RU2502819C1 - Сплав на основе титана - Google Patents

Сплав на основе титана Download PDF

Info

Publication number
RU2502819C1
RU2502819C1 RU2012115845/02A RU2012115845A RU2502819C1 RU 2502819 C1 RU2502819 C1 RU 2502819C1 RU 2012115845/02 A RU2012115845/02 A RU 2012115845/02A RU 2012115845 A RU2012115845 A RU 2012115845A RU 2502819 C1 RU2502819 C1 RU 2502819C1
Authority
RU
Russia
Prior art keywords
alloy
titanium
corrosion
iron
oxygen
Prior art date
Application number
RU2012115845/02A
Other languages
English (en)
Other versions
RU2012115845A (ru
Inventor
Валерий Петрович Леонов
Анатолий Сергеевич Кудрявцев
Евгений Васильевич Чудаков
Людмила Александровна Иванова
Владимир Федорович Щербинин
Вера Петровна Кулик
Нэлли Федоровна Молчанова
Original Assignee
Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" (Фгуп "Цнии Км "Прометей")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" (Фгуп "Цнии Км "Прометей") filed Critical Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" (Фгуп "Цнии Км "Прометей")
Priority to RU2012115845/02A priority Critical patent/RU2502819C1/ru
Publication of RU2012115845A publication Critical patent/RU2012115845A/ru
Application granted granted Critical
Publication of RU2502819C1 publication Critical patent/RU2502819C1/ru

Links

Landscapes

  • Catalysts (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

Изобретение относится к металлургии, а именно к сплавам на основе титана с высокой коррозионной стойкостью против щелевой и питтинговой коррозии в агрессивных средах, и может быть использовано в свариваемых элементах оборудования: химических производств, оффшорной техники и судостроения. Сплав на основе титана содержит, мас.%: алюминий 4,7-6,3, ванадий 1,0-1,9, молибден 0,7-2,0, углерод 0,06-0,14, цирконий 0,02÷0,10, кислород 0,06-0,13, кремний 0,02-0,12, железо 0,05-0,25, рутений 0,05-0,14, титан - остальное при выполнении соотношения: [O2]+[Si]+[Fe]≤0,40. Сплав обладает повышенной стойкостью против щелевой и питтинговой коррозии в агрессивных средах. 2 табл., 1 пр.

