RU2525969C2 - Способ выплавки и внепечной обработки высококачественной рельсовой стали - Google Patents

Способ выплавки и внепечной обработки высококачественной рельсовой стали Download PDF

Info

Publication number
RU2525969C2
RU2525969C2 RU2012143265/02A RU2012143265A RU2525969C2 RU 2525969 C2 RU2525969 C2 RU 2525969C2 RU 2012143265/02 A RU2012143265/02 A RU 2012143265/02A RU 2012143265 A RU2012143265 A RU 2012143265A RU 2525969 C2 RU2525969 C2 RU 2525969C2
Authority
RU
Russia
Prior art keywords
melt
ladle
content
metal
carbon
Prior art date
Application number
RU2012143265/02A
Other languages
English (en)
Other versions
RU2012143265A (ru
Inventor
Николай Егорович Хисамутдинов
Наталия Алексеевна Гребенюк
Алексей Владимирович Явойский
Владимир Владимирович Белов
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" filed Critical Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС"
Priority to RU2012143265/02A priority Critical patent/RU2525969C2/ru
Publication of RU2012143265A publication Critical patent/RU2012143265A/ru
Application granted granted Critical
Publication of RU2525969C2 publication Critical patent/RU2525969C2/ru

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

Изобретение относится к черной металлургии, в частности к способу производства рельсовой стали. Способ включает продувку расплава кислородом, выпуск расплава в ковш, наводку покровного шлак в ковше, обработку расплава в вакууматоре. За 1-3 минуты до окончания продувки замеряют температуру расплава, определяют содержание углерода по ликвидусу и на основании полученных данных определяют содержание углерода в расплаве, соответствующее окончанию продувки расплава кислородом. После окончания продувки на дно ковша подают прокаленные ферросплавы с содержанием алюминия более 0,05% и титана более 0,1% и через 1-1,5 минуты после окончания продувки осуществляют выпуск расплава из конвертера в ковш. По ходу выпуска расплава подают прокаленные ферросплавы с содержанием алюминия менее 0,05% и титана менее 0,1%. В конце выпуска расплава в ковше наводят основной покровный шлак. Перед обработкой расплава в вакууматоре покровный шлак раскисляют в ковше кремнийсодержащими ферросплавами фракцией 0-5 мм в количестве 0,3-0,8 кг/т, при этом при обработке расплава в вакууматоре для окончательного раскисления и модифицирования расплава присаживают Fe-Si-Ba с содержанием бария 15-35%. Использование изобретения обеспечивает высокую эксплуатационную стойкость рельсов. 2 з.п. ф-лы, 2 ил., 2 табл.

