов азота, диоксида серы, кислорода и моноксида углерода, помимо прочего. При горении в присутствии воздуха, дымовой газ включает значительную долю азота, кроме указанных выше компонентов. Чтобы обеспечить хорошее псевдоожижение и циркуляцию суспензии твердого вещества, доля первичного газа 15 обычно составляет по меньшей мере 60% от общего количества горючих газов 15, 16, подаваемых в печь 11.
Первичный газ 15 получают посредством первого смесителя 21 путем смешивания воздуха и/или чистого кислорода 24 и циркулирующего дымового газа 25 в требуемом отношении. Аналогично, вторичный газ 16 получают посредством второго смесителя 22 путем смешивания воздуха и/или чистого кислорода 24 и циркулирующего дымового газа 25 в требуемом отношении. Кислород может быть получен, например, удалением азота из воздуха с помощью кислородной установки или с помощью других подходящих устройств. Циркулирующий дымовой газ 25 можно отбирать из пути потока дымового газа либо после отделения 18 зольной пыли, либо после конденсатора 19, в зависимости от требований использования влажного или сухого дымового газа.
Первый смеситель 21 для получения первичного газа 15 и второй смеситель 22 для получения вторичного газа 16 могут находиться в сообщении с инжекционными соплами, подающими газ в печь 11, или они могут быть обеспечены отдельно от печи 11, посредством чего инжекционные сопла снабжают готовой газовой смесью. Смесители 21, 22 могут состоять из средств регулирования содержания кислорода в горючем газе, подаваемом в печь, известных как таковые (клапаны, измерительные датчики, регуляторы и т.д.).
Сопла вторичного газа могут быть расположены на нескольких различных высотах, и каждое из них можно снабжать вторичными газами с различным содержанием кислорода. Тогда каждый поток 16 вторичного газа может быть снабжен отдельным смесителем 22 для регулирования содержания кислорода в потоке вторичного газа.
На Фиг.2 показан пример подачи первичного газа по зонам в горизонтальном направлении в нижнюю часть печи 11. На дне печи 11 расположена воздушная коробка 26, которая разделена разделительными стенками на пять камер 26а, 26b, в каждую из которых поступает первичный газ 15а, 15b, который представляет собой смесь воздуха, и/или кислорода, и/или циркулирующего дымового газа. В примере два различных первичных газа 15а, 15b с различным содержанием кислорода направляют в воздушную коробку 26. Первый первичный газ 15а, который имеет более высокое содержание кислорода, направляют в три камеры 26а, две из которых расположены на внешних краях воздушной коробки 26 и одна расположена посередине. Второй первичный газ 15b, который имеет более низкое содержание кислорода, направляют в две воздушные камеры 26b, которые расположены между камерами 26а, снабжаемыми первым первичным газом 15а. Следовательно, нижняя зона печи оказывается разделена в горизонтальном направлении на три окислительные зоны А и две восстановительные зоны В. В восстановительных зонах В происходит восстановление оксидов азота до азота, а в окислительных зонах А протекает эффективное горение. Границы между окислительными и восстановительными зонами А, В постепенно исчезают, по мере того как псевдоожиженный газ поднимается вверх. По мере того как границы между зонами А, В исчезают, содержание кислорода и температура также стабилизируются в горизонтальном направлении печи.
Очевидно, что воздушная коробка может быть разделена на камеры либо в продольном направлении, либо в поперечном направлении, либо в обоих направлениях, и порядок зон окисления и восстановления может отличаться от примера на Фиг.2.
На Фиг.3-7 показаны другие примеры возможной подачи в различные точки печи в горизонтальном направлении горючих газов с различным содержанием кислорода, чтобы сформировать зоны в печи в горизонтальном направлении, отличающиеся по содержанию кислорода.
