RU2507633C1 - Биполярный транзистор на основе гетероэпитаксиальных структур и способ его изготовления - Google Patents

Биполярный транзистор на основе гетероэпитаксиальных структур и способ его изготовления Download PDF

Info

Publication number
RU2507633C1
RU2507633C1 RU2012140719/28A RU2012140719A RU2507633C1 RU 2507633 C1 RU2507633 C1 RU 2507633C1 RU 2012140719/28 A RU2012140719/28 A RU 2012140719/28A RU 2012140719 A RU2012140719 A RU 2012140719A RU 2507633 C1 RU2507633 C1 RU 2507633C1
Authority
RU
Russia
Prior art keywords
silicon
base
collector
emitter
region adjacent
Prior art date
Application number
RU2012140719/28A
Other languages
English (en)
Inventor
Грачик Хачатурович Аветисян
Александр Владимирович Перевезенцев
Дмитрий Владимирович Шишков
Original Assignee
Федеральное Государственное Унитарное Предприятие "Научно-Производственное Предприятие "Пульсар"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное Государственное Унитарное Предприятие "Научно-Производственное Предприятие "Пульсар" filed Critical Федеральное Государственное Унитарное Предприятие "Научно-Производственное Предприятие "Пульсар"
Priority to RU2012140719/28A priority Critical patent/RU2507633C1/ru
Application granted granted Critical
Publication of RU2507633C1 publication Critical patent/RU2507633C1/ru

Links

Images

Landscapes

  • Bipolar Transistors (AREA)

Abstract

Изобретение относится к области полупроводниковой микроэлектроники. Биполярный транзистор, выполненный на основе гетероэпитаксиальных структур SiGe, включает подложку из высокоомного кремния с кристаллографической ориентацией (111), буферный слой из нелегированного кремния, субколлекторный слой из сильнолегированного кремния n-типа проводимости, поверх которого сформирован коллектор из кремния n-типа проводимости, тонкая база из SiGe р-типа проводимости, эмиттер из кремния n-типа проводимости, контактные слои на основе кремния n-типа проводимости и омические контакты. При этом биполярный транзистор в области базы выполнен с обеспечением двойного ускоряющего дрейфового поля за счет плавного изменения содержания Ge вдоль базы с уменьшением его содержания от области коллектора к области эмиттера и за счет плавного изменения концентрации легирующей примеси вдоль базы с увеличением ее от области коллектора к области эмиттера. Техническим результатом изобретения является упрощение способа изготовления транзистора, а также повышение выхода годных и надежных транзисторов с высокими граничными частотами, низким коэффициентом шума, высоким коэффициентом усиления и КПД. 2 н.п. ф-лы, 1 ил.