Description

Изобретение относится к области черной металлургии, в частности к способу выплавки и внепечной обработки стали для высококачественных железнодорожных рельсов различного назначения, содержащих углерод, марганец, кремний, ванадий, азот, алюминий, титан, кальций, магний, хром, никель, медь, бор, ниобий, кобальт, другие полезные и сопутствующие примеси. Он включает новую технологию выплавки, выпуска с раскислением и легированием и доводку рельсового металла на агрегатах внепечной обработки стали. Изобретение с помощью новой технологии позволит снизить расходы по переделу и достичь высокой эксплуатационной стойкости рельсов не менее 1150-1500 млн т·км брутто за счет обеспечения содержания кислорода 0,0003-0,0010%, водорода не более 0,0001%, алюминия не более 0,001%, титана не более 0,001%, отношения [O]/[Al]=1,0-1,4. Это позволит улучшить качество рельсового металла, например уменьшить длину строчек от 700-800 мкм вплоть до полного их исчезновения. Порог чувствительности современных приборов по определению содержания О, Al, Ti равен 0,001%, водорода - 0.0001%, поэтому данные величины являются верхним пределом, а меньшие значения содержания этих элементов определяются как следы.
В настоящее время известные технологии позволяют получить в рельсовой стали на ОАО «НТМК», «НКМК», «Азовсталь» содержание алюминия 0,0030-0,0060%, титана 0,017-0,2%, водорода 0,00015-0,00025%, кислорода 0,0012-0,0045%, отношение ([O]/[Al]) составляет 0,5-0,7. Во избежание образования неметаллических включений крайне неблагоприятной формы это отношение должно быть равно 1,0-1,4. За рубежом (в известных технологиях Японии, Франции) содержание этих примесей ниже, чем в отечественных рельсах за счет применения более чистых ферросплавов и чугуна, но превышает значения этих величин в предлагаемом способе.
На рис. 1 показан график зависимости длины строчек неметаллических включений от величины окисленности рельсового металла. Из графика видно, что при снижении содержания кислорода происходит уменьшение длины строчек от 700-1000 мкм вплоть до полного их исчезновения. Красным выделены зоны, в которых окисленность металла достигается на различных стадиях конвертерного производства:
- зона 1 - окисленность металла (0,0005-0,0010%) после вакуумирования и окончательного раскисления Fe-Si-Ba;
- зона 2 - окисленность металла в ковше (0,0010-0,0015%) при раскислении Si-Mn, Fe-Si, после выпуска из конвертера (без окончательного раскисления);
- зона 3 - окисленность металла (0,0035-0,0045%) после нахождения металла под током для наводки шлака на АКП (без окончательного раскисления);
- зона 4 окисленность металла (0,0045-0,0060%) после нахождения металла под током для нагрева металла на АКП (без окончательного раскисления).
Из графика видно, что металл после выпуска из конвертера более чистый, чем после обработки на агрегате «печь-ковш», где содержание кислорода возрастает в 4-10 раз с 0,0006-0,0015% до 0,0035-0,060%, а водорода в 5-14 раз с 0,00005-0,00001% до 0,0005-0,0007%. После этого потребуется более длительная (в 1,5-2,5 раза) обработка на вакууматоре и присадка большого количества сильных раскислителей, способствующих возрастанию содержания алюминия от следов до 0,0035-0,0060%, титана от следов до 0,015-0,20% с образованием дополнительного количества неметаллических включений.
Окончание продувки в конвертере и выпуск в ковш происходит при объемном кипении конвертерной ванны. В это время металл очищается от металлических включений и газов: содержание водорода снижается с 0,0004-0,0008% до 0,0001%, азота с 0,006-0,008% до 0,002-0,003%, кислорода с 0,0250-0,0400% до 0.0050-0,0100%. Для попадания из зоны 2 (после выпуска) в зону 1 достаточно вакуумирования без присадки таких сильных раскислителей, как Al, Ti, Ca.
Кроме этого, должно выдерживаться отношение ([O]/[Al])≥1,0-1,4. Если эта величина менее 1,0, в рельсовой стали образуются корундовые включения в особо неблагоприятной форме, способствующие низкой эксплуатационной стойкости рельсов менее 450 млн т·км брутто. В таблице 1 представлены данные по разным производителям
Таблица 1
Производитель Массовая доля кислорода, % Массовая доля алюминия, %; соотношение ([O]/[Al]) Эксплуатационная стойкость, млн т·км брутто
ОАО«НТМК» серия Т 0,0012 0,0036 (0,33) 160-400
ОАО«НКМК» серия К-23 0,0043 0,0036(1,18) 1000
Франция, Япония 0,0012-0,0013 0,0012(1,0-1,20) 1150-1300