На Фиг.3 показан вид сбоку, и на Фиг.4 показан вид спереди передней зоны печи 11. На передней стенке 29 печи на высоте F подачи расположено несколько точек подачи топлива, обозначенных позицией 30, посредством которых топливо 14 подают в печь. Над высотой F подачи расположен вторичный уровень S, включающий несколько сопел 31а, 31b подачи горючего газа, через которые вторичный газ 16 подают в печь. Над вторичным уровнем S расположен еще третичный уровень Т, включающий несколько сопел 32а, 32b подачи третичного газа, через которые третичный газ 28 подают в печь. На дне печи расположена воздушная коробка 26, верхняя поверхность которой образуют первичный уровень Р подачи в печь первичного газа 15а, 15b.
На Фиг.5 представлен вид сверху передней зоны печи, показанный с высоты первичного уровня Р. Воздушная коробка 26 включает постоянное сечение 26b и две камеры 26а, выделенные из него с помощью разделительных стенок 27, которые расположены в вертикальном направлении ниже точек 30 подачи топлива. В постоянное сечение 26b воздушной коробки подают горючий газ 15b с содержанием кислорода, отличающимся от содержания кислорода в первичном газе 15а, подаваемом в отдельные камеры 26а. Таким образом, возможно расположить ниже точки 30 подачи топлива зону с требуемым содержанием кислорода, не изменяя скорость подачи первичного газа.
На Фиг.6 показан вид сверху передней зоны печи, показанный с высоты вторичного уровня S. Как показано на Фиг.4, на передней стенке 29 печи расположены две точки 30 подачи топлива, вблизи которых сверху расположены первые сопла 31а для вторичного газа, в которые направляют вторичный газ 16а с первым содержанием кислорода. Между точками 30 подачи и вблизи боковых стенок печи расположены вторые сопла 31b для вторичного газа, через которые направляют в печь вторичный газ 16b со вторым содержанием кислорода. На Фиг.7 представлен вид сверху передней зоны печи, показанный с высоты третичного уровня Т. На передней стенке 29 печи, на третичном уровне Т, непосредственно над точками 30 подачи топлива, расположены первые сопла 32а для третичного газа 28а, через которые в печь направляют третичный газ 28а с первым содержанием кислорода. В горизонтальном направлении, немного дальше от воображаемой вертикальной линии, проходящей через точки 30 подачи, расположено по меньшей мере одно второе сопло 32b для третичного газа, через которое в печь направляют третичный газ 28b со вторым содержанием кислорода.
Ниже и сверху точек 30 подачи топлива возможно направлять, через камеры 26а воздушной коробки 26, сопла 31а вторичного газа и сопла 32а третичного газа, горючий газ, содержание кислорода в котором составляет, например, выше, чем содержание кислорода в горючем газе, который направляют в печь 11 через камеру 26b, сопла 31b вторичного газа и сопла 32b третичного газа в горизонтальном направлении дальше от точки 30 подачи топлива или воображаемой вертикальной линии, проходящей через нее. Сопла подачи вторичного и третичного газа разделены на две категории. Первая категория включает сопла 31а, 32а подачи, которые расположены по существу на одной линии по вертикали, что и столб топлива, поднимающегося вверх от точки 30 подачи топлива. Данная зона включает избыток топлива, и, для обеспечения хорошего горения, важно снабжать эту зону горючим газом, обогащенным кислородом. Вторая категория включает сопла 31b, 32b подачи, которые могут быть расположены вблизи краев печи и в зоне между точками 30 подачи топлива, где содержание топлива в псевдоожиженном материале явно ниже, чем непосредственно выше точек 30 подачи топлива.
Возможны различные модификации изобретения в пределах области защиты, определяемой представленной формулой изобретения.