Description

Настоящая группа изобретений относится к области полупроводниковой микроэлектроники, а именно к конструкции биполярных транзисторов, которые могут быть использованы при создании СВЧ элементной базы и способам их изготовления.
Основными требованиями, предъявляемыми к СВЧ полупроводниковой электронике в настоящее время и в ближайшем будущем, являются увеличение уровня излучаемой СВЧ мощности и увеличение функциональных возможностей при уменьшении габаритов и снижении потребляемой мощности.
Из уровня техники известен биполярный транзистор, который содержит эмиттер, базу, состоящую из сильнолегированной и слаболегированной областей, и коллектор, состоящий из сильно- и слаболегированной областей (см. патент Великобритании №1523012, опубл. 31.08.1978).
Недостатками известного устройства являются высокое значение коэффициента шума и низкие значения граничной частоты.
Кроме того, известно полупроводниковое устройство, содержащее по крайней мере три области полупроводника чередующегося типа проводимости, образующие два р-n-перехода. При этом первая область полупроводника выполнена из двух зон различной концентрации, образующих L-H- переход. Причем зона, прилегающая к р-n-переходу, имеет меньшую концентрацию примеси, чем вторая, и разность концентраций обеспечивает встроенное поле в первой области, уравновешивающее диффузионный ток неосновных носителей тока, инжектируемых в нее из первого р-n-перехода, а толщина первой области меньше диффузионной длины неосновных носителей в ней (см. АС СССР № 640686, опубл. 30.12.1978).
Недостатками такого устройства являются достаточно высокий уровень шума и низкая производительность устройства, обусловленная преобладанием рекомбинационных токов.
Из уровня техники известен способ изготовления биполярных транзисторов (см. АС СССР №1800501, опубл. 07.03.1993), включающий направление эпитаксильного слоя кремния на монокристаллическую подложку, создание на поверхности маскирующего слоя, фотолитографию и вскрытие окон в маскирующем слое, формирование базовой и эмиттерной области путем диффузии акцепторных и донорных примесей, создание контактов, радиационно-термическую обработку путем облучения электронами и стабилизирующего отжига.
Недостатками известного способа являются его трудоемкость и невозможность изготовления с помощью него устройства с высокими рабочими характеристиками.
Кроме того, из уровня техники известен способ изготовления биполярного транзистора (см. АС СССР №1649965, опубл. 20.07.1996), включающий формирование на поверхности кремниевой подложки диэлектрической пленки, вскрытие окон под области базы и введение в них легирующей базовой примеси, вскрытие окна под область эмиттера и введение в нее легирующей эмиттерной примеси, нанесение диэлектрической кремнийсодержащей пленки, термообработку в окисляющей атмосфере, вскрытие контактных окон и металлизацию. При этом перед металлизацией осуществляют сглаживание рельефа поверхности структуры, а диэлектрическую кремнийсодержащую пленку наносят перед вскрытием окна под область эмиттера, термообработку в окисляющей атмосфере проводят до образования на поверхности кремния над областью эмиттера пленки оксида кремния. Контактное окно к эмиттеру вскрывают локальным травлением пленки оксида над областью эмиттера.
Недостатками известного способа также являются его трудоемкость и невозможность изготовления с помощью него устройства с высокими рабочими характеристиками.
Задачей настоящей группы изобретений является устранение вышеперечисленных недостатков.
Общий технический результат заключается в упрощении способа, повышении выхода годных и надежных транзисторов с высокими граничными частотами, низким коэффициентом шума, высоким коэффициентом усиления и КПД.
Технический результат обеспечивается тем, что биполярный транзистор, выполненный на основе гетероэпитаксиальных структур SiGe, включает подложку из высокоомного кремния с кристаллографической ориентацией (111), буферный слой из нелегированного кремния, субколлекторный слой из сильнолегированного кремния n-типа проводимости, поверх которого сформирован коллектор из кремния n-типа проводимости, тонкая база из SiGe р-типа проводимости, эмиттер из кремния n-типа проводимости, контактные слои на основе кремния n-типа проводимости и омические контакты. При этом биполярный транзистор в области базы выполнен с обеспечением двойного ускоряющего дрейфового поля за счет плавного изменения содержания Ge вдоль базы с уменьшением его содержания от области, прилегающей к коллектору, к области, прилегающей к эмиттеру, и за счет плавного изменения концентрации легирующей примеси вдоль базы с увеличением ее от области, прилегающей к коллектору, к области, прилегающей к эмиттеру. Кроме того, содержание Ge составляет около 20% в области, прилегающей к коллектору, и около 10% в области, прилегающей к эмиттеру, а концентрация легирующей примеси составляет 0,7·10 см-3 в области, прилегающей к коллектору, и 2·1019 см-3 в области, прилегающей к эмиттеру.
Технический результат обеспечивается также тем, что способ изготовления биполярного транзистора включает выращивание буферного слоя из нелегированного кремния на подложке из высокоомного кремния с кристаллографической ориентацией (111), наращивание поверх буферного слоя последовательно низкоомного коллектора, слоя высокоомного коллектора, выращивание базы из SiGe с содержанием Ge около 20% в области базы, прилегающей к коллектору, с плавным уменьшением содержания Ge до около 10% в области базы, прилегающей к первому слою эмиттера, и с содержанием легирующей примеси около 0,7·1019см-3 в области базы, прилегающей к коллектору, с плавным увеличением до 2·1019-3 в области, прилегающей к первому слою эмиттера, выращивание поверх базы слоев эмиттера из легированного кремния, формирование омических контактов, получение кристалла транзистора утонением, полировкой и алмазным скрайбированием и вмонтирование его в корпус.