Description

Изобретение относится к цветной металлургии, в частности к созданию сплавов на основе титана, обладающих повышенной устойчивостью против щелевой и питтинговой коррозии в агрессивных средах с повышенным солесодержанием (3,5% NaCl и pН 2,5-4,0) и температурой до 250°С.
Сплав предназначен для элементов оборудования: химических производств, оффшорной техники (глубоководных бурильных и добывающих райзеров, сосудов высокого давления и. т.д.) и судостроения, в том числе сварных соединений.
Известны сплавы на основе титана, предназначенные для использования в агрессивных средах (Grade l3-15, Grade 26-27, Grade 28-29 по ASTM В 265-98). Эти сплавы, обладая хорошей коррозионной стойкостью, тем не менее имеют определенные недостатки, ограничивающие их применение в средах с повышенным солесодержанием (3,5% NaCl) и pН 2,5-4,0) и температурой до 250°С.
Недостатками перечисленных сплавов являются для одних - низкий уровень прочности, для других - пониженные значения пластичности.
Известен также сплав на основе титана с рутением и палладием (RU 2203974 С22С 14/00 07.05.2001). Этот сплав обладает хорошей коррозионной стойкостью, механическими свойствами, однако содержит повышенное содержание Р-легирующих элементов и примесей железа, что приводит к структурной неоднородности и снижению стойкости против щелевой и питтинговой коррозии в средах с повышенным солесодержанием (3,5% NaCl и pН 2,5-4,0) и.температурой до 250°C.
Наиболее близким по содержанию ингредиентов является сплав на основе титана [GB 785293 A, C22C 14/00, 23.10.1957], содержащий масс %: алюминий 0,25-7,5, ванадий 0,1-30,0, молибден 0,1-30,0, углерод до 0,3, цирконий 0,1-10,0, кислород до 0,3, кремний 0,1-1,0, железо 0,1-2,0, титан остальное.
Из альтернативных вариантов составов указанного сплава в качестве прототипа выбран сплав, качественный и количественный состав которого соответствует качественному и количественному составу заявляемого сплава.
Недостатком сплава прототипа является низкая стойкость против щелевой и питтинговой коррозии в агрессивных средах с повышенным солесодержанием (3,5% NaCl и pН 2,5-4,0) и температурой до 250°C.
Техническим результатом предлагаемого изобретения является создание сплава, обладающего более высокой стойкостью против щелевой и питтинговой коррозии в агрессивных средах с повышенным солесодержанием (3,5% NaCl и pН 2,5-4,0) и температурой до 250°C. по сравнению со сплавом - прототипом.
Технический результат достигается за счет того, что в состав известного сплава, содержащего алюминий, ванадий; молибден, углерод, цирконий, кислород; кремний, железо, титан остальное, дополнительно вводится рутений при следующем соотношении компонентов (мас.%):
Алюминий 4,7-6,3;
Ванадий 1,0-1,9;
Молибден 0,7-2,00;
Углерод 0,06÷0,14;
Цирконий 0,02÷0,10
Кислород 0,06÷0,13
Кремний 0,02÷0,12;
Железо 0,05÷0,25;
Рутений 0,05-0,14;
Титан остальное;
при этом суммарное содержание кислорода, кремния и железа должно быть менее или равно 0,40
[O2]+[Si]+[Fe]≤0,40
В заявляемом изобретении легирующие и примесные элементы (кислород, кремний, железо) находятся в таком соотношении, чтобы обеспечить высокую стойкость против щелевой и питтинговой коррозии в агрессивных средах с повышенным солесодержанием (3,5% NaCl и pН 2,5-4,0) и температурой до 250°C Кислород, кремний, железо в заявляемом изобретении в заявляемом суммарном содержании обеспечивают комплексное микролегирование сплава и получение однородного регламентированного структурного состояния.
Выполнение заявленного соотношения [О2]+[Si]+[Fe]≤0,40 повышает электролитическую однородность сплава, что необходимо для повышения стойкости против щелевой и питтинговой коррозии.
Увеличение суммарного содержания [O2]+[Si]+[Fe]>0,40 при проведении термических циклов сварки приведет к снижению коррозионной стойкости заявляемого сплава, так как переплавленный металл сварного шва теряет способность к внутризеренной деформации, деформация локализуется по границам. Рутений в заявляемом сплаве является микролегирующей и катодно-модифицирующей добавкой, который в сочетании с алюминием и ванадием, препятствует образованию структурной и химической неоднородности, способствует пассивации за счет снижения перенапряжения реакции выделения водорода.
При катодном микролегировании рутением повышается катодная эффективность, смещающая электрохимический потенциал сплава в область устойчивой пассивности, что исключает опасность питтингообразования.
При содержании рутения менее 0,05% в указанных агрессивных средах пассивация не наступает.Полная пассивация в хлоридных растворах при содержании рутения до 0,14% обусловлена облегчением протекания катодной реакции (H++е→Н) восстановления водорода. Содержание сверх указанного предела не эффективно и нецелесообразно.
Содержание углерода в заявляемом сплаве ограничено выбранными пределами, так как при содержании более 0,14% углерод выделяется в виде округлых включений по границам зерен, которые снижают коррозионную стойкость. При содержании углерода менее 0,06% снижается прочность сплава.
Алюминий в заявляемых пределах 4,7-6,3% интенсивно повышает прочностные характеристики сплава и обеспечивает хорошие технологические свойства при производстве полуфабрикатов. Повышение алюминия сверх пределов, заявленных в сплаве, снижает коррозионную стойкость в указанных средах.
Ванадий в заявленных пределах снижает сегрегацию легирующих элементов, повышая структурную однородность сплава.
Содержание молибдена ограничено пределами 0,7-2,0%, т.к. при содержании молибдена более 2,0% в сварном соединении образуется α'-фаза с пониженными пластичностью и стойкостью против щелевой и питтинговой коррозии.
Молибден при содержании до 2,0% блокирует процесс упорядочения и образования α1-фазы [В.Н. Моисеев и др. Сварные соединения титановых сплавов М, Металлургия,1978 г, с.60].
Нейтральный β-стабилизатор -цирконий в пределах 0,02-0,10% в сочетании с алюминием обеспечивает однородное распределение легирующих компонентов в α-фазе, снижает внутрикристаллическую ликвацию.
Пример выполнения.
Выплавляли слитки с химическим составом из предлагаемого сплава и сплава-прототипа (таблица 1).
Слитки ковали на заготовки и прокатывали в листы толщиной 4,0 мм, из которых затем изготавливали образцы размером 4×35×35 мм для проведения коррозионных испытаний на щелевую и питтинговую коррозию.
С целью ускорения коррозионные испытания проводили в автоклаве в среде насыщенных паров 20% раствора NaCl при температуре 250°С в течение 200 часов. Давление составляло 40ата. Результаты испытаний приведены в таблице 2.
Оценка склонности к щелевой коррозии произведена по результатам исследования потери массы в размерности 10-3 г/дм2 час и наличия локальных повреждений.
Оценка склонности к питтингу выполнена визуально при осмотре поверхности образцов с использованием оптического микроскопа при увеличении ×12. Выявляли питтинги диаметром не менее 0,1 мм.
На образце сплава прототипа обнаружены питтинговые поражения поверхности размером более 4,0 мм. На образце из заявляемого сплава никаких поражений поверхности обнаружено не было, поверхность образцов была блестящая. Представленные результаты показывают, что предлагаемый сплав по стойкости против щелевой и питтинговой коррозии превосходит аналогичные характеристики известного сплава. Это позволяет увеличить ресурс различных элементов оборудования при эксплуатации в водных растворах с повышенным содержанием хлоридов при повышенной температуре до 250°C и pН 2,5 в 2-3 раза.
Таблица 1
Химический состав заявляемого и сплава-прототипа на основе титана
Сплав № состава Аl V Мo C Zr O2 Si Fe Ru O2+Si+Fe≤0,40 Ti
Предлагаемый 1 4,7 1,0 0,7 0,06 0,02 0,13 0,02 0,25 0,14 0,40 ост.
2 5,0 1,5 1,5 0,10 0,07 0,08 0,05 0,20 0,10 0,33 ост.
3 6,3 1,9 2,0 0,14 0,10 0,06 0,12 0,05 0,05 0,23 ост.
Известный 6,5 4,0 3,0 0,20 0,30 0,20 0,25 0,30 - 0,75 ост.
Таблица 2
Коррозионная стойкость заявленного сплава и прототипа
Сплав № состава Характеристика среды Результаты коррозионных испытаний, длительность испытаний 200 часов
заявляемый Аэрированный насыщенный Рн=3,5, СО2 (10-15 бар), 20% раствор NaCl, температура 250°С Щелевая коррозия Характеристика состояния поверхности при питтинговой коррозии, наличие язвенных повреждений
Степень поражения Вид щелевой поверхности
1 Поверхность образцов блестящая не обнаружен
2 Нет поражений не обнаружен
3 не обнаружен
Известный Местное поражение Серая пленка язвы диаметром более 2,0 мм

