RU2504602C1 - Способ изготовления кварцевых контейнеров - Google Patents

Способ изготовления кварцевых контейнеров Download PDF

Info

Publication number
RU2504602C1
RU2504602C1 RU2012128751/02A RU2012128751A RU2504602C1 RU 2504602 C1 RU2504602 C1 RU 2504602C1 RU 2012128751/02 A RU2012128751/02 A RU 2012128751/02A RU 2012128751 A RU2012128751 A RU 2012128751A RU 2504602 C1 RU2504602 C1 RU 2504602C1
Authority
RU
Russia
Prior art keywords
quartz
container
coating
annealing
inert atmosphere
Prior art date
Application number
RU2012128751/02A
Other languages
English (en)
Inventor
Олег Иванович Подкопаев
Александр Федорович Шиманский
Виктор Владимирович Вахрин
Владимир Николаевич Лосев
Original Assignee
Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет" filed Critical Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет"
Priority to RU2012128751/02A priority Critical patent/RU2504602C1/ru
Application granted granted Critical
Publication of RU2504602C1 publication Critical patent/RU2504602C1/ru

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

Изобретение относится к способам изготовления кварцевых контейнеров с защитным углеродным покрытием для синтеза и кристаллизации расплавов полупроводниковых материалов, а также для получения особо чистых металлов и полиметаллических сплавов. Способ изготовления кварцевых контейнеров с защитным углеродным покрытием для высокотемпературных процессов включает нанесение на рабочую поверхность кварцевого контейнера полимерной пленки с последующим отжигом в инертной атмосфере. Нанесение упомянутой пленки на рабочую поверхность кварцевого контейнера проводят путем осаждения полигексаметиленгуанидингидрохлорида или полидиаллилдиметиламмонийхлорида из его 7-10%-ного водного раствора с pH 1-3 и последующего отжига в инертной атмосфере при 900-1000°C в течение 30-60 минут. Улучшается качество защитных покрытий на поверхностях кварцевых контейнеров за счет повышения их плотности и прочности с обеспечением предотвращения взаимодействия расплавленного материала с рабочими стенками контейнера любой формы и уменьшение загрязнения получаемого материала диффундирующими примесями химических элементов из кварца. 1 табл., 2 пр.