Настоящая группа изобретений поясняется иллюстрацией, на которой отображен поперечный разрез эмиттерных полосок двухэмиттерной ячейки.
Настоящее устройство имеет следующие конструктивные элементы:
1 - подложка;
2 - буферный слой;
3 - низкоомный коллектор;
4 - высокоомный коллектор;
5 - база;
6 - первый слой эмиттера;
7 - второй слой эмиттера;
8 - контактные слои;
9 - омические контакты к эмиттеру и коллектору;
10 - омический контакт к базе.
Настоящее устройство изготавливается следующим образом.
На подложке (фиг.1) из высокоомного кремния 1 с кристаллографической ориентацией (111) (толщина слоя 450 мкм), методом, например, молекулярно-пучковой эпитаксии, в стандартном режиме наращивают буферный слой 2 из нелегированного кремния (толщина слоя 200 нм), поверх буферного слоя последовательно наращивают низкоомный коллектор (субколлекторный слой) 3 n-кремния (толщина слоя 600 нм) с концентрацией примеси 3·1018 см"3, легированного фосфором (для снижения сопротивления омического контакта коллектора), высокоомный коллектор 4 из n-кремния (толщина слоя 700 нм) с концентрацией примеси 2·1016 см-3, легированного фосфором (для снижения коллекторной емкости и исключения прокола базовой области). Затем способом МПЭ наращивают тонкую базу 5 из SiGe. Содержание германия в области базы, прилегающей к коллектору 4, составляет 20% и, плавно уменьшаясь, достигает 10% в области базы, прилегающей к первому слою эмиттера 6. Содержание легирующей примеси (например, бора) в области базы 5, прилегающей к коллектору 4, достигает уровня 0,6-0,7·10см-3, плавно увеличиваясь, достигает уровня 2·1019-3 в области, прилегающей к первому слою эмиттера 6. Выращенные поверх базы первый слой эмиттера 6 из кремния толщиной 20 нм и второй слой эмиттера 7 толщиной 80 нм легированы, например, фосфором. Концентрация примеси плавно увеличивается от 5·1017см-3 в области, прилегающей к базе, до значения 7·1017см-3 в области, прилегающей к нанесенным поверх эмиттера контактным слоям 8. При этом контактные слои 8 выполнены из кремния n-типа проводимости и легированы фосфором. Их наращивают для уменьшения переходного сопротивления омических контактов 9, 10. Омические контакты 9 к эмиттеру 7 и к коллектору 4 создают методом «взрыва» (Ti/TiW/Au) с последующим скоростным высокотемпературным отжигом. Омический контакт 10 к базе (NiAu) изготавливают с помощью технологий фотолитографии и вакуумного напыления металлов.
Кристалл транзистора, полученный после утонения, полировки и алмазного скрайбирования пластины, монтируют в металлокерамический корпус, содержащий, поликоровые платы и дискретные однослойные конденсаторы, обеспечивающие внутрикорпусное согласование.
Конструкция настоящего устройства позволяет реализовать высокую предельную частоту, высокую эффективность эмиттера, снизить время пролета неосновных носителей и при этом сохранить уровень легирования активной базы, превосходящий уровень легирования эмиттера.
Также настоящее устройство имеет следующие преимущества.
За счет плавного изменения содержания германия и концентрации легирующей примеси в базе транзистора возникает удвоенное ускоряющее дрейфовое поле для неосновных носителей, что резко снижает пролетное время носителей. При этом повышается предельная частота и эффективность эмиттера.
За счет высокого уровня легирования сопротивление базы уменьшено. Это также обеспечивает возможность уменьшения ширины базы для снижения пролетного времени.
За счет относительно низкого уровня легирования эмиттера существенно снижается значение емкости эмиттера.
Значение емкости коллектор-база снижено за счет радиационной компенсации проводимости пассивной области базы.
Выявлена перспективность эффекта баллистического переноса носителей в базе и коллекторном переходе, определяемые конструкцией гетероперехода и структурной эпитаксиальной пленки.
Перечисленные факторы в действующих образцах ГБТ позволили достичь преимущества в сравнении с аналогами, а также в сравнении с наиболее прогрессивными и сложными конструкциями биполярных транзисторов на кремнии, а также полевыми транзисторами (FET), в том числе НЕМТ конструкции.
Наличие удвоенного ускоряющего дрейфового поля для неосновных носителей в базе, высокая эффективность эмиттера (задающая уровень начального низкочастотного усиления), наличие тонкой базы, реализация режима баллистического переноса, а также малые значения СЭ и постоянной RECK определили высокое быстродействие и предельную частоту ГБТ на основе SiGe. Опытные образцы транзисторов показали возможность достигать значения граничных частот fT, fmax до 100-200 ГГц. Для достижения таких параметров (там, где это возможно) традиционные конструкции усилительных приборов должны иметь размеры элементов порядка 1 мкм и даже меньше.
Высокий уровень легирования базы уменьшает модуляцию ширины базы в зависимости от режима, снижает значение выходной проводимости, улучшает линейность. Отмечается низкий уровень интермодуляционных искажений. По этой причине, а также из других конструктивных соображений в ГБТ может быть реализован более эффективный режим работы в диапазоне повышенных плотностей тока и большой выходной мощности (в 2-4 раза большей, чем в псевдоморфных НЕМТ, на 60 ГГц). Большее значение рабочих токов, а также то обстоятельство, что ГБТ имеют экспоненциальную зависимость выходного тока от управляющего напряжения, позволяют получить в 10-100 раз более высокое значение крутизны по сравнению с FET. Для ГБТ характерны низкие 1/f и рекомбинационные шумы, а также повышенная радиационная стойкость.