Из таблицы видно, что эксплуатационная стойкость отечественных рельсов ниже, чем у зарубежных производителей. Несмотря на то что для рельсов серии К-23 (лучших отечественных) отношение ([O]/[Al])=1,18, эксплуатационная стойкость этих рельсов все равно ниже зарубежных за счет высокого содержания кислорода и алюминия.
Во время продувки кислородом в конвертере в реакционной зоне и, особенно, в период интенсивного кипения металлической ванны, начиная от содержания углерода ~1,5% и заканчивая ~0,5%, за счет чрезвычайно развитой поверхности раздела фаз «металл-газовый пузырек» процесс удаления водорода идет более эффективно, чем при вакуумировании. В конце периода объемного кипения металла достигается содержание водорода около 0,0001%.
На рис.2 показаны известные (пунктирные линии) и предлагаемый (сплошные линии) способы выплавки и внепечной обработки рельсовой стали. При передуве металла до более низкого содержания углерода, например до 0,05% (линия 1) в конвертер подсасывается атмосферный воздух, из которого, при температуре реакционной зоны 2500-2700°С, водород активно растворяется в металле. Так работает большинство конвертерных цехов за рубежом, где газоотводящий тракт, работающий в режиме «без дожигания, не позволяет останавливать продувку на высоком содержании углерода, а в конце плавки продувка идет при поднятой юбке, что и объясняет возрастание содержания водорода. Линия 1 показывает, как изменяется содержание водорода в металле при выплавке (с остановкой продувки на содержании углерода 0,05%), выпуске, обработке на АКП и вакууматоре. На выпуске содержание возрастает за счет водорода, содержащегося в присаживаемых в ковш материалах и в воздухе. На АКП прирост водорода происходит за счет присаживаемых в ковш материалов и подсасывания воздуха в высокотемпературную зону дуг.
Более эффективен (по отношению к водороду) процесс остановки плавки на высоком содержании углерода 0,6-0,7% (линия 2). Однако после остановки продувки, отбора проб, замера температуры и ожидания анализа прекращается кипение ванны (прекращается выделение водорода из металла) и во время выпуска водород начинает поглощаться металлом до меньшей величины, чем в первом случае. На АКП процесс поглощения водорода металлом аналогичен случаю 1. В перечисленных 2-х случаях металл приходит на вакуумирование с очень высоким содержанием водорода 5-6 ppm. Для того чтобы снизить его содержание до уровня менее 0,0002%, потребуется:
- длительная обработка металла на вакууматоре 40-60 мин;
- значительный перегрев металла при ухудшении его качества;
- большие расходы по переделу (особенно электроэнергии);
- увеличивается себестоимость;
- и снижается рентабельность производства.
Если за 1-3 минуты до прекращения продувки отобрать пробу металла, замерить температуру и углерод по ликвидусу, на основании этого остановить продувку на высоком содержании углерода, снова замерить температуру, углерод по ликвидусу и на основании анализа ранее отобранной металлической пробы немедленно начать выпуск, чтобы металл попадал в ковш кипящим (линия 3), для дополнительного снижения содержания водорода. После выпуска (с подачей аргона через днище ковша, раскислением и легированием) металл направить на вакууматор с более низким, чем в случае 1 и 2, содержанием водорода. Длительность вакуумирования сократится в 2-4 раза до 15-25 минут. Общая длительность внепечной обработки сократится с 2-2,5 часов до 25 минут. Нет необходимости перегревать металл в конвертере и нагревать его с помощью электродов на АКП. После этого металл отправляется на МНЛЗ более чистым по водороду, чем в первых двух случаях.
Таким образом, необходимо изменить технологию внепечной обработки, отличную от применяемой сейчас в РФ и за рубежом [1, 2, 3, 4. 5, 6] (выплавка, выпуск, печь-ковш, вакууматор, МНЛЗ). Для этого необходимо изменить технологию выплавки, выпуска, раскисления и легирования металла, после этого ковш с металлом необходимо отправить не на агрегат «печь-ковш», а на вакууматор. Применяемые прокаленные ферросплавы должны иметь минимально возможное содержание алюминия, титана. Сокращается длительность вакуумирования на 30-70%, а общая длительность внепечной обработки уменьшается в 2-4 раза. Нет необходимости перегревать металл и потом очень затратно и длительно бороться с неметаллическими включениями. Снижается себестоимость рельсовой стали. Улучшается качество.
