RU2530076C2 - Способ получения нанокристаллического порошка - Google Patents

Способ получения нанокристаллического порошка Download PDF

Info

Publication number
RU2530076C2
RU2530076C2 RU2012151097/02A RU2012151097A RU2530076C2 RU 2530076 C2 RU2530076 C2 RU 2530076C2 RU 2012151097/02 A RU2012151097/02 A RU 2012151097/02A RU 2012151097 A RU2012151097 A RU 2012151097A RU 2530076 C2 RU2530076 C2 RU 2530076C2
Authority
RU
Russia
Prior art keywords
powder
amorphous
production
nanocrystalline
grinding
Prior art date
Application number
RU2012151097/02A
Other languages
English (en)
Other versions
RU2012151097A (ru
Inventor
Алина Константиновна Мазеева
Елена Юрьевна Геращенкова
Евгений Александрович Самоделкин
Борис Владимирович Фармаковский
Павел Алексеевич Кузнецов
Анастасия Анверовна Рамалданова
Original Assignee
Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" (Фгуп "Цнии Км "Прометей")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" (Фгуп "Цнии Км "Прометей") filed Critical Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" (Фгуп "Цнии Км "Прометей")
Priority to RU2012151097/02A priority Critical patent/RU2530076C2/ru
Publication of RU2012151097A publication Critical patent/RU2012151097A/ru
Application granted granted Critical
Publication of RU2530076C2 publication Critical patent/RU2530076C2/ru

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

Изобретение относится к порошковой металлургии, в частности к получению нанокристаллических магнитомягких порошковых материалов. Может использоваться для создания эффективных систем электромагнитной защиты на основе радиопоглощающих материалов. Исходный материал в виде аморфной ленты из магнитомягких сплавов подвергают термической обработке при температуре (0,35-0,37)Tликвидуса в течение 30-90 мин с последующим охлаждением на воздухе. Термообработанную ленту измельчают в высокоскоростном дезинтеграторе до получения порошка нанокристаллической структуры с размером фракции 15-35 мкм. Обеспечивается повышение эффективности получения порошка при сохранении высокой магнитной проницаемости.

