RU2501873C2 - Способы производства нефтепромысловых разлагаемых сплавов и соответствующих продуктов - Google Patents

Способы производства нефтепромысловых разлагаемых сплавов и соответствующих продуктов Download PDF

Info

Publication number
RU2501873C2
RU2501873C2 RU2009107632/02A RU2009107632A RU2501873C2 RU 2501873 C2 RU2501873 C2 RU 2501873C2 RU 2009107632/02 A RU2009107632/02 A RU 2009107632/02A RU 2009107632 A RU2009107632 A RU 2009107632A RU 2501873 C2 RU2501873 C2 RU 2501873C2
Authority
RU
Russia
Prior art keywords
alloying elements
decomposable
aluminum alloy
degradable
carrier
Prior art date
Application number
RU2009107632/02A
Other languages
English (en)
Other versions
RU2009107632A (ru
Inventor
Манюэль МАРИЯ
Original Assignee
Шлюмбергер Текнолоджи Б.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Шлюмбергер Текнолоджи Б.В. filed Critical Шлюмбергер Текнолоджи Б.В.
Publication of RU2009107632A publication Critical patent/RU2009107632A/ru
Application granted granted Critical
Publication of RU2501873C2 publication Critical patent/RU2501873C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/241Chemical after-treatment on the surface
    • B22F2003/242Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Abstract

Изобретение относится к области производства новых разлагаемых металлических материалов, таких как разлагаемые сплавы на основе алюминия, и к способам получения продуктов из разлагаемых в среде ствола нефтепромысловой скважины алюминиевых сплавов, применимых на нефтепромыслах при разведке, добыче и испытаниях нефтяных месторождений. Способ получения разлагаемого алюминиевого сплава включает введение в расплав алюминия или алюминиевого сплава одного или более легирующих элементов, выбранных из группы, включающей галлий (Ga), ртуть (Hg), индий (In), висмут (Bi), олово (Sn), сурьму (Sb), таллий (Tl), магний (Mg) и цинк (Zn), при этом один или более из легирующих элементов вводят в виде твердых предварительно отформованных добавок и растворение легирующих элементов в расплаве алюминия или алюминиевого сплава с образованием разлагаемого алюминиевого сплава. Если один или более легирующих элементов является жидким при температуре окружающей среды, то комбинируют эти один или более легирующих элементов с неметаллическим или металлическим носителем. Неметаллический носитель выполнен из пластиковых, керамических или огнеупорных материалов, а металлический носитель выбран из группы, состоящей из лития, магния, никеля и цинка. Обеспечивается получение разлагаемого алюминиевого сплава и деталей из него, обладающих сбалансированной комбинацией свойств, а именно скоростью разложения, прочностью, ударной вязкостью и плотностью. 3 н. и 18 з.п. ф-лы, 1 табл., 10 ил.

Description

Перекрестная ссылка на родственные заявки
[0001] Настоящая заявка испрашивает согласно разделу 35 § 119 Свода законов США приоритет предварительной заявки США с порядковым № 61/033440, поданной 4 марта 2008 г. Настоящая заявка связана с находящейся одновременно на рассмотрении заявкой на патент США с порядковым № 11/427233, поданной 28 июня 2006 г. и опубликованной как US 2007/0181224, которая включена сюда по ссылке во всей ее полноте.
Предпосылки изобретения
Область техники
[0002] Настоящая заявка относится в целом к области производства новых разлагаемых металлических материалов, таких как разлагаемые сплавы алюминия, и к способам получения продуктов из разлагаемых сплавов, применимых на нефтепромыслах при разведке, добыче и испытаниях нефтяных месторождений.
Уровень техники
[0003] Чтобы добыть углеводороды из подземных резервуаров, бурят скважины шириной несколько дюймов и до нескольких миль в длину, испытывают их для определения свойств резервуаров и заканчивают (осваивают) различными инструментами. При бурении, испытании и заканчивании скважины большое множество инструментов опускают в скважину (ствол скважины) для множества важных применений. Возникает много ситуаций, когда могут оказаться технически и экономически желательными разлагаемые материалы (например, материалы со способностью разлагаться со временем); например, элемент (т.е. инструмент или деталь инструмента), который может требоваться только на время и который потребовал бы значительной рабочей силы для его извлечения после того, как он стал ненужным, удобно было бы делать из разлагаемого материала. Если такой элемент будет разработан (подобран по составу) так, чтобы разрушаться в разнообразных условиях в стволе скважины после того, как он отслужит свои функции, то можно сэкономить время и деньги. Основным предварительным условием для применения разлагаемых материалов в промышленности и на нефтепромыслах является возможность их производства. В отличие от пластмасс и полимерных материалов, многие из которых могут разлагаться в среде ствола скважины (например, полимолочная кислота в воде), металлические материалы (например, сплавы) типично имеют намного большую механическую прочность, и механическая прочность необходима для получения нефтепромысловых элементов, которые могут выдерживать высокое давление и температуры, имеющиеся в скважине.