Известен способ производства рельсовой стали [1], где при выпуске и внепечной обработке металла применяют ферросилиций, содержащий алюминий 1,2-2,5% и титан 0,15-0,25%, силикомарганец, содержащий алюминий 0,012-0,015% и титан 0,15-0,25%, алюминий и силикокальций (в виде проволоки и др.). Недостатком является высокое содержание кислорода, алюминия, титана и кальция в металле, вызывающих загрязнение его неметаллическими включениями, которые препятствуют достижению высокой эксплуатационной стойкости рельсов (см. табл.3).
Известен способ производства рельсовой стали [2], где при раскислении и легировании из ферросплавов в рельсовый металл из ферросилиция и силикомарганца переходит большое количество титана до содержания 0,005-0,022%. Это значительно превышает необходимую величину <0,001%. Отношение ([О]/[Al]) значительно меньше 1,2, что недопустимо. Недостатком является загрязнение металла неметаллическими включениями, в частности в рельсах длина строчек нитридов титана составляет 800-1800 мкм, что препятствует достижению высокой эксплуатационной стойкости рельсов.
Известен способ производства рельсовой стали [3], где для окончательного раскисления применяют избыточное количество алюминиевой и силикокальциевой проволоки. Несмотря на достигаемое низкое содержание кислорода, избыток неметаллических включений не позволяет достичь высокой эксплуатационной стойкости рельсов (см. табл.3).
Известен [4] способ производства рельсовой стали по традиционной схеме выплавка (ДСП), выпуск на содержании углерода 0,40%, доводка металла на агрегатах внепечной обработки. Недостатком является то, что на вакууматор металл приходит с содержанием водорода 0,0005-0,0006%. Его приходится долго обрабатывать на вакууматоре для снижения содержания водорода менее 0,0002%. В дополнение к этому перед этим приходится долго проводить нагрев металла электродами для обеспечения длительного вакуумирования, при этом страдает качество металла и увеличиваются расходы по переделу.
Известен [5] способ производства рельсовой стали, в котором металл выплавляется в конвертерах и доводится на АКП и вакууматоре. Недостатком является то, что несмотря на высокое содержание углерода на выпуске из конвертера из-за больших затрат времени на повалку, отбор проб, замер температуры и ожидание анализа металл перестает кипеть. В результате этого на выпуске металл поглощает водород из атмосферы и из присаживаемых в ковш материалов, он продолжает поглощаться из атмосферы при скачивании окисленного шлака из ковша, поглощается на АКП при наводке шлака и при нагреве металла электродами (чем длинее нагрев, тем больше водорода поглощается). Дальше аналогично способу [4].
Наиболее близким способом по технической сущности и достигаемому результату и в качестве аналога выбран способ [6], где достигается низкое содержание кислорода при снижении содержания алюминия (по сравнению с [3]) в 2раза (см. табл.3). В этом случае также не достигается высокая эксплуатационная стойкость рельсов, так как ([О]/[Al])=0,06, а должно быть ([О]/[Al])≥1,2.
Раскрытие изобретения. Изобретение посвящено новой технологии выплавки, выпуска с раскислением и легирования и доводки рельсового металла на агрегатах внепечной обработки стали.
Существующие технологии не позволяют достичь высокой эксплуатационной стойкости рельсов из-за наличия неметаллических включений с длиной строк 300-1000 мкм. Это в свою очередь обуславливается высоким содержанием в рельсовой стали алюминия 0,0030-0,0060%, титана 0,017-0,2%, водорода 0,00015-0,00025%, кислорода 0,0012-0,0045%, отношение ([0]/[Al]) составляет 0,5-0,7. При этом эксплуатационная стойкость рельсов составляет всего 400-600 млн т·км брутто.
Задачей, на решение которой направлено изобретение, является достижение высокой эксплуатационной стойкости рельсов, минимальная величина которой составляет 1150-1500 млн т·км брутто, а максимальная - 1600 и более млн т·км брутто. Это обеспечивается существенным снижением содержания кислорода не более 0,0010%, водорода не более 0,00015%, алюминия не более 0,0010%, титана не более 0,0010% и увеличением отношения [O]/[Al] до величины 1,0-1,4. Это позволит улучшить качество рельсового металла за счет его чистоты по неметаллическим включениям. Например, уменьшить длину их строчек до 0-50 мкм (вплоть до полного их исчезновения).
Это достигается тем, что изменяется технология выплавки стали в конвертере, которая позволяет по окончании продувки получить более чистый металл по кислороду, чем в существующей технологии. Кроме этого, позволяет точно остановить продувку на требуемых по марке стали содержании углерода и температуре.
Продувка в конвертере останавливается при окисленности металла, равной 0,0050-0,0100%, и содержании углерода, равном: [С]пов=(0,60÷1,2)+[C]угар - [С]фер , %;