Description

Изобретение относится к способам изготовления кварцевых контейнеров с защитным углеродным покрытием для синтеза и кристаллизации расплавов полупроводниковых материалов, а также для получения особо чистых металлов и полиметаллических сплавов.
Известен способ изготовления ростового контейнера в виде кварцевой лодочки из заготовок кварцевой трубы с последующим осаждением на рабочей поверхности углеграфита типа «Aquadag» из продуктов разложения парогазовой смеси толуола в токе азота при температуре 1050°C (Beels R, De Sutter W. Pyrolytic coating of quartz and ceramic vessis used for zone melting // Jornal of Scientific Instrument. Vol.37. №10, October 1960, p.397).
Недостатком способа является сложная и дорогостоящая технология изготовления контейнеров с покрытием, которое в топком слое не устраняет взаимодействия расплавленного материала со стенками. Толстые слои (>20 мкм), представляющие собой налет сажи («ламповой копоти»), разрушаются при контакте с раствором-расплавом и загрязняют выращиваемые кристаллы углеродом.
Известен способ изготовления кварцевого контейнера в виде стакана с коническим дном (тубы) и с нанесением на внутреннюю поверхность контейнера углеродсодержащего покрытия осаждением продуктов разложения парогазовой смеси ацетона в токе азота при температуре 900÷1170°C (Qingrun В., Ju G., Jinyi W., Ji'an C. Carbon Film Coating Used in CdZnTe Cristal Growth. Rare Metals. Vol.16, №2, april 1997, p.114-116). Способ принят за аналог.
Данный способ характеризуется сложной и взрывоопасной технологией, поскольку в разогретом реакторе происходит высокотемпературное разложение паров ацетона и осаждение на кварцевой поверхности контейнера тонкого углеродсодержащего слоя. При получении кристаллов в таком контейнере происходит частичное взаимодействие расплавленного материала со стенками и образование кристаллов с повышенной плотностью дефектов структуры. Увеличение толщины защитного углеродсодержащего слоя до 25-30 мкм приводит к возникновению механических напряжений на границе раздела со стенками кварца и разрушению покрытия при контакте с расплавом.
Известен способ получения комбинированных кремний-оксид углеродных покрытий методом пиролиза тонких полимерных пленок силоксанов (Патент RU 2370568 30.04.2008 опубликовано 20.10.2009 (прототип)). Но данного вида покрытия вызывают легирование особо чистого материала кремнием, а так же связано с применение агрессивных веществ при формировании покрытия.
Техническим результатом является улучшение качества защитных покрытий на кварцевых поверхностях контейнеров за счет повышения их плотности и прочности, обеспечивающих предотвращение взаимодействия расплавленного материала с рабочими стенками контейнера любой формы и уменьшение загрязнения получаемого материала диффундирующими примесями химических элементов из кварца.
Технический результат достигается тем, что в способе изготовления кварцевых контейнеров с защитным углеродным покрытием для высокотемпературных процессов, включающем нанесение на рабочую поверхность кварцевого контейнера полимерной пленки с последующим отжигом в инертной атмосфере, новым является то, нанесение пленки на рабочую поверхность кварцевого контейнера проводят путем осаждения полигексаметиленгуанидингидрохлорида или полидиаллилдиметиламмонийхлорида из его 7-10%-ного водного раствора с pH 1-3, а последующий отжиг в инертной атмосфере проводят при 900-1000°C в течение 30-60 минут.
Сущность изобретения заключается в том, что высокомолекулярные олигомеры полимерных аминов эффективно закрепляются на поверхности кварцевого стекла за счет образования многоцентровых водородных и электростатических связей между азотами ПГМГ и поверхностными гидроксильными группами кварцевого стекла. В результате последующего отжига на поверхности кварца образуется тонкий слой углеродного покрытия.
Для осаждения полимерных пленок на поверхности кварцевого стекла методом смачивания, высушивания при обычных условиях и последующего отжига в инертной атмосфере используют полигексаметиленгуанидингидрохлорид или полидиаллилдиметиламмонийхлорид.
Наиболее равномерная пленка полимерного амина на поверхности кварцевого стекла образуются при использовании 7-10%-ного раствора полимерного амина с pH 1-3. Использование более концентрированного раствора ухудшает растекание раствора по стенкам кварцевого контейнера, и после отжига получаются разнотолщинные слои. Применение более разбавленного раствора приводит к образованию тонких пленок, не обладающих достаточной прочностью.
При pH>3 происходит снижение адгезии полимерных цепей к кварцу, а при pH<1 происходит образование полимерных агломератов и ухудшению однородности полимерного слоя.
Пиролизный отжиг углеродсодержащих полимерных пленок в инертной атмосфере проводят в интервале температур 900-1000°C. При температуре ниже 900°C и времени менее 30 минут, происходит образование неплотного неоднородного покрытия, которое разрушается при контакте с расплавом, загрязняя его примесями углерода. Проведение отжига в инертной атмосфере при температуре выше 1000°C и времени более 60 минут не приводит к существенному повышению качества углеродсодержащего покрытия, но приводит к дополнительным и неоправданным расходам.
Реализация предлагаемого способа иллюстрируется следующими примерами.
Пример 1.