[0004] Различные разлагаемые металлические материалы были недавно раскрыты авторами этого изобретения (Мария и др.) (Marya et al.). Например, US 2007/0181224 авторов Мария и др. раскрывает композиции (т.е. материалы всех сортов: металлы, сплавы, композиты), содержащие один или более химически активных металлов в большей пропорции и один или более легирующих продуктов в меньшей пропорции. Эти композиции характеризуются как являющиеся высокопрочными, контролируемо реакционноспособными и разлагаемыми при определенных условиях. Эти композиции могут содержать химически активные металлы, выбранные из продуктов в группах I и II Периодической таблицы, и легирующие продукты, такие как галлий (Ga), индий (In), цинк (Zn), висмут (Bi) и алюминий (Al). Нефтепромысловые продукты из этих композиций могут применяться для временного разделения флюидов из различных зон. После выполнения их намеченных функций, такие нефтепромысловые продукты могут либо полностью разрушиться, либо их можно принудительно опустить или, наоборот, поднять в новое положение без разрушающих операций.
[0005] Аналогично, US 2008/0105438 раскрывает применение высокопрочных, контролируемо реакционноспособных и разлагаемых материалов специально для получения нефтепромысловых скважинных отклонителей и отражателей.
[0006] US 2008/0149345 раскрывает разлагаемые материалы, характеризуемые как являющиеся "умными", для применения в большом числе скважинных элементов. Такие элементы могут быть активированы, когда "умные" разлагаемые материалы разлагаются в скважинной среде. "Умные" разлагаемые материалы могут включать сплавы кальция, магния или алюминия или композиты этих материалов в комбинации с неметаллическими материалами, такими как пластики, эластомеры и керамика. Разложение "умных" разлагаемых материалов в таких флюидах, как вода, может привести к по меньшей мере одному отклику, который, в свою очередь, запускает другие отклики, например, открытие или закрытие устройства, или восприятие присутствия конкретных флюидов на основе воды (например, пластовой воды).
[0007] Так как разлагаемые металлические материалы (а именно, сплавы) подходят для множества разнообразных нефтепромысловых операций, крайне желательны способы производства нефтепромысловых продуктов, выполненных из этих разлагаемых материалов.
Сущность изобретения
[0008] Способ в соответствии с одним вариантом осуществления изобретения включает добавление одного или более легирующих продуктов в расплав алюминия или алюминиевого сплава; растворение легирующих продуктов в расплаве алюминия или алюминиевого сплава, с образованием тем самым расплава разлагаемого сплава; и отверждение расплава разлагаемого сплава с образованием разлагаемого сплава.
[0009] Другой аспект относится к способам производства продукта из разлагаемого сплава. Способ в соответствии с одним вариантом осуществления изобретения включает добавление одного или более легирующих продуктов в расплав алюминия или алюминиевого сплава в литейной форме; растворение упомянутых одного или более легирующих продуктов в расплаве алюминия или алюминиевого сплава с образованием расплава разлагаемого сплава; и отверждение расплава разлагаемого сплава с образованием продукта.
[0010] Другой аспект относится к способам производства продукта из разлагаемого сплава. Способ в соответствии с одним вариантом осуществления изобретения включает помещение порошков основного металла или основного сплава и порошков одного или более легирующих продуктов в пресс-форму; и прессование и спекание этих порошков с образованием продукта.
[0011] Другие аспекты и преимущества изобретения будут очевидными из последующего описания и приложенной формулы изобретения.
Краткое описание чертежей
[0012] Фиг.1 показывает способ производства продукта из разлагаемого сплава в соответствии с вариантами осуществления изобретения. Ряд вариантов осуществления изобретения использует процесс литья, представленный на фиг.1.
[0013] Фиг.2 показывает пример конического литого предмета из нового разлагаемого алюминиевого сплава в соответствии с одним вариантом осуществления изобретения. Показанный отлитый предмет содержал галлий (Ga), индий (In) и цинк (Zn) - три металла, которые точно добавляли посредством предварительно отформованной добавки. Легирующие элементы вводили в расплав чистого алюминия при 650°C, что давало в результате показанный предмет из разлагаемого сплава.
[0014] Фиг.3 показывает схематическую иллюстрацию способа производства, в котором добавки согласно вариантам осуществления изобретения вводят в расплав металла. Легирующие элементы (металлы) могут вводиться в добавке либо по отдельности, либо в виде смеси разных элементов, как в случае, когда должны быть получены сложные химические композиции.