Claims (1)

  1. Сплав на основе титана, содержащий алюминий, ванадий, молибден, углерод, цирконий, кислород, кремний, железо, титан - остальное, отличающийся тем, что он дополнительно содержит рутений при следующем соотношении компонентов, мас.%:
    Алюминий 4,7-6,3 Ванадий 1,0-1,9 Молибден 0,7-2,0 Углерод 0,06-0,14 Цирконий 0,02-0,10 Кислород 0,06-0,13 Кремний 0,02-0,12 Железо 0,05-0,25 Рутений 0,05-0,14 Титан Остальное,

    при выполнении соотношения содержаний кислорода, кремния и железа:
    [O2]+[Si]+[Fe]≤0,40.
RU2012115845/02A 2012-04-19 2012-04-19 Сплав на основе титана RU2502819C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012115845/02A RU2502819C1 (ru) 2012-04-19 2012-04-19 Сплав на основе титана

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012115845/02A RU2502819C1 (ru) 2012-04-19 2012-04-19 Сплав на основе титана

Publications (2)

Publication Number Publication Date
RU2012115845A RU2012115845A (ru) 2013-10-27
RU2502819C1 true RU2502819C1 (ru) 2013-12-27

Family

ID=49446291

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012115845/02A RU2502819C1 (ru) 2012-04-19 2012-04-19 Сплав на основе титана

Country Status (1)