Description

Изобретение относится к области порошковой металлургии, в частности к способам получения нанокристаллических порошковых материалов для создания эффективных систем электромагнитной защиты на основе радиопоглощающих материалов (РПМ).
Кристаллизация аморфных сплавов особенно активно изучается в связи с возможностью создания нанокристаллических ферромагнитных сплавов систем Fe-Cu-M-Si-B (M-Nb, Ta, W, Mo, Zr), имеющих очень низкую коэрцитивную силу и высокую магнитную проницаемость, т.е. мягких магнитных материалов.
Известен способ получения порошковых магнитных материалов (патент РФ №2348997 от 20.12.2006 г.) на основе карбонильного железа, включающий механохимический размол порошка карбонильного железа в жидкой среде в высокоэнергетическом размольном устройстве, где совместно проводят размол частиц карбонильного железа и частиц электролитического кобальта с регулируемым содержанием кобальта до получения порошка с удельной поверхностью материала от 0,2 до 3,5 м2/г и величиной тангенса магнитных потерь более 1,0 в диапазоне частот более 1,5 ГГц при содержании магнитного порошкового материала не более 35 об.% для всех видов устройств ВЧ и СВЧ-техники.
Также известен способ получения аморфных магнитомягких сплавов (патент РФ №2044352 от 29.10.1993 г.), в котором для достижения линейной петли гистерезиса (Кп<0,2) и повышенных полей выхода в насыщение (На до 90Э) предлагается в аморфный сплав системы Fe-Si-B дополнительно ввести Zn и/или Al в следующем соотношении компонентов, ат.%: B - 11-16; Si - 4-8; Zn и/или Al - 0,5-5,0; Fe - ост. Достигается снижение трудоемкости термообработки за счет исключения применения магнитного поля при отжиге.
Наиболее близким к заявляемому и взятому нами за прототип является способ получения нанокристаллического магнитного порошка (патент РФ №2427451), включающий предварительную термическую обработку отобранного исходного материала в виде аморфной ленты из магнитомягких сплавов на основе системы Fe-Co-Ni при температуре, равной (0,25-0,29)·Тликвидуса, в течение 30-90 мин с охлаждением на воздухе, предварительное измельчение термообработанной ленты до фракции 3-5 мм, последующее измельчение в высокоскоростном дезинтеграторе до получения порошка аморфной структуры с размером фракции 20-60 мкм. Заключительную термическую обработку полученного аморфного порошка проводят при температуре, равной (0,3-0,4)·Тликвидуса, в течение 30-90 мин с охлаждением на воздухе.
Существенным недостатком данного способа является необходимость проведения дополнительного этапа термообработки после измельчения ленты, что усложняет процесс получения нанокристаллического порошка и делает его более длительным.
Техническим результатом изобретения является повышение эффективности способа получения нанокристаллического магнитного порошка при сохранении высокой магнитной проницаемости получаемого продукта.
Технический результат достигается за счет того, что в способе получения нанокристаллического магнитного порошка для создания широкополосных радиопоглощающих материалов, включающем термическую обработку исходного материала в виде аморфной ленты из магнитомягких сплавов, измельчение термообработанной ленты до фракции 3-5 мм с последующим измельчением в высокоскоростном дезинтеграторе за счет соударения частиц для получения порошка аморфной структуры с размером фракции 15-35 мкм, в соответствии с изобретением термическую обработку исходного материала ведут до образования в нем наноструктуры.
Согласно изобретению отбирают исходный материал в виде аморфной ленты (или технологических отходов ее производства), полученной методом спиннингования расплава, из магнитомягких сплавов на основе базовой системы Fe-Co-Ni (например, из магнитомягкого сплава системы Fe-Ni-Co-Si-B или системы Co-Fe-Ni-Cu-Nb-Si-B).
Проводят термическую обработку аморфной ленты из магнитомягкого сплава в электропечи при температуре, равной (0,35-0,37)·Тликвидуса, в течение 30-90 минут с охлаждением на воздухе, что обеспечивает ее охрупчивание, а также создание наноструктуры, формирование и выделение в аморфной матрице нанокристаллов, например, соединения α-(Fe, Si) или ε-Co. Установлено, что при увеличении температуры выше 0,37·Тликвидуса и увеличении изотермической выдержки более 90 минут резко возрастает размер кристаллитов, находящихся в аморфной матрице. Это приводит к уменьшению магнитной проницаемости (µ).
Термообработанную ленту подвергают поэтапному измельчению с целью получения магнитного порошка с требуемой структурой. Для этого сначала ленту измельчают до частиц с размером фракции 3-5 мм в молотковой дробилке или аналогичном устройстве. Указанный размер фракции необходим для дальнейшего измельчения материала в высокоскоростном универсальном дезинтеграторе. Увеличение размера фракции материала более 5 мм может привести к выходу из строя рабочих органов дезинтеграторов. Затем полученный материал измельчают в высокоскоростном универсальном дезинтеграторе-активаторе (УДА - обработка). В процессе УДА обработки происходит измельчение материала из магнитомягкого сплава до порошка с размером фракции 15-35 мкм.
Указанный размер фракции получаемого аморфного порошка 15-35 мкм является оптимальным для дисперсного магнитомягкого наполнителя, используемого при получении композита на основе полимерной матрицы для создания широкополосных радиопоглощающих материалов, при этом обеспечивается наибольшее рассеяние электромагнитных волн.
В качестве исходного материала для получения нанокристаллического магнитного порошка отбирали аморфную ленту из магнитомягкого сплава системы Fe-Cu-Nb-Si-B. Ширина аморфной ленты 20 мм, толщина 20 мкм. Проводили термическую обработку аморфной ленты в электропечи марки СНОЛ при температуре, равной (0,35 Тликвидуса)°C, в течение 60 мин с последующим охлаждением на воздухе с целью создания наноструктуры, формирования и выделения в аморфной матрице нанокристаллов. Термообработанную ленту подвергли поэтапному измельчению. Сначала в молотковой дробилке ДМ3.2 до частиц с размером фракции 3-5 мм, необходимой для дальнейшего передела ленты. Затем полученный материал измельчали в высокоскоростном дезинтеграторе марки В-15, позволяющем обрабатывать порошковый материал в воздушной среде и в среде инертного газа аргона или азота, при сверхзвуковых скоростях соударения 350 g. Получили порошок с размером фракции 15-35 мкм.
Методом просвечивающей электронной микроскопии было проведено исследование микроструктуры полученного нанокристаллического магнитного порошка, фазовый состав определяли рентгеновским методом на дифрактометре ДРОН-4М. Исследования показали, что объемная доля нанокристаллитов соединения α-(Fe, Si) составила 40-60%, среднее значение размеров кристаллических зерен (Dcp) составило 7-18 нм. Потери в диапазоне частот 3-18 ГГц композита, изготовленного на основе нанокристаллического порошка из магнитомягкого сплава системы Fe-Cu-Nb-Si-B, составили 10 dB.

Claims (1)

  1. Способ получения нанокристаллического магнитомягкого порошка для создания широкополосных радиопоглощающих материалов, включающий термическую обработку исходного материала в виде аморфной ленты из магнитомягких сплавов в течение 30-90 мин с охлаждением на воздухе, измельчение термообработанной ленты до фракции 3-5 мм с последующим измельчением в высокоскоростном дезинтеграторе, отличающийся тем, что термическую обработку исходного материала осуществляют при температуре (0,35-0,37) Tликвидуса до образования в нем наноструктуры, а измельчение в высокоскоростном дезинтеграторе ведут до получения порошка с размером фракции 15-35 мкм.
RU2012151097/02A 2012-11-29 2012-11-29 Способ получения нанокристаллического порошка RU2530076C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012151097/02A RU2530076C2 (ru) 2012-11-29 2012-11-29 Способ получения нанокристаллического порошка

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012151097/02A RU2530076C2 (ru) 2012-11-29 2012-11-29 Способ получения нанокристаллического порошка

Publications (2)

Publication Number Publication Date
RU2012151097A RU2012151097A (ru) 2014-06-10
RU2530076C2 true RU2530076C2 (ru) 2014-10-10