Claims (2)

1. Биполярный транзистор, выполненный на основе гетероэпитаксиальных структур SiGe, включающий подложку из высокоомного кремния с кристаллографической ориентацией (111), буферный слой из нелегированного кремния, субколлекторный слой из сильнолегированного кремния n-типа проводимости, поверх которого сформирован коллектор из кремния n-типа проводимости, тонкая база из SiGe р-типа проводимости, эмиттер из кремния n-типа проводимости, контактные слои на основе кремния n-типа проводимости и омические контакты, при этом биполярный транзистор в области базы выполнен с обеспечением двойного ускоряющего дрейфового поля за счет плавного изменения содержания Ge вдоль базы с уменьшением его содержания от области, прилегающей к коллектору, к области, прилегающей к эмиттеру, и за счет плавного изменения концентрации легирующей примеси вдоль базы с увеличением ее от области, прилегающей к коллектору, к области, прилегающей к эмиттеру, кроме того, содержание Ge составляет около 20% в области, прилегающей к коллектору, и около 10% в области, прилегающей к эмиттеру, а концентрация легирующей примеси составляет 0,7·1019 см-3 в области, прилегающей к коллектору, и 2·1019 см-3 в области, прилегающей к эмиттеру.
2. Способ изготовления биполярного транзистора, включающий выращивание буферного слоя из нелегированного кремния на подложке из высокоомного кремния с кристаллографической ориентацией (111), наращивание поверх буферного слоя последовательно низкоомного коллектора, слоя высокоомного коллектора, выращивание базы из SiGe с содержанием Ge около 20% в области базы, прилегающей к коллектору, с плавным уменьшением содержания Ge до около 10% в области базы, прилегающей к первому слою эмиттера, и с содержанием легирующей примеси около 0,7·1019 см-3 в области базы, прилегающей к коллектору, с плавным увеличением до 2·1019 -3 в области, прилегающей к первому слою эмиттера, выращивание поверх базы слоев эмиттера из легированного кремния, формирование омических контактов, получение кристалла транзистора утонением, полировкой и алмазным скрайбированием и вмонтирование его в корпус.
RU2012140719/28A 2012-09-24 2012-09-24 Биполярный транзистор на основе гетероэпитаксиальных структур и способ его изготовления RU2507633C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012140719/28A RU2507633C1 (ru) 2012-09-24 2012-09-24 Биполярный транзистор на основе гетероэпитаксиальных структур и способ его изготовления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012140719/28A RU2507633C1 (ru) 2012-09-24 2012-09-24 Биполярный транзистор на основе гетероэпитаксиальных структур и способ его изготовления

Publications (1)

Publication Number Publication Date
RU2507633C1 true RU2507633C1 (ru) 2014-02-20

Family

ID=50113389

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012140719/28A RU2507633C1 (ru) 2012-09-24 2012-09-24 Биполярный транзистор на основе гетероэпитаксиальных структур и способ его изготовления

Country Status (1)

Country Link
RU (1) RU2507633C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2629659C1 (ru) * 2016-11-22 2017-08-30 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" (КБГУ) Способ изготовления полупроводникового прибора