Claims (8)

1. Способ оптимизации условий горения в котле с псевдоожиженным слоем, где кислородсодержащий горючий газ подают на два или более уровней по высоте, первый из которых представляет собой первичный уровень (Р), расположенный на высоте днища печи, и второй представляет собой вторичный уровень (S), расположенный на высоте вблизи уровня (F) подачи топлива, причем над вторичным уровнем (S) могут быть обеспечены еще другие уровни (Т,…), отличающийся тем, что горючие газы (15а, 15b; 16а, 16b; 28а, 28b) с различным содержанием кислорода получают путем смешивания воздуха, и/или чистого кислорода, и/или циркулирующего дымового газа при таком отношении, что каждый горючий газ имеет требуемое содержание кислорода, и посредством подачи горючих газов (15а, 15b; 16а, 16b; 28а, 28b) с различным содержанием кислорода на по меньшей мере один из указанных уровней (Р, S, Т,…) подачи горючего газа в различных точках в горизонтальном направлении печи (11) формируют зоны с различным содержанием кислорода в горизонтальном направлении печи (11).
2. Способ по п.1, отличающийся тем, что первичный уровень (Р) в горизонтальном направлении разделяют на две или более зоны и по меньшей мере в одну из этих зон подают горючий газ (15а) с содержанием кислорода, отличающимся от содержания кислорода в горючем газе (15b), направляемом по меньшей мере в зону, прилегающую к ней.
3. Способ по п.1 или п.2, отличающийся тем, что вторичный уровень (S) и/или один из уровней (Т,…) над ним разделяют на две или более зоны в горизонтальном направлении и по меньшей мере в одну из этих зон подают горючий газ (16а; 28а) с содержанием кислорода, отличающимся от содержания кислорода в горючем газе (16b; 28b), направляемом по меньшей мере в зону, прилегающую к ней.
4. Способ по п.3, отличающийся тем, что несколько точек (30) подачи топлива располагают на высоте уровня (F) подачи топлива и формируют снизу и/или сверху каждой точки (30) подачи топлива зону, в которую по меньшей мере на одном уровне (Р, S, Т,…) подачи горючего газа подают горючий газ (15а, 15b; 16а, 16b; 28а, 28b) с содержанием кислорода, отличающимся от содержания кислорода в горючем газе, подаваемом в зоны, расположенные дальше от точки (30) подачи топлива на том же уровне (Р, S, Т…) подачи горючего газа.
5. Устройство для оптимизации условий горения в котле с псевдоожиженным слоем, включающее средства подачи кислородсодержащего горючего газа на двух или более уровнях по высоте, первый из которых представляет собой первичный уровень (Р), расположенный на высоте днища печи, и второй представляет собой вторичный уровень (S), расположенный на высоте вблизи уровня (F) подачи топлива, причем над вторичным уровнем (S) могут быть обеспечены еще другие уровни (Т,…), отличающееся тем, что средства подачи горючего газа включают смесители для смешивания воздуха, и/или кислорода, и/или циркулирующего дымового газа, которые обеспечивают горючие газы (15а, 15b; 16а, 16b; 28а, 28b) с требуемым количеством кислорода, и по меньшей мере один из указанных уровней (Р, S, Т,…) подачи горючего газа обеспечен средствами (26а, 26b, 31а, 31b; 32а, 32b) подачи горючего газа, предназначенными для подачи в различных точках в горизонтальном направлении печи (11) горючих газов (15а, 15b; 16а, 16b; 28а, 28b) с различным содержанием кислорода, чтобы обеспечить возможность формирования зон с различным содержанием кислорода в горизонтальном направлении печи (11).
6. Устройство по п.5, отличающееся тем, что средства подачи горючего газа на первичном уровне (Р) включают воздушную коробку (26), разделенную в горизонтальном направлении на две или более камеры (26а, 26b), и по меньшей мере одна из этих камер (26а, 26b) предназначена для подачи в печь горючего газа (15а) с содержанием кислорода, отличающимся от содержания кислорода в горючем газе (15b), направляемом в печь через по меньшей мере одну камеру (26а, 26b), прилегающую к ней.
7. Устройство по п.5 или 6, отличающееся тем, что вторичный уровень (S) и/или один из уровней (Т,…) подачи горючего газа над ним разделен/разделены в горизонтальном направлении на две или более зоны и каждая из этих зон обеспечена соплами (31а, 31b, 32а, 32b) для подачи горючего газа, через которые в указанную зону подают горючий газ (16а; 28а) с содержанием кислорода, отличающимся от содержания кислорода в горючем газе (16b; 28b), направляемом по меньшей мере в зону, прилегающую к ней.
8. Устройство по п.7, отличающееся тем, что на высоте уровня (F) подачи топлива обеспечены точки (30) подачи топлива и ниже и/или сверху каждой указанной точки (30) подачи топлива сформирована зона, в которую на вторичном уровне (S) или, выше него, на уровне (Т,…) подачи горючего газа подают горючий газ с содержанием кислорода, отличающимся от содержания кислорода в горючем газе, подаваемом в зоны, расположенные дальше от точки (30) подачи топлива на том же уровне (S, Т,…) подачи.
RU2012109222/06A 2009-08-17 2010-08-09 Способ и устройство для оптимизации условий горения в котле с псевдоожиженным слоем RU2532636C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FI20095849A FI125496B (fi) 2009-08-17 2009-08-17 Menetelmä ja järjestely palamisolosuhteiden optimoimiseksi leijukerroskattilassa
FI20095849 2009-08-17
PCT/FI2010/050620 WO2011020945A1 (en) 2009-08-17 2010-08-09 Method and arrangement for optimising combustion conditions in a fluidised-bed boiler

Publications (2)

Publication Number Publication Date
RU2012109222A RU2012109222A (ru) 2013-09-27
RU2532636C2 true RU2532636C2 (ru) 2014-11-10

Family

ID=41050677

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012109222/06A RU2532636C2 (ru) 2009-08-17 2010-08-09 Способ и устройство для оптимизации условий горения в котле с псевдоожиженным слоем

Country Status (12)