[0015] Фиг.4 показывает блок-схему способа производства в случае разливки разлагаемых алюминиевых сплавов в соответствии с одним вариантом осуществления изобретения.
[0016] Фиг.5A-5D показывают двойные фазовые диаграммы галлия с другими выбранными металлами. Фиг.5A показывает фазовую диаграмму галлий-литий (Ga-Li); Фиг.5B показывает фазовую диаграмму галлий-магний (Ga-Mg); Фиг.5C показывает фазовую диаграмму галлий-никель (Ga-Ni); и Фиг.5D показывает фазовую диаграмму галлий-цинк (Ga-Zn). В условиях медленного нагрева и медленного охлаждения (т.е. равновесия) эти фазовые диаграммы выявляют полезную информацию, такую как взаимные растворимости различных фаз, а также изменения температуры плавления (ликвидуса) как функцию химического состава бинарных смесей. Фиг.5A-5D являются известными из уровня техники диаграммами, которые не только дают некоторое представление о проблемах производства разлагаемых сплавов, но также помогают определить подходящие сплавы для разлагаемых сплавов и предварительно отформованных добавок.
[0017] Фиг.6A показывает схему способа производства согласно вариантам осуществления изобретения для получения материала или продукта, имеющего гомогенный (однородный) или градиентный (т.е. с градиентами) химический состав. В зависимости от начального состава расплава, легирующих элементов, скоростей отверждения и скоростей охлаждения, химический состав разлагаемого сплава или продукта может быть распределенным, предлагая множество различных полезных свойств.
[0018] Фиг.6B показывает диаграмму, иллюстрирующую различные изменения свойств в разлагаемом сплаве, который может быть образован в соответствии с вариантами осуществления изобретения. Сплав, имеющий распределенный химический состав, считается сплавом; его можно также рассматривать как материал, содержащий в себе множество химических составов или сплавов. Здесь не делается никаких различий, так как такой материал будет просто называться сплавом.
[0019] Фиг.7 показывает трубчатый продукт, например, корпус перфоратора, содержащий разлагаемые сплавы в соответствии с одним вариантом осуществления изобретения.
[0020] Фиг.8 показывает корпус кумулятивного заряда, содержащий разлагаемые сплавы в соответствии с одним вариантом осуществления изобретения.
[0021] Фиг.9 показывает заключенный в оболочку корпус кумулятивного заряда, содержащий разлагаемые сплавы в соответствии с одним вариантом осуществления изобретения.
[0022] Фиг.10 показывает скважинную желонку, содержащую разлагаемые сплавы в соответствии с одним вариантом осуществления изобретения.
Подробное описание
[0023] Следующее подробное описание описывает ряд предпочтительных вариантов осуществления изобретения. Описанные варианты осуществления изобретения предназначены помочь специалисту в данной области техники понять заявленный объект, но не предназначены для излишнего ограничения настоящего или будущего объема любых притязаний, относящихся к настоящей заявке.
[0024] Варианты осуществления изобретения относятся к способам получения разлагаемых сплавов и элементов (например, скважинных инструментов и деталей инструментов), по меньшей мере частично (если не полностью) выполненных из одного или более разлагаемых сплавов. В соответствии с вариантами осуществления изобретения такие разлагаемые сплавы основаны на алюминии, что означает, что «основным металлом» является металлический алюминий (например, технически чистый алюминий) или алюминиевый сплав (например, литейных и деформируемых промышленных марок), а в него вводятся выбранные «легирующие продукты», так что получающийся в результате материал можно охарактеризовать как сплав, который является разлагаемым или, иначе говоря, разлагающимся при выбранных условиях (например, вода при повышенной температуре). В соответствии с вариантами осуществления изобретения такие разлагаемые сплавы могут растворяться, разрушаться на фрагменты и/или распадаться контролируемым образом, например, если подвергаются воздействию флюида (например, воды) в течение выбранного периода времени (например, минут, часов, недель). По определению, скорости разложения этих разлагаемых сплавов и продуктов на несколько порядков величины больше, чем те скорости, с которыми имеющиеся в продаже материалы, такие как чистый алюминий или, например, алюминиевый сплав марки 6061, разлагались бы вследствие процесса коррозии. Например, некоторые из этих разлагаемых сплавов могут полностью разложиться в холодной воде даже при нейтральном водородном потенциале (т.е. pH=7,0), тогда как алюминий и алюминиевые сплавы в подобное среде не разлагались бы. Фактически, при любых значениях pH разлагаемые сплавы, применимые в связи с вариантами осуществления изобретения, также разлагаются значительно быстрее, чем любой имеющийся в продаже алюминий, поэтому они и называются здесь разлагаемыми сплавами (отметим, что имеющиеся в продаже технический алюминий и алюминиевые сплавы медленно разлагаются в сильно кислых и высокоосновных флюидах).