Из кварцевой трубы (dвн.=58 мм; Lраб=600 мм; dст.=2,5 мм) изготовляют лодочку, протравливают ее 10%-ым водным раствором плавиковой кислоты марки ОСЧ. В изготовленную лодочку заливают 7%-ный водный раствор полидиаллилдиметиламмонийхлорида (ПДАДМА), содержащего 0,1 мл концентрированной плавиковой кислоты. Раствор сливают, лодочку переворачивают и оставляют вверх дном для высушивания. Лодочку с нанесенной полимерной пленкой помещают в реактор печи сопротивления и вакуумируют до 1,5.10-3 мм рт.ст. Затем реактор заполняют аргоном и в потоке аргона (1-100 мл/мин) проводят отжиг лодочки с нанесенной полимерной пленкой при температуре 900°С в течение 30 минут. Затем температуру в реакторе печи снижают до комнатной температуры и извлекают лодочку со сформированным защитным покрытием.
Полученную лодочку со сформированным защитным углеродным покрытием подают на участок зонной очистки германия. В лодочку с защитным покрытием загружают 1 кг германия поликристаллического полупроводниковой чистоты. Проводят три прохода расплавленной зоны для контроля чистоты покрытия. После осуществления процесса производят контроль (визуальный) контейнера, покрытия и анализ очищенного материала.
Состояние контейнера и покрытия:
- нет раскварцованных участков на внутренней и внешней поверхности стенок;
- нет разрушения покрытия на стенках и эрозии поверхности.
Параметры очищенного слитка:
- отсутствие видимых следов взаимодействия слитка со стенками контейнера, зеркально гладкое дно слитка;
- отсутствие трещин и других структурных дефектов на поверхности, образующихся в результате взаимодействия расплава со стенками кварца.
Параметры кристалла:
Слиток подвергли измерению удельного электрического сопротивления при температуре жидкого азота по всей длине известным двухзондовым методом. В качестве оценки чистоты получаемого материала использовали уровень удельного электрического сопротивления более 1000 Ом*см, что соответствует уровню электрически активных примесей не более 1011 см3:
- доля слитка, зонноочищенного до требуемого уровня 33%, что указывают па достаточную степень чистоты покрытия и нормальное ведение процесса зонной очистки;
Пример 2.
Из кварцевой трубы (dвн.=58 мм; Lраб=600 мм; dст.=2,5 мм) изготовляют лодочку, протравливают ее 10%-ным водным раствором плавиковой кислоты марки ОСЧ. В изготовленную лодочку заливают 7%-ный водный раствор полигексаметиленгуанидингидрохлорида, (ПГМГ) содержащего 0,1 мл концентрированной плавиковой кислоты. Раствор сливают, лодочку переворачивают и оставляют вверх дном для высушивания. Лодочку с нанесенной полимерной пленкой помещают в реактор печи сопротивления и вакуумируют до 1,5.10-3 мм рт.ст. Затем реактор заполняют аргоном и в потоке аргона (1-100 мл/мин) проводят отжиг лодочки с нанесенной полимерной пленкой при температуре 900°С в течение 30 минут. Затем температуру в реакторе печи снижают до комнатной температуры и извлекают лодочку со сформированным защитным покрытием.
Полученную лодочку со сформированным защитным углеродным покрытием подают на участок зонной очистки германия. В лодочку с защитным покрытием загружают 1 кг германия поликристаллического полупроводниковой чистоты. Проводят три прохода расплавленной зоны для контроля чистоты покрытия. После осуществления процесса производят контроль (визуальный) контейнера, покрытия и анализ очищенного материала.
Параметры кристалла:
Слиток подвергли измерению удельного электрического сопротивления при температуре жидкого азота по всей длине известным двухзондовым методом. В качестве оценки чистоты получаемого материала использовали уровень удельного электрического сопротивления более 1000 Ом*см, что соответствует уровню электрически активных примесей не более 1011 см3:
- доля слитка, зонноочищенного до требуемого уровня 32%, что указывает на достаточную степень чистоты покрытия и нормальное ведение процесса зонной очистки.
Качество материала, полученного по примеру 2 аналогично качеству материала, полученному по примеру 1. Данные приведены в таблицы 1.
Получено защитное покрытие на поверхности кварцевого контейнера, обеспечивает проведение процесса зонной очистки особо чистого германия с выходом в высокочистую часть (содержание электрически активных примесей не более 1011 см3) на уровне 33% от массы загружаемого материала.
Таким образом, заявленный способ позволяет значительно упростить процесс получения углеродного покрытия внутренних стенок контейнеров из кварцевого стекла любой конфигурации, повысить плотность и прочность покрытия, тем самым повысить надежность контейнеров при неоднократном их использовании в процессах зонной очистки и выращивания германия.
Использование кварцевого контейнера с защитным покрытием, полученным заявленным способом получить материалы с высокими электрофизическими параметрами за счет:
- предотвращения взаимодействия расплавленного материала с рабочей поверхностью кварца за счет не смачиваемого германием покрытия;
- уменьшения загрязнения выращиваемых кристаллов диффундирующими примесями из кварца за счет высокой чистоты, инертности и плотности покрытия.
Таблица 1
Результаты испытаний
№ п/п Вид контейнера Концентрация полимера, % масс. pH Время выдержки, мин Время отжига, мин Температура отжига, °C Срок службы, кол-во плавок Выход в особо чистый продукт в процессе зонной очистки германия, % масс.
1 Графит марки 3ОПГ-ОСЧ - - - - 400 6,3
2 Пироуглерод (аналог) - - - - 5 28,4
3 Кварц с покрытием из ПДАДМА 7 2 20 60 900 10 33,5
4 Кварце покрытием из ПДАДМА 3 3 10 30 900 4 26,0
5 Кварц с покрытием из ПДАДМА 10 3 10 30 900 4 30,2
6 Кварц с покрытием из ПДАДМА 20 1 30 60 1000 1 15,5
7 Кварц с покрытием из ПГМГ 7 2 20 60 1000 10 32,1
8 Кварц с покрытием из ПГМГ 3 3 10 30 900 3 25,9
9 Кварц с покрытием из ПГМГ 10 3 20 60 1000 7 27,8
10 Кварц с покрытием из ПГМГ 20 1 30 60 1000 1 15,7
11 Покрытие из винилтрихлорсилана (прототип) 5 17,7