Country Link
US (1) US9052106B2 (ru)
EP (1) EP2467640B1 (ru)
CN (1) CN102483231B (ru)
BR (1) BR112012003426A2 (ru)
CA (1) CA2771028C (ru)
DK (1) DK2467640T3 (ru)
ES (1) ES2608920T3 (ru)
FI (1) FI125496B (ru)
PL (1) PL2467640T3 (ru)
PT (1) PT2467640T (ru)
RU (1) RU2532636C2 (ru)
WO (1) WO2011020945A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2618639C1 (ru) * 2016-02-05 2017-05-05 Феликс Анатольевич Серант Способ работы котла с кольцевой топкой на разных нагрузках и режимах
RU2650018C1 (ru) * 2017-05-30 2018-04-06 Федеральное государственное казенное военное образовательное учреждение высшего образования "ВОЕННАЯ АКАДЕМИЯ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОГО ОБЕСПЕЧЕНИЯ имени генерала армии А.В. Хрулева" Силовая установка с активным котлом утилизатором высокотемпературного кипящего слоя

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9513001B2 (en) 2013-09-18 2016-12-06 General Electric Technology Gmbh Oxy-fired boiler unit and method of operating the same
FI20150289A (fi) * 2015-10-19 2017-04-20 Kyösti Ruotanen Menetelmä tuhkan määrän, koostumuksen ja ominaisuuksien hallitsemiseksi leijupetiprosessissa
CN107327839B (zh) * 2017-08-16 2023-08-18 吉林大学 一种循环流化床锅炉降氧抑氮系统及控制方法
CN111121006B (zh) * 2018-11-01 2021-03-26 中国科学院工程热物理研究所 卧式煤粉锅炉及其控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4934282A (en) * 1988-02-18 1990-06-19 Ishikawajima-Harima Jukogyo Kabushiki Kaisha Circulating type fluidized bed combustion apparatus
RU2001673C1 (ru) * 1989-04-04 1993-10-30 А.Альстрем Корпорейшн (FI) Реактор с псевдоожиженным слоем и способ подачи текучей среды в реактор с псевдоожиженным слоем
US5660125A (en) * 1995-05-05 1997-08-26 Combustion Engineering, Inc. Circulating fluid bed steam generator NOx control
WO1999040370A1 (en) * 1998-02-10 1999-08-12 Abb Ab A combustion chamber and a method for controlling the combustion in a combustion chamber

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3153091B2 (ja) 1994-03-10 2001-04-03 株式会社荏原製作所 廃棄物の処理方法及びガス化及び熔融燃焼装置
US4704084A (en) 1979-12-26 1987-11-03 Battelle Development Corporation NOX reduction in multisolid fluidized bed combustors
GB2093367A (en) 1981-02-19 1982-09-02 Boc Ltd Combustion method and apparatus
JPS58182006A (ja) * 1982-04-20 1983-10-24 Ishikawajima Harima Heavy Ind Co Ltd 流動床燃焼装置
GB8428395D0 (en) 1984-11-09 1984-12-19 Boc Group Plc Oxidation process
JP2637449B2 (ja) 1988-01-12 1997-08-06 三菱重工業株式会社 流動床燃焼方法
US5372791A (en) * 1992-04-20 1994-12-13 Foster Wheeler Energy Corporation Fluidized bed system and a fluidization and cooling nozzle for use therein
US6532881B2 (en) * 1999-06-10 2003-03-18 L'air Liquide - Societe' Anonyme A' Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation De Procedes Georges Claude Method for operating a boiler using oxygen-enriched oxidants
JP2004205161A (ja) * 2002-12-26 2004-07-22 Hitachi Ltd 固体燃料ボイラ及びボイラ燃焼方法
DE102005009957B4 (de) * 2005-03-04 2007-02-01 Martin GmbH für Umwelt- und Energietechnik Verfahren zum Verbrennen von Brennstoffen, insbesondere Abfall
US20090007827A1 (en) * 2007-06-05 2009-01-08 Hamid Sarv System and Method for Minimizing Nitrogen Oxide (NOx) Emissions in Cyclone Combustors
FI123853B (fi) * 2009-03-06 2013-11-15 Metso Power Oy Menetelmä typenoksidipäästöjen vähentämiseksi happipoltossa
EP2572773A1 (en) * 2010-05-18 2013-03-27 Babcock-Hitachi Kabushiki Kaisha Flue gas desulfurization device, combustion system and combustion method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4934282A (en) * 1988-02-18 1990-06-19 Ishikawajima-Harima Jukogyo Kabushiki Kaisha Circulating type fluidized bed combustion apparatus
RU2001673C1 (ru) * 1989-04-04 1993-10-30 А.Альстрем Корпорейшн (FI) Реактор с псевдоожиженным слоем и способ подачи текучей среды в реактор с псевдоожиженным слоем
US5660125A (en) * 1995-05-05 1997-08-26 Combustion Engineering, Inc. Circulating fluid bed steam generator NOx control
WO1999040370A1 (en) * 1998-02-10 1999-08-12 Abb Ab A combustion chamber and a method for controlling the combustion in a combustion chamber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2618639C1 (ru) * 2016-02-05 2017-05-05 Феликс Анатольевич Серант Способ работы котла с кольцевой топкой на разных нагрузках и режимах
RU2650018C1 (ru) * 2017-05-30 2018-04-06 Федеральное государственное казенное военное образовательное учреждение высшего образования "ВОЕННАЯ АКАДЕМИЯ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОГО ОБЕСПЕЧЕНИЯ имени генерала армии А.В. Хрулева" Силовая установка с активным котлом утилизатором высокотемпературного кипящего слоя

