RU2519054C1 - Мощный транзистор свч с многослойной эпитаксиальной структурой - Google Patents

Мощный транзистор свч с многослойной эпитаксиальной структурой Download PDF

Info

Publication number
RU2519054C1
RU2519054C1 RU2012156263/28A RU2012156263A RU2519054C1 RU 2519054 C1 RU2519054 C1 RU 2519054C1 RU 2012156263/28 A RU2012156263/28 A RU 2012156263/28A RU 2012156263 A RU2012156263 A RU 2012156263A RU 2519054 C1 RU2519054 C1 RU 2519054C1
Authority
RU
Russia
Prior art keywords
layer
epitaxial structure
heat
polycrystalline diamond
gate
Prior art date
Application number
RU2012156263/28A
Other languages
English (en)
Inventor
Грачик Хачатурович Аветисян
Алексей Сергеевич Адонин
Алексей Анатольевич Дарофеев
Юрий Владимирович Колковский
Виктор Алексеевич Курмачев
Вадим Минхатович Миннебаев
Original Assignee
Федеральное Государственное Унитарное Предприятие "Научно-Производственное Предприятие "Пульсар"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное Государственное Унитарное Предприятие "Научно-Производственное Предприятие "Пульсар" filed Critical Федеральное Государственное Унитарное Предприятие "Научно-Производственное Предприятие "Пульсар"
Priority to RU2012156263/28A priority Critical patent/RU2519054C1/ru
Application granted granted Critical
Publication of RU2519054C1 publication Critical patent/RU2519054C1/ru

Links

Images

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

Изобретение относится к электронной технике и может быть использовано в качестве активных элементов СВЧ-устройств различного назначения. Мощный транзистор СВЧ с многослойной эпитаксиальной структурой содержит базовую подложку из кремния, теплопроводящий поликристаллический слой алмаза, эпитаксиальную структуру на основе широкозонных III-нитридов, буферный слой, исток, затвор, сток и омические контакты. Слой теплопроводящего поликристаллического алмаза имеет толщину 0,1-0,15 мм, а на поверхности эпитаксиальной структуры между истоком, затвором и стоком последовательно размещены дополнительный слой теплопроводящего поликристаллического алмаза, барьерный слой из двуокиси гафния и дополнительный барьерный слой из оксида алюминия. При этом барьерные слои из двуокиси гафния и оксида алюминия имеют суммарную толщину 1,0-4,0 нм, кроме того, они размещены под затвором, непосредственно на эпитаксиальной структуре в виде слоя из твердого раствора AlGaN n-типа проводимости. Технический результат заключается в увеличении теплопереноса от активной области транзистора и минимизации утечек тока. 2 з.п. ф-лы, 4 ил.