где: - [С]пов - содержание углерода (углерод повалки), на котором останавливается продувка металла в конвертере;
- [С]фер - углерод, вносимый ферросплавами, %;
- [C]угар - углерод в металле, окислившийся за время от окончания продувки до окончания выпуска, %, равный:
[C]угар=(0,01÷0,04)×(Δτ),%;
- Δτ промежуток времени, прошедший от окончания продувки в конвертере до окончания выпуска, мин.
Такая точная остановка продувки обеспечивается тем, что за 1-3 минуты до прекращения продувки отбирается проба металла, замеряется температура, углерод по ликвидусу и на основании этого делается прогноз остановки продувки на заданных содержании углерода и температуре из расчета расхода кислорода, равного 0,8-1,0 м3 на 1 тонну жидкого металла и на каждый 0,1% содержания углерода.
По окончании продувки замерить температуру, углерод по ликвидусу и на основании анализа ранее отобранной металлической пробы немедленно начать выпуск, чтобы металл попадал в ковш кипящим, при этом время от окончания продувки до начала выпуска металла из конвертера не должно превышать 3 минут. Это позволяет во время выпуска стали в ковш исключить процесс поглощения металлом кислорода, водорода, что в конечном итоге улучшает качество выпускаемого металла по неметаллическим включениям и флокенообразованию.
Для того чтобы обеспечить требуемое содержание элементов, поставленное в задаче, необходимо подать прокаленные ферросплавы с содержанием алюминия более 0,05% и титана более 0,010% на дно ковша перед выпуском металла из сталеплавильного агрегата (для того чтобы алюминий и титан максимально полно окислились), а с содержанием алюминия менее 0,05% и титана менее 0,010% - отдавать по ходу наполнения ковша металлом.
После выпуска с предварительным раскислением и легированием рельсовый металл содержит кислорода 0,0007-0,0015%, а титана и алюминия - менее 0,0010%.
После выпуска металл направляется на вакууматор (минуя установку «печь-ковш», на которой ухудшается чистота металла, вследствие поглощения металлом кислорода, водорода, азота, углерода и образования дополнительного количества неметаллических включений). Перед вакуумированием покровный шлак в ковше раскисляется кремнийсодержащими ферросплавами с содержанием алюминия не более 0,05%, фракцией 0-5 мм в количестве 0,3-0,8 кг/т.
Подавая более чистый металл на вакууматор, мы обеспечиваем снижение длительности вакуумирования, снижение расходных коэфицентов и получение более чистого металла. Длительность вакуумирования и интенсивность подачи нейтрального газа через днище ковша зависит от разности температуры, необходимой для постановки на МНЛЗ и температуры при поступлении на вакууматор, величина которой равна:
tнач=tппс+(1,5÷2,0)×τвак+(0,8÷1,0)×Δτ, °C;
где: - tнач - температура металла перед вакуумированием, °С;
- tппс - температура металла в начале разливки на МНЛЗ, °С;
- τвак - длительность вакуумирования, мин;
- Δτ - промежуток времени от окончания вакуумирования до начала разливки на МНЛЗ, °С;
- отсюда длительность вакуумирования равна τ в а к = t н а ч t п п с ( 0,8 ÷ 1,0 ) x Δ τ ( 1,5 ÷ 2,0 )
Figure 00000001
, мин.
Окончательное раскисление и модифицирование проводится по ходу вакуумирования (без снятия вакуума) путем присадки кускового Fe-Si-Ba с содержанием бария 15-35%, фракцией 3-30 мм, в количестве 0,05-0,2 кг/т.
Возможна присадка Fe-Si-Ba в виде порошковой проволоки с помощью трайб-аппарата в количестве 0,05-0,2 кг/т·комп.
Это весь комплекс технологических мер, приведенных в данном разделе, позволяет достичь поставленной задачи.
Пример конкретной реализации предлагаемого способа
За 1-2 минуты до окончания плавки в конвертере отбирают предварительную пробу, замеряют температуру и окисленность металла:
- либо без остановки продувки с использованием измерительной фурмы;
- либо с кратковременной остановкой продувки с отбором пробы металла и с использованием современных систем по замеру углерода по ликвидусу, температуры и окисленности металла (например, «мульти-лаб» или «карбон-лаб»).
Содержание углерода при этом на 0,1-0,4% выше, чем необходимо. После этого продувка продолжается из расчета расхода кислорода, равного 0,8-1,0 м3, на 1 тонну и на каждый 0,1% содержания углерода. Это позволяет остановить процесс на содержании углерода, не требующем в последующем присадки науглероживателя (увеличивает загрязненность рельсовой стали).