Also Published As

Publication number Publication date
FI20095849A (fi) 2011-02-18
CA2771028C (en) 2016-11-29
PT2467640T (pt) 2016-11-16
FI125496B (fi) 2015-10-30
CN102483231A (zh) 2012-05-30
US9052106B2 (en) 2015-06-09
WO2011020945A1 (en) 2011-02-24
FI20095849A0 (fi) 2009-08-17
CA2771028A1 (en) 2011-02-24
DK2467640T3 (en) 2016-12-12
ES2608920T3 (es) 2017-04-17
RU2012109222A (ru) 2013-09-27
CN102483231B (zh) 2015-07-29
EP2467640A4 (en) 2015-03-18
EP2467640B1 (en) 2016-09-28
EP2467640A1 (en) 2012-06-27
PL2467640T3 (pl) 2017-05-31
BR112012003426A2 (pt) 2016-02-23
US20120148961A1 (en) 2012-06-14

Similar Documents

Publication Publication Date Title
RU2511819C2 (ru) Способ уменьшения выбросов оксидов азота при кислородотопливном сгорании
RU2532636C2 (ru) Способ и устройство для оптимизации условий горения в котле с псевдоожиженным слоем
CN102721043A (zh) 具有附壁二次风和网格燃尽风的煤粉锅炉
CN101592336A (zh) 一种流化床锅炉
CN102628589B (zh) 一种煤粉高温低NOx的燃烧方法及装置
CN201434374Y (zh) 一种流化床锅炉
RU2067724C1 (ru) Низкоэмиссионная вихревая топка
CN103604119A (zh) 循环流化床二次风配风方法及专用锅炉
FI125314B (fi) Menetelmä typenoksidipäästöjen ja korroosion vähentämiseksi kerrosleijukattilassa ja kerrosleijukattila
US5230871A (en) Method for generating heat, comprising desulphurization of effluent with fine particles of absorbent in a entrained bed
CN107057721A (zh) 实现焦炉燃烧室立火道内低氮燃烧的方法
FI84934B (fi) Saett att vid eldning av fasta braenslen pao wanderrost minska utslaeppen av svavel- och kvaeveoxider.
SU1343182A1 (ru) Способ сжигани твердого топлива в топке с кип щим слоем
CN205782866U (zh) 有效降低碳氧化物排放的循环流化床锅炉
CN103411206A (zh) 带有双层错位二次风喷管和石灰石粉喷管系统的链条锅炉
EP3054214A1 (en) Method for feeding air to a fluidized bed boiler, a fluidized bed boiler and fuel feeding means for a fluidized bed boiler
CN212418361U (zh) 低排放型循环流化床锅炉的调节式分离器结构
CN106051750A (zh) 有效降低氮氧化物及颗粒物排放的循环流化床锅炉装置
CN106122950A (zh) 一种低氮燃烧的循环流化床锅炉
CN111780095A (zh) 燃烧系统及其控制方法、预热设备
CN110160042A (zh) 燃烧器顶部侧置煤粉锅炉及其控制方法
CN110160039A (zh) 燃烧器顶置煤粉锅炉及其控制方法
CN106051751A (zh) 协同控制污染物排放的循环流化床锅炉
JPS6082703A (ja) ΝOx発生を低減した石炭焚き炉筒煙管ボイラおよびその運転方法

Legal Events

Date Code Title Description
HZ9A Changing address for correspondence with an applicant