[0025] Варианты осуществления изобретения относятся к новым вариациям известных способов, применяющихся при производстве металлических продуктов, таких как разливка, формовка, ковка и методы порошковой металлургии (например, спекание, горячее изостатическое прессование). Варианты осуществления изобретения имеют намного более широкое применение, чем нефтегазовая промышленность, и в наиболее широком смысле они применимы для изготовления продуктов (изделий) из разлагаемых сплавов. Специалист должен понимать, что эти примеры являются лишь иллюстрацией и не предназначены для излишнего ограничения настоящего или будущего объема притязаний.
[0026] Варианты осуществления изобретения особенно подходят для изготовления разлагаемых сплавов с уникальными свойствами для применения в скважинных средах или для производства разлагаемых нефтепромысловых элементов, таких как перечисляемые далее. Кроме того, варианты осуществления изобретения могут включать применения процессов сварки, нанесения покрытий и обработки поверхности, наряду с любыми другими процессами предшествующего уровня техники, для производства продуктов из разлагаемых сплавов.
[0027] Примеры нефтепромысловых продуктов, которые могут быть выполнены из разлагаемых сплавов, включают:
- приводы, предназначенные для приведения в действие других механизмов, которые могут быть таким простыми, как пружины сжатия (например, элемент пакера под напряжением или эксплуатационные шлипсовые пакеры, устройства крепления-расцепления и т.д.);
- датчики, например, предназначенные для обнаружения присутствия флюидов на водной основе (жидкость, водяной пар, кислоты, основания и т.д.). Например, при обнаружении присутствия воды запускается отклик системы, такой как механический отклик (смещение пружины или чего-то другого, или течение флюида) или электронный отклик, помимо прочих;
- одноразовые элементы (т.е. инструменты и детали инструментов), такие как кумулятивные заряды, перфораторы, в том числе перфораторы, спускаемые на НКТ, и желонки, заглушки и т.д., которые при разложении не оставляют побочного мусора. К одноразовым элементам относятся также полые компоненты с разлагаемыми заглушками/крышками/уплотнителями; например, прокладки, оболочка;
- прочные на смятие разлагаемые добавки во флюиды для гидроразрыва и проппанты. Сюда входят также тампоны для проведения работ в скважине, капсулы и т.д.
[0028] В соответствии с вариантами осуществления изобретения разлагаемые сплавы могут иметь в своей основе любые традиционные алюминий и алюминиевые сплавы; в данном описании эти традиционные металлы и сплавы также называются "основными металлами" или "основными сплавами", т.к. они не являются разлагаемыми. Действительно, алюминий и его сплавы не считаются разлагаемыми ни в нормальных, ни в желаемых условиях; например, им потребуются годы до полного разложения в пластовой воде скважины, тогда как разлагаемые алюминиевые сплавы в соответствии с вариантами осуществления изобретения могут полностью разложиться в пределах от минут до недель, в зависимости от их выбранных химических составов, внутренних структур (например, градиентная структура, проявляющая градиенты по составу), наряду с другими факторами. Эти неразлагающиеся основные металлы или сплавы алюминия можно смешивать с выбранными "легирующими продуктами" или добавками, такими как галлий (Ga), ртуть (Hg, хотя ртуть является высокоопасной, и ее применение следует ограничивать), индий (In), висмут (Bi), олово (Sb), свинец (Pb), сурьма (Sb), таллий (Tl) и т.д., чтобы создать новые материалы (сплавы), которые являются разлагаемыми или разлагающимися при определенных условиях (например, вода при конкретной температуре). Следует отметить, что редко когда для получения разлагаемого сплава эффективен один единственный легирующий элемент. Обычно требуются подходящие комбинации нескольких легирующих элементов, чтобы сбалансировать некоторые свойства: например, скорость разложения, прочность, ударную вязкость, плотность в дополнение к стоимости и технологичности. Таким образом, добавки обычно являются сложными смесями из нескольких указанных элементов, наряду с прочими, не перечисленными в данной заявке.
[0029] За конкретными примерами разлагаемых сплавов можно обратиться к примерам, описанным в опубликованной заявке на патент СЩА № 2007/0181224 A1. Некоторые примеры разлагаемых сплавов включают сплавы кальций-литий (Ca-Li), кальций-магний (Ca-Mg), кальций-алюминий (Ca-Al), кальций-цинк (Ca-Zn) и магний-литий (Mg-Li), обогащенные оловом (Sn), висмутом (Bi) или другими низкорастворимыми легирующими продуктами (например, свинцом, Pb).
