RU2523070C2 - Течеискатель для работы методом щупа - Google Patents

Течеискатель для работы методом щупа Download PDF

Info

Publication number
RU2523070C2
RU2523070C2 RU2011138067/28A RU2011138067A RU2523070C2 RU 2523070 C2 RU2523070 C2 RU 2523070C2 RU 2011138067/28 A RU2011138067/28 A RU 2011138067/28A RU 2011138067 A RU2011138067 A RU 2011138067A RU 2523070 C2 RU2523070 C2 RU 2523070C2
Authority
RU
Russia
Prior art keywords
diaphragm
pressure
throttle
test gas
probe
Prior art date
Application number
RU2011138067/28A
Other languages
English (en)
Other versions
RU2011138067A (ru
Inventor
ВЕТЦИГ Даниель
Original Assignee
Инфикон Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Инфикон Гмбх filed Critical Инфикон Гмбх
Publication of RU2011138067A publication Critical patent/RU2011138067A/ru
Application granted granted Critical
Publication of RU2523070C2 publication Critical patent/RU2523070C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
    • G01M3/202Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material using mass spectrometer detection systems
    • G01M3/205Accessories or associated equipment; Pump constructions

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Examining Or Testing Airtightness (AREA)
  • External Artificial Organs (AREA)

Abstract

Изобретение относится к устройствам-течеискателям. Сущность: устройство содержит щуп (10), соединенный посредством шланга (11) через дроссель (D2) с вакуумным насосом (16), и датчик тестового газа (15). Выше по потоку от дросселя (D2) выполнена точка распределения (24). От точки распределения (24) к датчику (15) тестового газа ведет отвод (25). При этом дроссель (D2) выполнен в виде диафрагмы с круглым отверстием. Проводимость диафрагмы подобрана таким образом, что падение давления на диафрагме больше
Figure 00000001
, где
Figure 00000002
- промежуточное давление в точке распределения (24). Технический результат: создание течеискателя для работы методом щупа, на чувствительность обнаружения которого не оказывают влияние колебания скорости откачки вакуумного насоса. 4 з.п.ф-лы, 5 ил.