Продувку в конвертере заканчивают при содержании углерода, определяемого по формуле в п.1 формулы изобретения. Обычно для обеспечения износостойкости содержание углерода в рельсовой стали составляет 0,60-0,85%. Сейчас за рубежом производят рельсовую сталь с содержанием углерода более 1,0%. Однако, когда его содержание превышает 1,20%, значительно понижаются пластичность и ударная вязкость. Поэтому при расчете углерода повалки (см. формулу изобретения п.1) в скобках указаны пределы по содержанию углерода в рельсовой стали, равные (0,6÷1,2). При определении углерода окислившегося [С]угар показатель 0,01 обозначает количество углерода, окисляющегося за одну минуту в конце слива, а 0,04 - количество углерода окисляющегося за одну минуту сразу после остановки продувки (%⁄мин). Содержание кислорода перед выпуском составляет 0,0050-0,0100%.
После окончания продувки на основании замера температуры и содержания углерода по ликвидусу, а также экспресс-анализа предварительной пробы выдается команда на выпуск. Время от конца продувки до начала выпуска не должно превышать 1-2 минуты для того, чтобы сливался кипящий металл во избежание насыщения металла водородом и неметаллическими включениями. Для полной отсечки шлака перед выпуском в летку устанавливается 1 или 2 металлических конуса, препятствующих попаданию в ковш первичного конвертерного шлака, а в конечный шлак отсекается с помощью дротика. Перед выпуском ковш не менее 1-2-х минут наполняется инертным газом (аргон или азот) через пористые вставки в днище (весь выпуск идет продувка металла инертным газом через днище). Для обеспечения максимального угара алюминия и титана на дно ковша отдаются прокаленные ферросплавы с содержанием алюминия более 0,05%. В начале выпуска в них (это Fe-Si, Fe-V и др.) окислится практически весь имеющийся алюминий и титан. Al2O3 и TiO2 выносятся из металла вверх вместе с другими продуктами раскисления и ассимилируются покровным шлаком.
Прокаленные ферросплавы с содержанием алюминия менее 0,05% (Si-Mn, некоторые марки Fe-Si и др.) отдаются по ходу выпуска, обычно начиная с наполнения ковша металлом на ¼ от его объема. На выпуске и внепечной обработке в металл не присаживаются силикокальций, карбид кальция и др. материалы, содержащие металлический кальций.
Покровный шлак наводится присадкой в ковш 500-800 кг извести и 100-200 кг плавикового шпата. После выпуска ковш отправляется на вакууматор. Перед вакуумированием покровный шлак раскисляется отсевом кремнийсодержащих прокаленных ферросплавов с содержанием алюминия менее 0,05%, фракцией 0-5 мм, в количестве 0,3-0,8 кг/т. Для эффективного рафинирования рельсового металла от неметаллических включений при вакуумировании можно снизить основность (CaO/SiO2) покровного шлака с 3-12 до 1,0-1,5 присадкой прокаленного кварцита (или другой аналогичный материал) с расходом 2-5 кг/т. Длительность вакуумирования и интенсивность подачи нейтрального газа через днище ковша зависит от разности температуры, необходимой для постановки на МНЛЗ, и температуры металла при поступлении на вакууматор (формулы расчета - в п.6 формулы изобретения). Длительность вакуумирования составляет 10-40 мин (при разряжении 1,0 мбар не менее 5 мин). Для исключения попадания в рельсовую сталь значительного количества кальция окончательное раскисление и модифицирование проводится во время вакуумирования кусковым Fe-Si-Ba с содержанием бария 15-35%, фракцией 3-30 мм в количестве 0,05-0,3 кг/т. Возможна присадка Fe-Si-Ba в виде порошковой проволоки. После этого металл отправляется на МНЛЗ.
В таблице 2 приведено сравнение основных характеристик, влияющих на эксплуатационную стойкость рельсов аналогов, прототипа и предлагаемого способа выплавки и внепечной обработки рельсовой стали.
Figure 00000002
Из таблицы 2 видно, что в предлагаемом способе рельсовый металл более чистый по неметаллическим включениям. Это обеспечивает достижение высокой эксплуатационной стойкости рельсов не менее 1150-1500 млн т·км брутто. В силу вышеизложенного заявляемое техническое решение соответствует критерию "новизна".
Источники информации
1. Пат.РФ N 2044060, М., кл. С21С 5/04, С21С 7/06, 1995.
2.Пат. РФ N 2055094, М.,кл. С21С 5/04, С21С 7/06, 1991.
3. Пат. РФ N 2139943, М., кл. С21С 7/10, 1998.
4. Могильный В.В., Мухатдинов Н.Х., Козырев Н.А. Результаты производства и качество рельсов ОАО «НКМК» за 2007-2009 гг. Сборник докладов: Улучшение качества и условий эксплуатации рельсов и рельсовых скраплений (рельсовая комиссия). Екатеринбург, 2010. стр.31-40.
5. Пат. РФ N 2233339, М., кл. С21С 5/52, С21С 7/00, 2003.
6. Пат. РФ N 2233339, М., кл. С21С 5/52, С21С 7/00, 2003.