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0229672B1 (en) * 1986-01-17 1992-08-26 Nec Corporation A heterojunction bipolar transistor having a base region of germanium
RU1800501C (ru) * 1991-05-07 1993-03-07 Научно-исследовательский институт прикладной механики Способ изготовлени бипол рных транзисторов
US7544577B2 (en) * 2005-08-26 2009-06-09 International Business Machines Corporation Mobility enhancement in SiGe heterojunction bipolar transistors
US20120098039A1 (en) * 2010-10-25 2012-04-26 Yan Miu Sige heterojunction bipolar transistor having low collector/base capacitance and manufacturing method of the same
US8169001B1 (en) * 2004-10-15 2012-05-01 Hrl Laboratories, Llc Method for preparing a non-self-aligned heterojunction bipolar transistor with a small emitter-to-base spacing
US20120119262A1 (en) * 2010-11-15 2012-05-17 Noort Wibo Van SiGe Heterojunction Bipolar Transistor and Method of Forming a SiGe Heterojunction Bipolar Transistor
US8227832B2 (en) * 2009-12-21 2012-07-24 Shanghai Hua Hong Nec Electronics Co., Ltd. SiGe heterojunction bipolar transistor multi-finger structure

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0229672B1 (en) * 1986-01-17 1992-08-26 Nec Corporation A heterojunction bipolar transistor having a base region of germanium
RU1800501C (ru) * 1991-05-07 1993-03-07 Научно-исследовательский институт прикладной механики Способ изготовлени бипол рных транзисторов
US8169001B1 (en) * 2004-10-15 2012-05-01 Hrl Laboratories, Llc Method for preparing a non-self-aligned heterojunction bipolar transistor with a small emitter-to-base spacing
US7544577B2 (en) * 2005-08-26 2009-06-09 International Business Machines Corporation Mobility enhancement in SiGe heterojunction bipolar transistors
US8227832B2 (en) * 2009-12-21 2012-07-24 Shanghai Hua Hong Nec Electronics Co., Ltd. SiGe heterojunction bipolar transistor multi-finger structure
US20120098039A1 (en) * 2010-10-25 2012-04-26 Yan Miu Sige heterojunction bipolar transistor having low collector/base capacitance and manufacturing method of the same
US20120119262A1 (en) * 2010-11-15 2012-05-17 Noort Wibo Van SiGe Heterojunction Bipolar Transistor and Method of Forming a SiGe Heterojunction Bipolar Transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2629659C1 (ru) * 2016-11-22 2017-08-30 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" (КБГУ) Способ изготовления полупроводникового прибора

Similar Documents

Publication Publication Date Title
JPH0677245A (ja) バイポーラ・トランジスタおよびその製造方法
US7566921B2 (en) Silicon germanium emitter
US8378457B2 (en) Silicon-germanium heterojunction bipolar transistor
CN108122971B (zh) 一种rc-igbt器件及其制备方法
CN110600537B (zh) 一种具有pmos电流嵌位的分离栅cstbt及其制作方法
US8907351B2 (en) Bipolar junction transistor in silicon carbide with improved breakdown voltage
CN109166917B (zh) 一种平面型绝缘栅双极晶体管及其制备方法
CN111490097A (zh) 制造功率半导体器件的方法
CN109166916B (zh) 一种绝缘栅双极型晶体管及其制备方法
KR101398125B1 (ko) 자기정렬 고속 회복 다이오드 및 그 제조 방법
CN108010964B (zh) 一种igbt器件及制造方法
RU2507633C1 (ru) Биполярный транзистор на основе гетероэпитаксиальных структур и способ его изготовления
CN109830528A (zh) 锗硅hbt器件及制造方法
RU124048U1 (ru) Биполярный транзистор на основе гетероэпитаксильных структур
US11264376B2 (en) Bipolar semiconductor device and method for manufacturing such a semiconductor device
US7579635B2 (en) Heterojunction bipolar transistor
CN113782586A (zh) 一种多通道超结igbt器件
CN113964197A (zh) 一种低泄漏电流的igbt器件及其制备方法
CN102956480A (zh) 有赝埋层的锗硅hbt降低集电极电阻的制造方法及器件
CN103035690A (zh) 超高压锗硅异质结双极晶体管及其制备方法
CN108054203B (zh) 一种绝缘体上硅锗衬底的异质结双极晶体管及其制造方法
CN104465372A (zh) 双极型三极管的制造方法及结构
CN216871974U (zh) 一种多通道超结igbt器件
CN104347402A (zh) 一种绝缘栅双极型晶体管的制造方法
CN210110780U (zh) PNP型肖特基集电区AlGaN/GaN HBT器件

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20140925

NF4A Reinstatement of patent

Effective date: 20151110

PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20160511