Description

Изобретение относится к течеискателю для работы методом щупа со шлангом щупа, соединенным со шлангом щупа через дроссель вакуумным насосом, и датчиком тестового газа, при этом выше по потоку от дросселя выполнена точка распределения, от которой к датчику тестового газа ведет отвод
Течеискатель для работы методом щупа такого типа описан в DE 102006047856 A1 (INFICON GmbH). Он имеет шланг щупа, который на конце оснащен щупом. Прибор имеет на впуске дроссель для того, чтобы при снятии шланга щупа предотвращалась установка в точке распределения полного атмосферного давления. От точки распределения к входу вакуумного насоса отходит трубопровод, который содержит дроссель. Дроссель задает скорость отсасывания для нормального режима работы. Параллельно ему подсоединена обводная линия, имеющая вентиль. Датчик тестового газа представляет собой датчик парциального давления, описанный в DE 10031882 A1. Этот датчик парциального давления имеет камеру, закрытую селективно проницаемой для тестового газа (гелия) мембраной. Внутри камеры находится датчик давления Пеннинга или другой датчик давления, который вырабатывает электрический сигнал, показывающий величину давления. Из этого давления выводится сигнал, соответствующий обнаруженному количеству тестового газа.
Известны также течеискатели для работы методом щупа, которые в качестве датчика тестового газа содержат масс-спектрометр. Вследствие этого требуется дорогостоящий высоковакуумный насос. У обоих типов датчиков тестового газа чувствительность обнаружения зависит от промежуточного давления (суммарное давление) в зоне впуска датчика тестового газа. Поэтому предел обнаружения течеискателя для работы методом щупа ограничивается стабильностью суммарного давления в точке распределения или входе устройства для обнаружения.
У гелиевого течеискателя для работы методом щупа изменение суммарного давления сразу заметны, так как изменения измеренного сигнала вызываются уже базовым сигналом системы, обусловленным содержащимся в воздухе гелием. В случае течеискателей хладагентов, у которых в качестве тестового газа используется хладагент, влияние стабильности суммарного давления становится заметным лишь при измерении величины утечки, так как хладагенты в воздухе обычно отсутствуют.
Суммарное давление (промежуточное давление) в точке распределения задается потоком через питающий трубопровод и скоростью откачки вакуумного насоса. Суммарное давление, которое устанавливается при работе определенного вакуумного насоса, не может быть заранее точно задано и не является постоянным. Оно может скачкообразно меняться при работе вакуумного насоса. Прежде всего подобные изменения могут происходить при использовании в качестве вакуумного насоса мембранного насоса. Изменения суммарного давления оказывают влияние на чувствительность обнаружения течеискателя для работы методом щупа. При относительно высоком суммарном давлении парциальное давление тестового газа также высокое. Соответственно этому получается высокая чувствительность обнаружения. При низком суммарном давлении чувствительность обнаружения становится соответственно ниже.
В основу изобретения положена задача создания течеискателя для работы методом щупа, на чувствительность обнаружения которого не оказывают влияние колебания скорости откачки вакуумного насоса.
Течеискатель для работы методом щупа согласно изобретению определен посредством п.1 формулы изобретения. Он отличается тем, что предусмотренный между шлангом щупа и вакуумным насосом после точки распределения дроссель представляет собой диафрагму с круглым отверстием, пропускная способность которой подобрана таким образом, что падение давления на диафрагме с круглым отверстием больше чем Р2/2, при этом Р2 является промежуточным давлением в точке распределения.
Согласно изобретению поток газа по пути от шланга щупа к вакуумному насосу блокируется диафрагмой с круглым отверстием. При заблокированном течении поток не зависит от низкого давления со стороны выхода диафрагмы с круглым отверстием. Это означает, что при изменении давления на входе в вакуумный насос поток через диафрагму с круглым отверстием не будет изменяться. Поэтому и давление со стороны входа диафрагмы изменяться не будет. Это означает, что возникающие изменения давления перед вакуумным насосом не оказывают никакого действия на чувствительность, и стабильность сигнала, и чувствительность системы не зависят от давления перед вакуумным насосом.
Согласно изобретению дросселем является диафрагма с круглым отверстием, при этом длина L диафрагмы с круглым отверстием меньше диаметра D отверстия. В отличие от дросселя, имеющего капиллярный канал, диафрагме с круглым отверстием присущ эффект, который заключается в том, что поток не зависит от давления. Подобный эффект у других типов дросселей не наблюдается.
Данные измерений, согласно которым падение давления на диафрагме с круглым отверстием больше чем Р2/2, другими словами означает, что проводимость LB меньше скорости S откачки вакуумного насоса. Путем использования диафрагмы с круглым отверстием с высоким сопротивлением протеканию (=низкой проводимостью) на кривой, отображающей зависимость потока от давления насоса, появляется горизонтальный участок для низких давлений насоса. В области этого горизонтального участка работает течеискатель для работы методом щупа согласно изобретению.
Датчиком тестового газа может быть датчик парциального давления или масс-спектрометр. В случае датчика парциального давления, например в Wise-Technology фирмы Inficon GmbH, парциальное давление тестового газа может определяться без создания условий высокого вакуума. Альтернативно этому, в качестве датчика тестового газа может быть использован масс-спектрометр, у которого небольшая часть закачиваемого вакуумным насосом газа ответвляется и подводится к анализатору. И в этом случае благодаря диафрагме с круглым отверстием суммарное давление на входе в анализатор поддерживается постоянным.
Ниже со ссылками на чертежи более подробно описывается пример осуществления изобретения, где:
Фиг.1 - схематическое изображение течеискателя для работы методом щупа с датчиком парциального давления согласно изобретению,
Фиг.2 - схематическое изображение течеискателя для работы методом щупа с масс-спектрометром согласно изобретению,
Фиг.3 - схематическое изображение течеискателя для работы методом щупа с указанием параметров давления,
Фиг.4 - продольный разрез диафрагмы с круглым отверстием,
Фиг.5 - графическое изображение уменьшения потока с увеличением давления насоса на входе в вакуумный насос при промежуточном давлении Р2, равном 300 мбар.
К щупу 10 присоединен шланг 11 щупа, который выполнен в виде капиллярной трубки. На входе 12 щупа атмосферное давление составляет около 1000 мбар. Поток Q через шланг щупа составляет, например, 100 см3/мин в стандартных условиях. Шланг щупа ведет к датчику 15 тестового газа, который в данном случае выполнен в виде датчика парциального давления согласно DE 10031882 A1. Давление р на входе в датчик парциального давления составляет примерно 250 мбар. Между датчиком 15 тестового газа и вакуумным насосом 16 проходит подающий трубопровод 17, в котором находится дроссель D2. Сторона входа дросселя D2 связана с манометром 18. Вакуумный насос 30 представляет собой, например, двухступенчатый мембранный насос.
Форма дросселя D2 показана на Фиг. 4. Дроссель состоит из плоской перегородки в форме диафрагмы 20 с круглым отверстием, которая расположена поперек всасывающего трубопровода 17. Диафрагма 20 с круглым отверстием имеет отверстие 21, которое, например, имеет круглую форму. Длина диафрагмы с круглым отверстием в направлении потока, то есть толщина перегородки, меньше, чем диаметр D отверстия 21.
На Фиг. 2 показан течеискатель для работы методом щупа с масс-спектрометром. Щуп 10 соединен с корпусом 13 течеискателя для работы методом щупа, при этом предусмотрено штекерное соединение 14. В корпусе 13 находятся дроссель D1 в форме входной диафрагмы, который предотвращает при отсоединении штекерного соединения 14 повышение давления во всасывающей трубопроводе до атмосферного.
Впускной трубопровод ведет к точке 24 распределения. От нее линия 25 отвода, которая содержит дроссель, ведет к масс-спектрометру 26. Масс-спектрометру для работы требуется высокий вакуум. Этот вакуум создается турбомолекулярным насосом 27. У насоса имеется промежуточный ввод, который посредством трубопровода 28 с дросселем связан с точкой 24 распределения. Выпускной патрубок турбомолекулярного насоса 27 связан с форвакуумным насосом 30, который в данном случае имеет двухступенчатую конструкцию. Выпускной патрубок 31 ведет в атмосферу. Промежуточный выпускной патрубок 32 между двумя ступенями 30а и 30b форвакуумного насоса 30 связан с точкой 24 распределения в подающем трубопроводе 33. В этом примере выполнения масс-спектрометр 26 и турбомолекулярный насос 27 образуют датчик 15 тестового газа.
У точки 24 распределения давление равно промежуточному давлению Р2. У промежуточного ввода 32 вакуумного насоса 30 давление равно давлению Р3 насоса.
На Фиг. 3 в упрощенном виде показан прибор согласно Фиг. 1 и 2. За шлангом 11 щупа следует дроссель D1. К нему присоединен подающий трубопровод 33. В точке 24 распределения подающего трубопровода 33 отходит отвод 25 к датчику 15 тестового газа с прямым и обратным трубопроводами. Давление в точке 24 распределения является промежуточным давлением Р2 или суммарным давлением.
От точки 24 распределения подающий трубопровод 33 проходит через дроссель D2, а оттуда - к вакуумному насосу 16 или 30.
Цель изобретения заключается в том, чтобы поддерживать промежуточное давление Р2 в точке 24 распределения как можно более постоянным независимо от возможных колебаний давления Р3 насоса или скорости откачки вакуумного насоса. Это достигнуто посредством дросселя D2, который выполнен в виде диафрагмы 20 с круглым отверстием.
На Фиг. 5 показан поток Q, который образуется под воздействием диафрагмы с круглым отверстием в подающем трубопроводе, в зависимости от давления Р3 насоса. Видно, что в диапазоне блокировки В, который распространяется от давления РЗ насоса в 50 мбар до 150 мбар, поток Q и, тем самым, давление Р2 остается постоянным независимо от изменения давления Р3 насоса. При более высоком давлении насоса поток Q уменьшается согласно показанной кривой. Благодаря влиянию диафрагмы с круглым отверстием, падение давления на которой превышает P2/2, достигается работа исключительно в диапазоне блокировки В.