Description

Изобретение относится к электронной технике и может быть использовано в качестве активных элементов СВЧ-устройств различного назначения.
Из Уровня техники известен мощный транзистор СВЧ, который содержит полупроводниковую подложку со структурой слоев, которая выполнена в виде прямой последовательности полуизолирующего слоя, n + типа проводимости слоя, стоп-слоя, буферного слоя, активного слоя, с толщиной полуизолирующего и буферного слоев не менее 30,0 и 1,0-20,0 мкм соответственно, часть металлизированного отверстия для заземления общего электрода истока с лицевой стороны полупроводниковой подложки на глубине, равной сумме толщин активного, буферного и стоп-слоев, выполнена с металлизированным дном, а другая часть металлизированного отверстия с обратной стороны полупроводниковой подложки на глубину, равную сумме толщин полуизолирующего и n + типа проводимости слоев, выполнена глухой в виде сплошного слоя из высоко тепло- и электропроводящего материала, при этом асимметрично в сторону общего электрода стока относительно вертикальной оси металлизированного отверстия, с размером поперечного сечения, равным размеру поперечного сечения топологии элементов активной области полевого транзистора, упомянутые части металлизированного отверстия перекрываются полностью либо частично в горизонтальной плоскости места их соприкосновения, а интегральным теплоотводом одновременно является сплошной слой из высоко-, тепло- и электропроводящего материала другой части металлизированного отверстия (см. патент РФ №2463685, опубл. 10.10.2012).
Недостатками известного устройства является то, что выходная мощность данного мощного транзистора СВЧ является недостаточно высокой.
Кроме того, из уровня техники известно полупроводниковое устройство, которое содержит кремниевую подложку, теплопроводящий алмазный слой, толщиной 0,5-30 мкм, монокристаллический кремниевый слой и эпитаксиальный GaN слой, либо кремниевую подложку, теплопроводящий алмазный слой, поликремниевый слой, монокристаллический кремниевый слой и эпитаксиальный GaN слой, а буферный слой выбран из группы, состоящей из HfN и AlN (см. патентный документ США №2006113545, опубл. 01.06.2006).
Недостатками известного устройства является то, что выходная мощность данного мощного транзистора СВЧ является недостаточно высокой из-за того, что тонкий слой алмаза ограничивает отвод тепла от полупроводниковых структур.
Задачей настоящего изобретения является устранение вышеуказанных недостатков и создание мощного транзистора СВЧ с многослойной эпитаксиальной структурой, выполненного с возможностью работы с напряжением в диапазоне от 30 В до 1,2 кВ и с токами в диапазоне от 100 мА до 50 А.
Технический результат заключается в увеличении теплопереноса от активной области транзистора и минимизации утечек тока.
Технический результат обеспечивается тем, что мощный транзистор СВЧ с многослойной эпитаксиальной структурой содержит базовую подложку из кремния, теплопроводящий поликристаллический слой алмаза, эпитаксиальную структуру на основе широкозонных III-нитридов, буферный слой, исток, затвор, сток и омические контакты. Слой теплопроводящего поликристаллического алмаза имеет толщину 0,1-0,15 мм, а на поверхности эпитаксиальной структуры между истоком, затвором и стоком последовательно размещены дополнительный слой
теплопроводящего поликристаллического алмаза, барьерный слой из двуокиси гафния и дополнительный барьерный слой из оксида алюминия. При этом барьерные слои из двуокиси гафния и оксида алюминия имеют суммарную толщину 1,0-4,0 нм, кроме того, они размещены под затвором, непосредственно на эпитаксиальной структуре в виде слоя из твердого раствора AlGaN n-типа проводимости.
В соответствии с частными случаями осуществления буферный слой выполнен из A1N или HfN.
Сущность настоящего изобретения поясняется следующими иллюстрациями:
фиг.1 - отображает настоящее устройство;
фиг.2 - приведены экспериментально измеренные зависимости температуры разогрева активной области СВЧ транзистора от времени.
фиг.3 - приведены вольтамперные характеристики мощного транзистора СВЧ без дополнительных слоев на поверхности кристалла транзистора;
фиг.4 - приведены вольтамперные характеристики мощного транзистора СВЧ с дополнительными слоями из поликристаллического алмаза и двуокиси гафния.
На фиг.1 отображено устройство, содержащее следующие конструктивные элементы:
1 - фланец марки МД-40;
2 - слой припоя из AuSn;
3 - медный пьедестал;
4 - подслой из AuSn;
5 - базовая подложка из монокристаллического кремния;
6 - буферный слой AlN или HfN;
7 - теплопроводящий слой CVD поликристаллического алмаза;
8 - нелегированный слой из GaN;
9 - слой твердого раствора из AlGaN (спейс);
10 - слой твердого раствора из AlGaN n-типа проводимости;
11 - слой твердого раствора из AlGaN (крыша);
12 - исток;
13 - затвор;
14 - сток;
15 - омические контакты;
16 - дополнительный теплопроводящий слой поликристаллического алмаза;
17 - дополнительный барьерный слой из двуокиси гафния;
18 - дополнительный барьерный слой из оксида алюминия.
Настоящее устройство производят следующим образом.
На фланце марки МД-40 1 толщиной 1600 мкм размещен слой припоя из состава AuSn 2 толщиной 25 мкм, на который запаивается медный пьедестал 3 толщиной ~150 мкм. Поверх медного пьедестала 3 наносится подслой из AuSn 4 толщиной ~25 мкм, который в дальнейшем служит основой для укрепления кристалла транзистора к медному пьедесталу 3.