[0030] Однако, из этих упомянутых разлагаемых сплавов в настоящей заявке применяются исключительно разлагаемые сплавы, которые в качестве своего основного компонента содержат алюминий; т.е. эти сплавы являются разлагаемыми алюминиевыми сплавами. Среди этих сплавов можно назвать, например, сплавы алюминий-галлий (Al-Ga), алюминий-индий (Al-In), а также сплавы более сложного состава: например, сплавы алюминий-галлий-индий (Al-Ga-In), алюминий-галлий-висмут-олово (Al-Ga-Bi-Sn). Сплавы, пригодные для вариантов осуществления настоящего изобретения, могут рассматриваться как экологически безвредные (за исключением сплавов, содержащих опасные элементы, такие, например, как ртуть или свинец), легкие в получении (например, их можно выплавлять на воздухе) и могут производиться по обычным технологиям, с учетом всего лишь небольших модификаций, которые являются объектом вариантов осуществления настоящего изобретения и предназначены, наряду с прочим, для облегчения производства и улучшения качества сплавов.
[0031] Эти разлагаемые сплавы алюминия являются механически прочными, ударопрочными и разлагающимися в различных условиях, таких как, например, в присутствии воды. Например, некоторые из разлагаемых алюминиевых сплавов могут разлагаться в растворах для заканчивания скважины, в пластовых водах независимо от pH, в предельных случаях в течение минут, а также в разбавленных кислотах, основаниях и смесях углеводородов с водой. Поэтому эти разлагаемые сплавы могут применяться для изготовления нефтепромысловых элементов, которые предназначены для выполнения временных функций. После выполнения своих функций такие нефтепромысловые продукты могут разлагаться в среде ствола скважины, таким образом устраняя необходимость в их извлечении. Следовательно, в результате использования таких разлагаемых материалов может быть получена существенная экономия расходов.
[0032] Фиг.1 представляет собой блок-схему, показывающую различные способы производства нефтепромысловых продуктов в соответствии с предпочтительными вариантами осуществления изобретения. При прямом подходе для получения желаемых продуктов (11) в способе может применятся литье (литьевое формование). Согласно этому способу неразлагающиеся металлы и сплавы могут быть смешаны и сплавлены с добавками, а получающийся расплав может быть разлит в литейную форму (матрицу), которая имеет конечную или близкую к конечной форму желаемого продукта, вместе с одним или несколькими химическими составами разлагаемого сплава. Таким образом, продукт литья представляет собой подходящий конечный продукт (15), который является разлагаемым.
[0033] Альтернативно, исходные отлитые продукты (11) могут подвергаться дальнейшим технологическим обработкам, таким как обработка резанием исходных продуктов (12) для изменения их формы до конечных желаемых продуктов (15). Аналогичным образом, исходный продукт (11) может быть подвергнут процессам (13) нанесения покрытия, обработки поверхности и/или сборки для того, чтобы получить конечные продукты (15). В соответствии с некоторыми вариантами осуществления изобретения исходные продукты (11) можно подвергать обработке резанием (12) и процессам нанесения покрытий, обработки поверхности и/или процессам сборки (13), чтобы получить конечные продукты (15).
[0034] Ниже в таблице представлены примеры нефтепромысловых скважинных продуктов с подходящими способами и процессами для их производства:
Трубчатые формы (разлагаемые)
- трубы, трубопроводы, корпуса перфораторов и т.д.
Нетрубчатые формы (разлагаемые)
- заглушки, желонки, профилированные желонки/заглушки для обработки и добычи, корпуса кумулятивных зарядов и т.д.
- Центробежное литье
- Формовка раскаткой с выдавливанием (flow forming), экструзионное формование, пилигримовая прокатка (Pilgrim)
- Порошковая металлургия и ее комбинации (например, литье и ГИП)
- Литье
- Формовка и ковка
- Порошковая металлургия
[0035] На Фиг.2 показана фотография водоразлагаемого продукта, который изготовлен с применением предпочтительного способа. Как показано, конический предмет 20 с трапецеидальным сечением 21 выполнен из разлагаемого алюминиевого сплава в соответствии с вариантами осуществления изобретения. В расплав вводили добавки, чтобы превратить расплав промышленного сплава 60661 в разлагаемый сплав в соответствии с вариантами осуществления изобретения. Этот конический предмет 20 может применяться как заглушка труб в скважине, наряду с прочими возможными применениями.
[0036] Как указано в качестве примера выше в таблице, разные нефтепромысловые элементы (т.е. устройства или детали) могут быть произведены с применением разлагаемых сплавов и способов, в том числе литьем, формовкой, ковкой и методами порошковой металлургии.