Claims (5)

1. Течеискатель для работы методом щупа со шлангом щупа, соединенным через дроссель с вакуумным насосом, и датчиком тестового газа, при этом выше по потоку от дросселя выполнена точка распределения, от которой к датчику тестового газа ведет отвод, отличающийся тем, что дроссель является диафрагмой с круглым отверстием, проводимость которой подобрана таким образом, что падение давления на диафрагме с круглым отверстием больше чем Р2/2, при этом Р2 является промежуточным давлением в точке распределения.
2. Течеискатель для работы методом щупа по п.1, отличающийся тем, что проводимость LB диафрагмы с круглым отверстием меньше половины скорости (S) откачки вакуумного насоса.
3. Течеискатель для работы методом щупа по п.1, отличающийся тем, что длина (L) диафрагмы с круглым отверстием меньше диаметра (D) отверстия.
4. Течеискатель для работы методом щупа по п.1, отличающийся тем, что датчик тестового газа является датчиком парциального давления.
5. Течеискатель для работы методом щупа по п.1, отличающийся тем, что датчик тестового газа является масс-спектрометром.
RU2011138067/28A 2009-02-21 2010-02-05 Течеискатель для работы методом щупа RU2523070C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102009010064.4 2009-02-21
DE102009010064A DE102009010064A1 (de) 2009-02-21 2009-02-21 Schnüffellecksucher
PCT/EP2010/051427 WO2010094582A1 (de) 2009-02-21 2010-02-05 Schnüffellecksucher