Claims (1)

  1. Способ изготовления кварцевых контейнеров с защитным углеродным покрытием для высокотемпературных процессов, включающий нанесение на рабочую поверхность кварцевого контейнера полимерной пленки с последующим отжигом в инертной атмосфере, отличающийся тем, что нанесение пленки на рабочую поверхность кварцевого контейнера проводят путем осаждения полигексаметиленгуанидингидрохлорида или полидиаллилдиметиламмонийхлорида из его 7-10%-ного водного раствора с pH 1-3 и последующего отжига в инертной атмосфере при 900-1000°C в течение 30-60 мин.
RU2012128751/02A 2012-07-09 2012-07-09 Способ изготовления кварцевых контейнеров RU2504602C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012128751/02A RU2504602C1 (ru) 2012-07-09 2012-07-09 Способ изготовления кварцевых контейнеров

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012128751/02A RU2504602C1 (ru) 2012-07-09 2012-07-09 Способ изготовления кварцевых контейнеров

Publications (1)

Publication Number Publication Date
RU2504602C1 true RU2504602C1 (ru) 2014-01-20

Family

ID=49947996

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012128751/02A RU2504602C1 (ru) 2012-07-09 2012-07-09 Способ изготовления кварцевых контейнеров

Country Status (1)

Country Link
RU (1) RU2504602C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1523560A1 (ru) * 1987-12-28 1989-11-23 Московский научно-исследовательский и проектно-изыскательский институт "МосводоканалНИИпроект" Полимерна композици
RU2050384C1 (ru) * 1990-10-12 1995-12-20 Центральный научно-исследовательский институт пленочных материалов и искусственной кожи Полимерная композиция
RU2370568C1 (ru) * 2008-04-30 2009-10-20 Открытое акционерное общество "Государственный научно-исследовательский и проектный институт редкометаллической промышленности "Гиредмет" Способ изготовления кварцевых контейнеров
US20100189925A1 (en) * 2004-10-15 2010-07-29 Jun Li Insulator coating and method for forming same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1523560A1 (ru) * 1987-12-28 1989-11-23 Московский научно-исследовательский и проектно-изыскательский институт "МосводоканалНИИпроект" Полимерна композици
RU2050384C1 (ru) * 1990-10-12 1995-12-20 Центральный научно-исследовательский институт пленочных материалов и искусственной кожи Полимерная композиция
US20100189925A1 (en) * 2004-10-15 2010-07-29 Jun Li Insulator coating and method for forming same
RU2370568C1 (ru) * 2008-04-30 2009-10-20 Открытое акционерное общество "Государственный научно-исследовательский и проектный институт редкометаллической промышленности "Гиредмет" Способ изготовления кварцевых контейнеров

Similar Documents

Publication Publication Date Title
KR101457504B1 (ko) 복합 도가니, 그 제조 방법, 및 실리콘 결정의 제조 방법
US6623801B2 (en) Method of producing high-purity polycrystalline silicon
JP6165984B2 (ja) 多結晶シリコンの製造方法
JP2548949B2 (ja) 半導体製造用構成部材
JPH09312245A (ja) 薄膜堆積基板および薄膜堆積基板の作製方法
KR100715703B1 (ko) 탄화규소 피복 흑연 부재
TWI576472B (zh) Graphite crucible for single crystal pulling device and method for manufacturing the same
US6893749B2 (en) SiC-formed material
KR100427118B1 (ko) 열처리용지그및그제조방법
RU2504602C1 (ru) Способ изготовления кварцевых контейнеров
JP3638345B2 (ja) 熱分解窒化硼素容器
JP2000302576A (ja) 炭化珪素被覆黒鉛材
WO2017002457A1 (ja) シリコン単結晶引上げ装置内の部材の再生方法
RU2370568C1 (ru) Способ изготовления кварцевых контейнеров
JP7395793B1 (ja) 多結晶シリコンロッド製造用反応炉、ガス供給ノズル、多結晶シリコンロッドの製造方法および多結晶シリコンロッド
KR20160057435A (ko) 실리콘 잉곳 고화용 기재
JP2527666B2 (ja) ガラス状炭素被覆物品
JP7135718B2 (ja) 基板保持機構、成膜装置および多結晶膜の成膜方法
JP3162974B2 (ja) ガラス状カーボン膜を有するcvd成膜用シリカガラス治具及びその製造方法
JP2004143583A (ja) 石英ガラス部品及びその製造方法並びにそれを用いた装置
JPS6163591A (ja) 化合物半導体単結晶の製造装置
JPH06127922A (ja) 多結晶シリコン製造用流動層反応器
JPH05310487A (ja) SiC被覆黒鉛材料の製造方法
KR20230163459A (ko) 석영 유리 도가니 및 그 제조 방법 및 실리콘 단결정의 제조 방법
RU2631779C2 (ru) Способ получения покрытия на основе диоксида кремния внутренней поверхности кварцевого изделия

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180710