Литье
[0037] На Фиг.3 и 4 проиллюстрированы способы литья для получения разлагаемых сплавов и продуктов из разлагаемых сплавов. Например, Фиг.4 иллюстрирует способ литья продукта из разлагаемого сплава. Как показано, готовят расплав (41), который может быть расплавом чистого алюминия или расплавом алюминиевого сплава (например, алюминиевых сплавов 5086 или 6061). Затем в расплав (42) вводят добавки (легирующие продукты) для изменения химического состава расплава так, чтобы получившийся твердый сплав (образованный после охлаждения) был разлагаемым сплавом. Добавки (легирующие продукты) могут быть, например, одним или более из галлия (Ga), ртути (Hg), индия (In), висмута (Bi), олова (Sn), свинца (Pb), сурьмы (Sb), таллия (Tl), наряду с другим металлами, такими как магний (Mg), цинк (Zn) или кремний (Si). Добавки (легирующие продукты) могут быть однородно примешаны в расплав (43) посредством различных способов перемешивания (например, механических, электромагнитных и т.д.), чтобы создать расплав с макроскопически равномерным химическим составом (44). Этот однородный расплав может быть затем разлит в матрицу (литейную форму), чтобы получить продукт желаемого вида или формы, который выполнен из разлагаемого сплава (45). В некоторых случаях добавки (легирующие продукты) можно оставить в расплаве без перемешивания, чтобы способствовать градиентам состава внутри расплава. В некоторых случаях вскоре после смешения градиента может произойти химическое разделение, при котором из-за химической несовместимости более тяжелые элементы могут мигрировать к низу расплава, а более легкий элемент может мигрировать к его верху. Даже если после отвержения весь расплав превратится практически в ряд сплавов, твердое тело, образованное сразу после отливки, рассматривается здесь как единый сплав. Некоторые части этого сплава могут быть менее разлагаемыми, чем другие.
[0038] Как показано на Фиг.3, добавки (легирующие продукты) могут вводиться (например, в виде порошков, гранул, стружки, дроби и т.д.) в расплав основного металлического алюминия или алюминиевого сплава по отдельности. Альтернативно, несколько легирующих элементов (некоторые из них или все) могут быть заранее выполнены в виде предварительно отформованной добавки, служащей в качестве концентрата легирующих элементов, которую вводят затем в расплав основного металла. Добавки (часть из них или все добавки) могут предварительно смешиваться и расплавляться с образованием легирующей добавки-слитка (т.е. типа предварительно отформованной добавки), которую позднее вводят в расплав основного металлического алюминия или расплав алюминиевого сплава. Или же несколько добавок могут быть заранее выполнены в виде компактированной (прессованной) твердой добавки нескольких элементов (например, выполненной любым известным из уровня техники методом порошковой металлургии). Эту предварительно отформованную добавку вводят затем в неразлагаемый расплав, чтобы после отверждения получить разлагаемый сплав.
[0039] Способы по изобретению имеют своей целью изменение свойств чистого алюминия, а также алюминиевых сплавов, таких как имеющиеся в продаже алюминиевые сплавы типа 5086 или 6061 (две деформируемых марки) или 356 (литейная марка), чтобы создать разлагаемые сплавы. Эти способы могут осуществляться в месте расположения поставщика (производителя, продавца) с минимальными изменениями в существующих у них процессах. Поставщик (производитель, продавец), которого попросили произвести продукт из разлагаемого сплава, а не точно такой же точно продукт из неразлагаемого сплава, может не увидеть никаких изменений в своем производственном процессе и не знает точной рецептуры добавок. Применение добавок может предоставить полезное средство для изменения химического состава продуктов без необходимости раскрытия конфиденциальной информации о рецептуре поставщику договорных услуг.
[0040] Как отмечено выше, добавки (легирующие продукты) можно удобным образом вводить в виде порошков, гранул, стружки, дроби и т.д., или же в виде предварительно отформованного слитка или заготовки из прессованного порошка (порошковой прессовки). Однако, некоторые из этих добавок (например, галлий и ртуть) являются жидкостями при температуре окружающей среды или близкой к ней и требуют особых мер предосторожности при перевозке и манипуляциях. В случае таких жидких легирующих продуктов в них могут быть введены один или более носителей (продуктов-носителей), чтобы вызвать образование твердой добавки, с которой можно легко обращаться и которую легко доставить к месту расположения поставщика (производителя). Эти продукты-носители могут быть либо металлургически связаны с легирующими продуктами (например, галлием), и/или они могут быть пропитаны легирующими продуктами так, чтобы с этими легирующими продуктами можно было легко обращаться как с твердыми добавками. Такие смеси легирующий продукт - носитель можно измельчать в порошок, дробить, обрабатывать резанием, молоть до тонких частиц, чтобы получить легирующие продукты в форме порошков, гранул, стружки, дроби и т.д. Альтернативно, легирующий продукт вместе со своим носителем может быть выполнен в виде предварительно отформованных добавок, таких как слитки.