На поверхности базовой подложки 5 из монокристаллического кремния p-типа проводимости, ориентированного по плоскости (III), последовательно размещены: буферный слой из AlN 6 (по другому частному случаю выполнения из HfN) толщиной 0,1 мкм, слой CVD поликристаллического алмаза 7 толщиной 0,1 мм.
После размещения слоя CVD поликристаллического алмаза 7 базовая подложка 5 утоняется методами мокрого и сухого травления до толщины 10 мкм. Затем поверх буферного го слоя 6 размещают эпитаксиальную структуру на основе широкозонных III-нитридов в виде слоев 8-11, состоящих из нелегированного буферного слоя GaN 8, слоя твердого раствора AlGaN (спейс) 9, слоя твердого раствора AlGaN n-типа проводимости 10, слоя твердого раствора AlGaN (крыша) 11 формируют исток 12, затвор 13, сток 14 и омические контакты. Кроме того, устройство снабжают дополнительными слоями, размещенными между истоком 12, затвором 13 и стоком 14. Эти слои выполняют в виде дополнительного слоя теплопроводящего поликристаллического алмаза 16, барьерного слоя из двуокиси гафния 17, толщиной 1,0 - 4,0 нм, и дополнительного барьерного слоя из оксида алюминия 18. При этом слои из двуокиси гафния 17 и оксида алюминия 18 проходят под затвором 13, непосредственно на эпитаксиальной структуре в виде слоя 11 из твердого раствора AlGaN n-типа проводимости.
В настоящем устройстве обеспечивается оптимизация отвода тепла из активной области кристалла транзистора и минимизация утечек. Это обеспечивается в помощью использования теплопроводящего поликристаллического слоя алмаза 7, а также осуществляется через слой изолирующего поликристаллического алмаза 16 и дополнительных барьерных слоев из двуокиси гафния 17 и оксида алюминия 18, имеющих суммарную толщину 1,0 - 4,0 нм.
Достоинством предложенного устройства является также ввод в активную область транзистора двух барьерных слоев 17, 18 под затвором, которые позволяют минимизировать утечки тока и увеличить значение напряжение пробоя.
Кроме того, все слои в структурах получены с использованием хорошо известных эпитаксиальных методов и не требуются специальные технологии обработки и/или способы присоединения слоев. Полупроводниковая структура оказывается сформированной практически на поверхности подложки большой конструкционной толщины из высокотеплопроводного поликристаллического алмаза. При этом исключается необходимость в проведении трудоемкой операции полировки поверхности алмаза до состояния, пригодного для технологии термоприсоединения слоев при дальнейшем изготовлении приборов.
Использование технического решения обеспечивает дополнительный отвод тепла и снижение утечек в кристалле транзистора СВЧ через дополнительные слои теплопроводящего поликристаллического алмаза и двуокиси гафния, нанесенные на поверхность кристалла между истоком, затвором и стоком мощного транзистора СВЧ. Они уменьшают тепловое сопротивление транзисторной структуры в 1.5 раза и утечки тока. На фиг.2 приведены экспериментально измеренные зависимости температуры разогрева активной области транзистора СВЧ от времени.
Использование дополнительного слоя теплопроводящего поликристаллического алмаза на поверхности кристалла транзистора между истоком, затвором и стоком транзистора и барьерных слоев из двуокиси гафния и оксида алюминия, размещенных под затвором, увеличивают пробивное напряжение транзистора на более 30%.
На фиг.4 и 5 приведены вольтамперные характеристики мощного транзистора СВЧ: фиг.4 - без слоя изолирующего поликристаллического алмаза на поверхности кристалла СВЧ транзистора, между истоком, затвором и стоком; фиг.5 - со слоем изолирующего поликристаллического алмаза на поверхности кристалла транзистора и дополнительными барьерными слоями из двуокиси гафния и оксида алюминия между истоком, затвором и стоком, а также выполнением дополнительных барьерных слоев, проходящих под затвором и на поверхности твердого раствора AlGaN n-типа проводимости.
Проведенное моделирование тепловых режимов СВЧ транзисторов показало, что применение в теплопроводящих подложек на основе поликристаллического алмаза, выращенного на кремнии 5 с буферным слоем из A1N (или HfN) 6, обеспечивает значения теплового сопротивления транзисторной структуры меньшие, чем у СВЧ- транзисторов с теплопроводящими подложками на основе карбида кремния. Нанесение слоя изолирующего поликристаллического алмаза на поверхность кристалла СВЧ транзистора, между истоком, затвором и стоком, уменьшает тепловое сопротивление транзисторной структуры более чем в 1.5 раза. Наличие в области затвора (под ним) дополнительных барьерных слоев из двуокиси гафния и оксида алюминия с суммарной толщиной 1,0-4,0 нм повышает величину пробивного напряжения на более 30%.
Отмеченные преимущества СВЧ транзисторов позволяют создавать твердотельные СВЧ-блоки и модули с улучшенными параметрами, предназначенные для антенных фазированных решеток и других радиоэлектронных систем и для замены СВЧ-электровакуумных приборов - передатчиков существующих средств связи и РЛС с учетом требований по минимизации массогабаритных характеристик аппаратуры при обеспечении устойчивости к внешним дестабилизирующим факторам