Country Link
RU (1) RU2502819C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2669959C2 (ru) * 2014-04-28 2018-10-17 Рти Интернатионал Металс, Инк. Титановый сплав, изготовленные из него детали и способ применения
CN111471891A (zh) * 2020-04-30 2020-07-31 中国石油天然气集团有限公司 720MPa级高强度耐蚀钛合金钻杆用管材及制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB785293A (ru) * 1900-01-01
JPH03126831A (ja) * 1989-10-06 1991-05-30 General Electric Co <Ge> 多成分系チタン合金の改良方法およびそれにより製造される合金
RU2203974C2 (ru) * 2001-05-07 2003-05-10 ОАО Верхнесалдинское металлургическое производственное объединение Сплав на основе титана
US20070212251A1 (en) * 2004-04-09 2007-09-13 Hiroaki Otsuka High Strength AlphaType Titanuim Alloy
RU2405850C2 (ru) * 2005-12-28 2010-12-10 Сумитомо Метал Индастриз, Лтд. Титановый сплав для коррозионно-стойких материалов

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB785293A (ru) * 1900-01-01
JPH03126831A (ja) * 1989-10-06 1991-05-30 General Electric Co <Ge> 多成分系チタン合金の改良方法およびそれにより製造される合金
RU2203974C2 (ru) * 2001-05-07 2003-05-10 ОАО Верхнесалдинское металлургическое производственное объединение Сплав на основе титана
US20070212251A1 (en) * 2004-04-09 2007-09-13 Hiroaki Otsuka High Strength AlphaType Titanuim Alloy
RU2405850C2 (ru) * 2005-12-28 2010-12-10 Сумитомо Метал Индастриз, Лтд. Титановый сплав для коррозионно-стойких материалов

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2669959C2 (ru) * 2014-04-28 2018-10-17 Рти Интернатионал Металс, Инк. Титановый сплав, изготовленные из него детали и способ применения
CN111471891A (zh) * 2020-04-30 2020-07-31 中国石油天然气集团有限公司 720MPa级高强度耐蚀钛合金钻杆用管材及制造方法
CN111471891B (zh) * 2020-04-30 2022-07-05 中国石油天然气集团有限公司 720MPa级高强度耐蚀钛合金钻杆用管材及制造方法

Also Published As

Publication number Publication date
RU2012115845A (ru) 2013-10-27

Similar Documents

Publication Publication Date Title
JP4258679B1 (ja) オーステナイト系ステンレス鋼
EP3524705B1 (en) Ni-cr-fe alloy
JP2005509751A (ja) 超オーステナイトステンレス鋼
Lu et al. Microstructural evolution and mechanical properties of 27Cr-4Mo-2Ni ferritic stainless steel during isothermal aging
CN104955970B (zh) 含溴离子的环境下耐蚀性优异的钛合金
JP6602463B2 (ja) Cr基二相合金及びその製造物
WO2013114501A1 (ja) 肉盛溶接材料および肉盛溶接金属が溶接された機械部品
WO2010093016A1 (ja) チタン板
US5424029A (en) Corrosion resistant nickel base alloy
KR20130143601A (ko) 니켈-크롬-철-몰리브덴 합금
JP2010150624A (ja) 鋳造用アルファ+ベータ型チタン合金及びこれを用いたゴルフクラブヘッド
RU2502819C1 (ru) Сплав на основе титана
JP7309879B2 (ja) 改善した耐食性、強度、延性及び靭性を有するチタン合金
RU2439183C2 (ru) Сплав на основе титана
EP3441492A1 (en) Chromium-based two-phase alloy and product using said two-phase alloy
US3837847A (en) Corrosion resistant ferritic stainless steel
JP2797913B2 (ja) 冷間加工性および溶接性に優れた高耐食性チタン合金
RU2426808C1 (ru) Сплав на основе титана
RU2506336C1 (ru) Сплав на основе титана
RU2393258C2 (ru) Сплав на основе титана
RU2690073C1 (ru) Литейный сплав на основе титана
JP2013001973A (ja) 耐水素吸収性ならびに造管性に優れるチタン合金溶接管および溶接管用フープ製品とそれらの製造方法
JPH059503B2 (ru)
JP7131332B2 (ja) オーステナイト系耐熱合金及びオーステナイト系耐熱合金部品
JP6825514B2 (ja) オーステナイト系耐熱合金部材