[0041] Например, твердая предварительно отформованная добавка, содержащая галлий (Ga), которую следует применять в качестве концентрата легирующих продуктов, может быть получена добавлением одного или более продуктов-носителей. Продукты-носители, подходящие для галлия (Ga), включают, например, литий (Li), магний (Mg) и никель (Ni), помимо прочих. Другие носители могут просто состоят из смесей, например, олова (Sn) и цинка (Zn). Олово (Sn) и галлий (Ga) при их объединении стабилизируют жидкую фазу при более низких температурах, но если в достаточном количестве добавить дополнительные элементы, такие как цинк (Zn), помимо прочих, то в результате получится новый твердый материал, содержащий галлий (Ga). Этот новый материал можно использовать в качестве твердых предварительно отформованных добавок. Таким образом, предварительно отформованные добавки (выполненные из металлов и сплавов) могут иметь сложные химические составы, но, будучи введенными в горячий расплав металла или сплава для образования разлагаемого сплава, они могут распадаться, чтобы надлежащим образом сплавиться с расплавом и, таким образом, создать разлагаемый сплав. Следует отметить, что элементы-носители влияют на свойства получаемых разлагаемых сплавов. Однако, они считаются продуктами-носителями, так как не они ответственны за то, что сплав становится разлагаемым; вместо этого они влияют на другие свойства (например, плотность, прочность и т.д.).
[0042] Фиг.5A показывает фазовую диаграмму Ga-Li. Как показано на этой фазовой диаграмме, требуется всего лишь несколько процентов лития (Li), чтобы вызвать быстрое повышение температуры плавления смеси Ga-Li. Это наблюдение указывает, что литий (Li) может быть высокоэффективным продуктом-носителем для галлия (Ga). Фиг.5A показывает, что добавление примерно 2,5 мас.% лития (Li) в галлий (Ga) стабилизирует твердую фазу; другими словами, всего при 2,5 мас.% лития (Li) жидкий галлий превращается в твердый, и это твердое вещество будет разлагаться при температуре, которая значительно ниже, чем температуры литья разлагаемых сплавов.
[0043] Аналогично, Фиг.5B показывает фазовую диаграмму Mg-Ga, а Фиг.5C показывает фазовую диаграмму Ni-Ga. Хотя магний (Mg) и никель (Ni) менее эффективны, чем литий (Li), они, тем не менее, обладают сходными эффектами повышения температур плавления смесей Mg-Ga и Ni-Ga. Фигуры 5B-5C показывают, что примерно 13 мас.% магния (Mg) в галлии (Ga) создает твердую фазу; для сравнения, тот же эффект дают примерно 22 мас.% никеля, тогда как потребовалось всего 2 мас.% лития (Li) для того, чтобы создать твердый материал. Распад любой из образованных фаз все же удовлетворителен, так как ни одна из этих фаз не является стабильной при температуре литья разлагаемого сплава.
[0044] Фиг.5D показывает фазовую диаграмму Zn-Ga, которая указывает, что цинк (Zn) не может образовывать интерметаллических фаз с галлием (Ga), но может пропитываться галлием (Ga). Таким образом, цинк (Zn) также можно применять как носитель галлия (Ga), однако гораздо менее эффективный, чем литий (Li), магний (Mg) или (Ni). Отметим, что литий является особенно химически активным, и его применение создает проблемы при манипуляциях, перевозке и закупке.
[0045] Другие варианты осуществления изобретения включают предварительно отформованные добавки металла и сплавов, причем металл и сплавы физически содержатся (диспергированы, инкапсулированы, завернуты и т.д.) внутри неметаллов, например, полимера. Этот инкапсулирующий неметаллический материал-носитель при контакте с горячим расплавом алюминия или алюминиевого сплава полностью разлагается и не оказывает отрицательного влияния на свойства отверженного расплава. Пластики разлагаются (сгорают) при температуре литья алюминия и могут использоваться как неметаллические носители.
[0046] Как показано на Фиг.4, добавки (легирующие продукты) и расплав основного металла могут быть смешаны с получением гомогенных смесей, которые затем разливают в матрицу или литейную форму и оставляют застывать с образованием разлагаемого сплава. Однако в соответствии с некоторыми вариантами осуществления изобретения добавленные легирующие продукты и расплав основного металла не смешивают для получения гомогенных отвержденных сплавов. Вместо этого добавление легирующих продуктов можно контролировать таким образом, чтобы получить разлагаемые сплавы, имеющими градиенты легирующих продуктов (т.е. чтобы образовать градиентный материал или сплав). При градиенте легирующих продуктов, присутствующих в разлагаемом сплаве, свойства (например, способность к разложению) разлагаемых сплавов будут меняться от точки к точке. Такой разлагаемый материал или элемент, имеющий, например, градиентную структуру около своей поверхности (например, в оболочке), которая является плохо разлагаемой, но середину, которая является разлагаемой, может быть выгоден, так как эта так называемая оболочка может служить естественной задержкой полному разложению материала или элемента и может заменять временную защитную обработку поверхности и покрытия.