Family

ID=51213960

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012151097/02A RU2530076C2 (ru) 2012-11-29 2012-11-29 Способ получения нанокристаллического порошка

Country Status (1)

Country Link
RU (1) RU2530076C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2625511C2 (ru) * 2015-12-15 2017-07-14 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт конструкционных материалов "Прометей" имени И.В. Горынина Национального исследовательского центра "Курчатовский институт" (НИЦ "Курчатовский институт" - ЦНИИ КМ "Прометей") Способ получения нанокристаллического порошкового материала для изготовления широкополосного радиопоглощающего композита

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2255833C1 (ru) * 2002-08-08 2005-07-10 Неомакс Ко., Лтд. Способ получения быстроотвержденного сплава для магнита
US20070193657A1 (en) * 2006-02-22 2007-08-23 Markus Brunner Method For Producing Powder Compound Cores Made From Nano-Crystalline Magnetic Material
US7601294B2 (en) * 2006-05-02 2009-10-13 Babcock & Wilcox Technical Services Y-12, Llc High volume production of nanostructured materials
RU2427451C2 (ru) * 2009-11-16 2011-08-27 Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" (Фгуп "Цнии Км "Прометей") Способ получения нанокристаллического магнитного порошка для создания широкополосных радиопоглощающих материалов

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2255833C1 (ru) * 2002-08-08 2005-07-10 Неомакс Ко., Лтд. Способ получения быстроотвержденного сплава для магнита
US20070193657A1 (en) * 2006-02-22 2007-08-23 Markus Brunner Method For Producing Powder Compound Cores Made From Nano-Crystalline Magnetic Material
US7601294B2 (en) * 2006-05-02 2009-10-13 Babcock & Wilcox Technical Services Y-12, Llc High volume production of nanostructured materials
RU2427451C2 (ru) * 2009-11-16 2011-08-27 Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" (Фгуп "Цнии Км "Прометей") Способ получения нанокристаллического магнитного порошка для создания широкополосных радиопоглощающих материалов

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2625511C2 (ru) * 2015-12-15 2017-07-14 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт конструкционных материалов "Прометей" имени И.В. Горынина Национального исследовательского центра "Курчатовский институт" (НИЦ "Курчатовский институт" - ЦНИИ КМ "Прометей") Способ получения нанокристаллического порошкового материала для изготовления широкополосного радиопоглощающего композита

Also Published As

Publication number Publication date
RU2012151097A (ru) 2014-06-10

Similar Documents

Publication Publication Date Title
EP0302355B1 (en) Fe-base soft magnetic alloy powder and magnetic core thereof and method of producing same
JP5692231B2 (ja) 希土類磁石の製造方法、及び希土類磁石
US20150104645A1 (en) Magnetic nanoflakes
CN107240468B (zh) R-t-b系永久磁铁
JP6669304B2 (ja) 結晶質Fe基合金粉末及びその製造方法
CN108695033B (zh) R-t-b系烧结磁铁
KR20150095714A (ko) 희토류 영구자석 분말, 그것을 포함한 접착성 자성체 및 접착성 자성체를 응용한 소자
US11276516B2 (en) Magnetic powder for high-frequency applications and magnetic resin composition containing same
CN111655891B (zh) 永久磁铁
JPH02125801A (ja) 扁平状Fe基軟磁性合金微粉末およびその製造方法
WO2020196608A1 (ja) アモルファス合金薄帯、アモルファス合金粉末、及びナノ結晶合金圧粉磁心、並びにナノ結晶合金圧粉磁心の製造方法
Ma et al. The evolution of microstructure and magnetic properties of Fe–Si–Al powders prepared through melt-spinning
RU2530076C2 (ru) Способ получения нанокристаллического порошка
CN104078177B (zh) 稀土类磁体
Hosokawa et al. Mechanism of anomalous α-Fe formation from stoichiometric Sm2Fe17 jet-milled powder during post-pulverization annealing
Qian et al. Crystallization and magnetic properties of ThMn12-type Sm-Fe-Co-Ti-Si based magnetic materials
RU2427451C2 (ru) Способ получения нанокристаллического магнитного порошка для создания широкополосных радиопоглощающих материалов
KR20100111602A (ko) 전자파 흡수체용 편상분말 및 그 제조방법
JPH01294801A (ja) 扁平状Fe−Ni系合金微粉末の製造方法
JP2015007275A (ja) 磁石用粉末の製造方法、磁石用粉末、磁石用成形体、磁性部材、及び圧粉磁石
WO2005043558A1 (ja) 希土類焼結磁石の製造方法
KR20210007922A (ko) Fe계 연자성 합금, 이의 제조방법 및 이를 포함하는 자성부품
Zhao et al. Nitrogenation and Subsequent Surfactant-Assisted High Energy Ball Milling of Sm 2 Fe 17 Melt-Spun Powders
Bae et al. Characterization of Magnetic Properties of Low-Temperature Phase (LTP) Synthesized by Surfactant-Assisted Cryo-Milling Process in MnBi Binary System
JP3797421B2 (ja) 希土類焼結磁石の製造方法