Publications (2)

Publication Number Publication Date
RU2011138067A RU2011138067A (ru) 2013-03-27
RU2523070C2 true RU2523070C2 (ru) 2014-07-20

Family

ID=42028232

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011138067/28A RU2523070C2 (ru) 2009-02-21 2010-02-05 Течеискатель для работы методом щупа

Country Status (9)

Country Link
US (1) US8915122B2 (ru)
EP (1) EP2399112B1 (ru)
JP (1) JP5405599B2 (ru)
CN (1) CN102326063B (ru)
BR (1) BRPI1008395B1 (ru)
DE (1) DE102009010064A1 (ru)
ES (1) ES2427926T3 (ru)
RU (1) RU2523070C2 (ru)
WO (1) WO2010094582A1 (ru)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010048982B4 (de) * 2010-09-03 2022-06-09 Inficon Gmbh Lecksuchgerät
TWI490355B (zh) * 2011-07-21 2015-07-01 Ind Tech Res Inst 蒸鍍方法與蒸鍍設備
US9038441B2 (en) * 2012-01-20 2015-05-26 TLI Enterprises, Inc. High speed helium leak detection system and method
RU2515218C1 (ru) * 2012-10-02 2014-05-10 Открытое Акционерное Общество "Научно-Исследовательский Институт "Гермес" Способ испытания изделия на герметичность
DE102013218506A1 (de) 2013-09-16 2015-03-19 Inficon Gmbh Schnüffellecksucher mit mehrstufiger Membranpumpe
JP6345428B2 (ja) * 2014-01-31 2018-06-20 パイオニア株式会社 車両用合わせガラス及びその製造方法
DE102015219250A1 (de) * 2015-10-06 2017-04-06 Inficon Gmbh Erfassung von Prüfgasschwankungen bei der Schnüffellecksuche
JP6749857B2 (ja) * 2017-03-24 2020-09-02 株式会社日立ハイテク 自動分析装置
FR3070489B1 (fr) * 2017-08-29 2020-10-23 Pfeiffer Vacuum Detecteur de fuites et procede de detection de fuites pour le controle de l'etancheite d'objets a tester
EP3460440A1 (en) * 2017-09-20 2019-03-27 Grundfos Holding A/S Pump seal leakage detection system
DE102017217374A1 (de) * 2017-09-29 2019-04-04 Inficon Gmbh Vorrichtung und Verfahren zur Unterscheidung eines aus einem Leck austretenden Prüfgases von Störgas
CN109404322A (zh) * 2018-12-06 2019-03-01 北京东方计量测试研究所 一种宽量程高精度分子泵抽速测试系统及方法
FR3101146B1 (fr) * 2019-09-20 2021-09-17 Pfeiffer Vacuum Module de détection de fuites et procédé de contrôle de l'étanchéité d'un objet à tester par gaz traceur

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1186982A1 (ru) * 1984-05-25 1985-10-23 Горьковский Ордена Трудового Красного Знамени Политехнический Институт Им.А.А.Жданова Устройство дл поиска течей
DE4140366A1 (de) * 1991-12-07 1993-06-09 Leybold Ag, 6450 Hanau, De Lecksucher fuer vakuumanlagen sowie verfahren zur durchfuehrung der lecksuche an vakuumanlagen
DE102006047856A1 (de) * 2006-10-10 2008-04-17 Inficon Gmbh Schnüffellecksucher
DE102006056215A1 (de) * 2006-11-29 2008-06-05 Inficon Gmbh Schnüffellecksuchgerät