Claims (3)

1. Мощный транзистор СВЧ с многослойной эпитаксиальной структурой, содержащий базовую подложку из кремния, теплопроводящий поликристаллический слой алмаза, эпитаксиальную структуру на основе широкозонных III-нитридов, буферный слой, исток, затвор, сток и омические контакты, отличающийся тем, что слой теплопроводящего поликристаллического алмаза имеет толщину 0,1-0,15 мм, а на поверхности эпитаксиальной структуры между истоком, затвором и стоком последовательно размещены дополнительный слой теплопроводящего поликристаллического алмаза, барьерный слой из двуокиси гафния и дополнительный барьерный слой из оксида алюминия, при этом барьерные слои из двуокиси гафния и оксида алюминия имеют суммарную толщину 1,0-4,0 нм, кроме того, они размещены под затвором, непосредственно на эпитаксиальной структуре в виде слоя из твердого раствора AlGaN n-типа проводимости.
2. Транзистор по п.1, отличающийся тем, что буферный слой выполнен из AlN.
3. Транзистор по п.1, отличающийся тем, что буферный слой выполнен из HfN.
RU2012156263/28A 2012-12-25 2012-12-25 Мощный транзистор свч с многослойной эпитаксиальной структурой RU2519054C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012156263/28A RU2519054C1 (ru) 2012-12-25 2012-12-25 Мощный транзистор свч с многослойной эпитаксиальной структурой

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012156263/28A RU2519054C1 (ru) 2012-12-25 2012-12-25 Мощный транзистор свч с многослойной эпитаксиальной структурой

Publications (1)

Publication Number Publication Date
RU2519054C1 true RU2519054C1 (ru) 2014-06-10

Family

ID=51216574

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012156263/28A RU2519054C1 (ru) 2012-12-25 2012-12-25 Мощный транзистор свч с многослойной эпитаксиальной структурой

Country Status (1)

Country Link
RU (1) RU2519054C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022019799A1 (ru) 2020-07-24 2022-01-27 Общество С Ограниченной Ответственностью "Вандер Технолоджис" Гетероэпитаксиальная структура с алмазным теплоотводом

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2463685C1 (ru) * 2011-06-07 2012-10-10 Федеральное государственное унитарное предприятие "Научно-производственное предприятие "Исток" (ФГУП НПП "Исток") Мощный полевой транзистор свч
US8313963B2 (en) * 2007-06-12 2012-11-20 Siphoton Inc. Light emitting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8313963B2 (en) * 2007-06-12 2012-11-20 Siphoton Inc. Light emitting device
RU2463685C1 (ru) * 2011-06-07 2012-10-10 Федеральное государственное унитарное предприятие "Научно-производственное предприятие "Исток" (ФГУП НПП "Исток") Мощный полевой транзистор свч

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022019799A1 (ru) 2020-07-24 2022-01-27 Общество С Ограниченной Ответственностью "Вандер Технолоджис" Гетероэпитаксиальная структура с алмазным теплоотводом

Similar Documents

Publication Publication Date Title
CN103367403B (zh) 半导体器件及其制造方法
JP2020184648A (ja) バイパスされたゲート構造を有するトランジスタ
TWI538199B (zh) 三族氮化物元件結構與形成方法
TWI553859B (zh) 具有閘極源場極板之寬能帶隙電晶體
CA2769940C (en) Island matrixed gallium nitride microwave and power switching transistors
US8026596B2 (en) Thermal designs of packaged gallium nitride material devices and methods of packaging
US9640632B2 (en) Semiconductor device having improved heat dissipation
JP6025213B2 (ja) フローティングおよびグランドされた基板領域を備えるhemt
US20170103978A1 (en) Switch Circuit, Semiconductor Device and Method
CN102439713B (zh) 具有电隔离背表面的凸点自隔离的GaN晶体管芯片
TW200924201A (en) Gallium nitride diodes and integrated components
WO2021088231A1 (zh) 碳化硅mosfet器件的元胞结构及碳化硅mosfet器件
US20160181240A1 (en) Semiconductor Device and Method
CN103227199B (zh) 半导体电子器件
JP2011082331A (ja) 半導体素子
RU129299U1 (ru) Мощный транзистор свч
RU2519054C1 (ru) Мощный транзистор свч с многослойной эпитаксиальной структурой
CN210897283U (zh) 一种半导体器件
TWI717745B (zh) 半導體裝置
US11177380B2 (en) Silicon carbide semiconductor component
CN104393045A (zh) 一种新型GaN基增强型HEMT器件及其制备方法
RU2519055C1 (ru) Мощный транзистор свч
TWI785864B (zh) 半導體基板以及電晶體
RU2534442C1 (ru) Способ изготовления мощного свч-транзистора
CN106935643A (zh) 高电子迁移率晶体管和存储器芯片

Legal Events

Date Code Title Description
PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20150707