Claims (3)

1. Способ производства рельсовой стали в кислородном конвертере, включающий выплавку расплава в конвертере, продувку расплава кислородом, выпуск расплава в ковш, продувку его инертным газом через днище ковша, раскисление, легирование расплава, наводку покровного шлака в ковше, обработку расплава в вакууматоре, отличающийся тем, что за 1-3 минуты до окончания продувки расплава кислородом замеряют температуру расплава, определяют содержание углерода по ликвидусу и на основании полученных данных определяют содержание углерода в расплаве [C], соответствующее окончанию продувки расплава кислородом, по зависимости:
[С]=(0,6÷1,2)+[С]угар-[С]фер %,
где
[0,6-1,2] -содержание углерода в рельсовой стали, %,
[С]фер - углерод, вносимый ферросплавами, %,
[С]угар - углерод в металле, окислившийся за время от окончания продувки до окончания выпуска расплава, %, равный
[С]угар=(0,01÷0,04)×(Δτ), %,
где
0,01 - количество углерода, окисляющегося за одну минуту в конце выпуска расплава, %/мин,
0,04 - количество углерода, окисляющегося за одну минуту после окончания продувки, %/мин,
Δτ - промежуток времени от окончания продувки в конвертере до окончания выпуска расплава, мин,
после окончания продувки расплава кислородом на основании замера температуры и содержания углерода по ликвидусу на дно ковша подают прокаленные ферросплавы с содержанием алюминия более 0,05% и титана более 0,1% и через 1-1,5 минуты после окончания продувки осуществляют выпуск расплава из конвертера в ковш, по ходу выпуска расплава подают прокаленные ферросплавы с содержанием алюминия менее 0,05% и титана менее 0,1%, в конце выпуска расплава в ковше наводят основной покровный шлак, перед обработкой расплава в вакууматоре покровный шлак раскисляют в ковше кремнийсодержащими ферросплавами фракцией 0-5 мм в количестве 0,3-0,8 кг/т, при этом при обработке расплава в вакууматоре для окончательного раскисления и модифицирования расплава присаживают Fe-Si-Ba с содержанием бария 15-35%.
2. Способ по п.1, отличающийся тем, что Fe-Si-Ba присаживают через течку в крышке вакууматора в виде кускового материала в количестве 0,05-0,2 кг/т, фракцией 3-30 мм.
3. Способ по п.1, отличающийся тем, что Fe-Si-Ba присаживают трайбаппаратом в виде порошковой проволоки в количестве 0,05-0,2 кг/т.
RU2012143265/02A 2012-10-10 2012-10-10 Способ выплавки и внепечной обработки высококачественной рельсовой стали RU2525969C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012143265/02A RU2525969C2 (ru) 2012-10-10 2012-10-10 Способ выплавки и внепечной обработки высококачественной рельсовой стали