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1005363A (en) * 1972-06-12 1977-02-15 Robin E. Schaller Vortex forming apparatus and method
GB2190204B (en) 1986-05-09 1990-10-17 Boc Group Plc Improvement in leak detectors
DE3865012D1 (de) * 1988-06-01 1991-10-24 Leybold Ag Pumpsystem fuer ein lecksuchgeraet.
DE4326264A1 (de) * 1993-08-05 1995-02-09 Leybold Ag Testgasdetektor mit Vakuumpumpe sowie Verfahren zum Betrieb eines Testgasdetektors dieser Art
JPH0741441U (ja) * 1993-12-28 1995-07-21 株式会社島津製作所 リークデテクタ
DE4415852A1 (de) * 1994-05-05 1995-11-09 Gerhart Schroff Verfahren und Anordnung zur Dichtheitsprüfung
DE4445829A1 (de) * 1994-12-22 1996-06-27 Leybold Ag Gegenstrom-Schnüffellecksucher
DE19522466A1 (de) * 1995-06-21 1997-01-02 Leybold Ag Lecksuchgerät mit Vorvakuumpumpe
JPH11153507A (ja) * 1997-11-20 1999-06-08 Shimadzu Corp リークデテクタ
DE10031882A1 (de) 2000-06-30 2002-01-10 Leybold Vakuum Gmbh Sensor für Helium oder Wasserstoff
DE102004045803A1 (de) * 2004-09-22 2006-04-06 Inficon Gmbh Leckprüfverfahren und Leckprüfvorrichtung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1186982A1 (ru) * 1984-05-25 1985-10-23 Горьковский Ордена Трудового Красного Знамени Политехнический Институт Им.А.А.Жданова Устройство дл поиска течей
DE4140366A1 (de) * 1991-12-07 1993-06-09 Leybold Ag, 6450 Hanau, De Lecksucher fuer vakuumanlagen sowie verfahren zur durchfuehrung der lecksuche an vakuumanlagen
DE102006047856A1 (de) * 2006-10-10 2008-04-17 Inficon Gmbh Schnüffellecksucher
DE102006056215A1 (de) * 2006-11-29 2008-06-05 Inficon Gmbh Schnüffellecksuchgerät

Also Published As

Publication number Publication date
BRPI1008395B1 (pt) 2019-11-12
US20120118048A1 (en) 2012-05-17
JP2012518780A (ja) 2012-08-16
CN102326063B (zh) 2014-05-07
WO2010094582A1 (de) 2010-08-26
CN102326063A (zh) 2012-01-18
ES2427926T3 (es) 2013-11-04
DE102009010064A1 (de) 2010-08-26
EP2399112B1 (de) 2013-06-26
JP5405599B2 (ja) 2014-02-05
US8915122B2 (en) 2014-12-23
BRPI1008395A2 (pt) 2016-03-15
EP2399112A1 (de) 2011-12-28
RU2011138067A (ru) 2013-03-27

Similar Documents

Publication Publication Date Title
RU2523070C2 (ru) Течеискатель для работы методом щупа
JP5990172B2 (ja) 漏れ検出器
US4419882A (en) Leakage detection method using helium
US7779675B2 (en) Leak indicator comprising a sniffer probe
US8171773B2 (en) Sniffing leak detector
US8752412B2 (en) Sniffing leak detector
CN108369151B (zh) 测试气体入口处的压力测量
CN1081325C (zh) 嗅敏检漏仪
US20110290006A1 (en) Leak test probe for use in industrial facilities
CN101495848B (zh) 检漏装置
US20070240493A1 (en) Sprayer-sniffer probe
US5193380A (en) High flow-rate leak detector having three molecular filters
US20170176073A1 (en) Connection device for leak detector
CN110895285A (zh) 用于测量管道内流体流速的测量装置及测量方法
RU2002111643A (ru) Способ испытания на герметичность и вакуумная система течеискателя, реализующая его
RU2778833C2 (ru) Устройство и способ различения поверочного газа, выходящего из течи, от возмущающего газа
EP3795972B1 (fr) Module de détection de fuites et procédé de contrôle de l'étanchéité d'un objet à tester par gaz traceur
TW202409533A (zh) 洩漏偵測裝置及其用於在測試樣品中偵測氣體洩漏的方法
CN117501083A (zh) 泄漏检测器
KR102684152B1 (ko) 시험 가스 입구에서의 압력 측정
CN114623983A (zh) 多元示漏气体检漏系统及其检测方法
TWM594130U (zh) 管中管測漏裝置
Große Bley Leak Detection Methods