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012143265/02A RU2525969C2 (ru) 2012-10-10 2012-10-10 Способ выплавки и внепечной обработки высококачественной рельсовой стали

Publications (2)

Publication Number Publication Date
RU2012143265A RU2012143265A (ru) 2014-04-20
RU2525969C2 true RU2525969C2 (ru) 2014-08-20

Family

ID=50480445

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012143265/02A RU2525969C2 (ru) 2012-10-10 2012-10-10 Способ выплавки и внепечной обработки высококачественной рельсовой стали

Country Status (1)

Country Link
RU (1) RU2525969C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2740949C1 (ru) * 2019-07-22 2021-01-21 Сергей Анатольевич Ботников Способ получения суперчистой стали, раскисленной алюминием, для производства высококачественной металлопродукции

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS621811A (ja) * 1985-06-26 1987-01-07 Nippon Steel Corp 耐損傷性にすぐれた軌条の製造法
SU1675340A1 (ru) * 1988-04-11 1991-09-07 Украинский научно-исследовательский институт металлов Способ выплавки рельсовой стали в кислородном конвертере
RU2105072C1 (ru) * 1997-04-25 1998-02-20 Петренев Владимир Вениаминович Способ производства природно-легированной ванадием стали при переделе ванадиевого чугуна в кислородных конвертерах монопроцессом с расходом металлолома до 30%
RU2233339C1 (ru) * 2003-04-04 2004-07-27 Открытое акционерное общество "Нижнетагильский металлургический комбинат" Способ производства стали
RU2415180C1 (ru) * 2009-11-25 2011-03-27 Открытое акционерное общество "Новокузнецкий металлургический комбинат" Способ производства рельсовой стали
CN102443670A (zh) * 2011-12-07 2012-05-09 鞍钢股份有限公司 一种重轨钢硫含量控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS621811A (ja) * 1985-06-26 1987-01-07 Nippon Steel Corp 耐損傷性にすぐれた軌条の製造法
SU1675340A1 (ru) * 1988-04-11 1991-09-07 Украинский научно-исследовательский институт металлов Способ выплавки рельсовой стали в кислородном конвертере
RU2105072C1 (ru) * 1997-04-25 1998-02-20 Петренев Владимир Вениаминович Способ производства природно-легированной ванадием стали при переделе ванадиевого чугуна в кислородных конвертерах монопроцессом с расходом металлолома до 30%
RU2233339C1 (ru) * 2003-04-04 2004-07-27 Открытое акционерное общество "Нижнетагильский металлургический комбинат" Способ производства стали
RU2415180C1 (ru) * 2009-11-25 2011-03-27 Открытое акционерное общество "Новокузнецкий металлургический комбинат" Способ производства рельсовой стали
CN102443670A (zh) * 2011-12-07 2012-05-09 鞍钢股份有限公司 一种重轨钢硫含量控制方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2740949C1 (ru) * 2019-07-22 2021-01-21 Сергей Анатольевич Ботников Способ получения суперчистой стали, раскисленной алюминием, для производства высококачественной металлопродукции

Also Published As

Publication number Publication date
RU2012143265A (ru) 2014-04-20

Similar Documents

Publication Publication Date Title
US20110209581A1 (en) Method of producing steel for steel pipe excellent in sour-resistance performance
JP2019035124A (ja) ステンレス鋼板およびその精錬方法
CN104498661A (zh) 一种高碳钢氧含量的控制方法
CN103468868B (zh) 一种提高低磷无间隙原子钢洁净度的方法
RU2525969C2 (ru) Способ выплавки и внепечной обработки высококачественной рельсовой стали
KR101361867B1 (ko) 고청정도 강의 용제 방법
JP6526307B1 (ja) 内部品質および熱間加工性に優れるNi−Cr−Nb−Fe系合金とその製造方法
JP2011094209A (ja) 低炭素フェロクロムの製造方法
JP2009191290A (ja) 極低炭素鋼の溶製方法
JP2000119732A (ja) 高清浄極低炭素鋼の溶製方法
RU2465337C1 (ru) Способ выплавки стали в кислородном конвертере
RU2732840C1 (ru) Способ выплавки стали в кислородном конвертере
JPH07268440A (ja) 溶鋼の脱酸方法
JP3587887B2 (ja) ステンレス鋼溶製時の吸窒防止法
JP4183524B2 (ja) 高清浄度鋼の製造方法
SU1068526A1 (ru) Сплав дл легировани и раскислени стали
JP4667841B2 (ja) クロム含有鋼の溶製方法
RU2608010C1 (ru) Способ выплавки стали в электросталеплавильной печи
RU2118376C1 (ru) Способ производства ванадиевого шлака и природнолегированной ванадием стали
RU2487171C1 (ru) Способ производства низколегированной трубной стали
JP4806869B2 (ja) 高清浄鋼の製造方法
JP2002030330A (ja) 真空精錬炉における溶鋼の加熱方法
JPH11293329A (ja) 清浄性に優れた極低炭素Siキルド鋼の製造方法
RU2243269C1 (ru) Способ выплавки низкоуглеродистой титансодержащей стали
RU2124569C1 (ru) Способ получения углеродистой стали

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20171011