[0047] Чтобы достичь желаемых свойств и уровней однородности в разлагаемом сплаве, можно, например, тщательно перемешать расплав с легирующими продуктами (добавками) и контролируемо охладить и закристаллизовать расплав алюминия плюс легирующие элементы. В некоторых случаях и в зависимости от легирующих элементов в расплаве и их распределения в расплаве, можно предусмотреть быстрое охлаждение, чтобы создать композиционную однородность, тогда как с другими легирующими составами может применяться быстрое охлаждение, чтобы образовать градиенты состава в отвержденном расплаве. Например, с легирующими элементами, имеющими существенную растворимость в твердом алюминии и в значительной степени распределяющимися при отверждении, быстрое охлаждение (какое получается, например, при выборочном отводе тепла в выбранных направлениях) может обычно использоваться для того, чтобы обеспечить образование градиентного материала. Напротив, для легирующих элементов, являющихся нерастворимыми в расплаве и имеющих очень различающиеся плотности, можно использовать медленное охлаждение с тем, чтобы облегчить образование градиентного материала (т.е. материала или сплава с градиентами состава). Ясно, что соответствующая практическая процедура расплавления и охлаждения будет зависеть от состава расплава и от того, должен ли химический состав расплава быть специально перераспределен как в градиентном сплаве или нет.
[0048] В случаях, когда в расплав добавляют небольшие количества олова (Sn) и висмута (Bi), чтобы добиться градиентного материала, можно медленно и контролируемо охлаждать расплав, чтобы было возможно перераспределение легирующих продуктов в расплаве. Например, Фиг.6A показывает схематическую иллюстрацию способа, использующего процессы медленного охлаждения (отверждения), чтобы создать градиент легирующих продуктов (например, олова, висмута, свинца) в расплаве, который был разлит в матрицу или литейную форму.
[0049] Скорости охлаждения и отверждения (кристаллизации), наряду с различными способами смешения легирующих продуктов, можно регулировать желаемым образом, чтобы достичь разных моделей градиента. На Фиг.6B показано несколько примеров распределения градиента вдоль вертикальной оси отливки, которых можно добиться, применяя описываемые здесь способы: (1): постоянное свойство (или нулевой градиент), (2), линейно уменьшающееся/увеличивающееся свойство (или постоянный градиент), (3) изменение свойства, отмеченное скачками, и (4) смешанное изменение.
Порошковая металлургия
[0050] Кроме способов литья, в которых расплав разлагаемого сплава разливают в литейную форму или матрицу (возможно имеющую конечную форму или близкую к конечной форму намеченного продукта), в некоторых вариантах осуществления изобретения применяются методы порошковой металлургии (ПМ). Согласно методам порошковой металлургии мелкие твердые частицы и/или порошки (а не расплавы) металлов и сплавов уплотняют под давлением с образованием твердых материалов (в том числе сплавов) и продуктов с конечными или близкими к конечным размерами. По определению, порошок является твердым веществом, и в случае с некоторыми низкоплавкими металлами (например, галлий является жидким при температуре окружающей среды) получить порошки нельзя. Поэтому раскрываются новые способы создания порошков из добавков к неразлагаемому металлу или сплаву.
[0051] Порошки и мелкие кусочки разлагаемых сплавов могут быть получены механическим размолом, измельчением в порошок, тонким измельчением и распылением твердых разлагаемых сплавов (таких как слитки) и расплавов разлагаемых сплавов (капли). Например, можно приготовить слиток из сплава, содержащего алюминий (Al), висмут (Bi), олово (Sn) и галлий (Ga), и измельчить его в тонкий порошок до использования этого материала в процессах порошковой металлургии, таких как прессование (включая горячее изостатическое прессование или ГИП) и спекание. Также может применяться тонкий помол разлагаемого сплава для образования тонкого твердого порошка разлагаемого сплава.
[0052] В соответствии с вариантами осуществления изобретения порошки низкоплавких добавок могут быть получены сплавлением низкоплавких добавок с другими продуктами для повышения их температур плавления (солидуса и ликвидуса). Например, галлий (Ga) является жидким при комнатной температуре или близкой к комнатной. Как отмечалось ранее, галлий (Ga) можно надлежащим образом сплавить с литием (Li), магнием (Mg), никелем (Ni) или цинком (Zn), чтобы превратить его в твердый сплав, как показано на Фиг.5A-5D. Эти сплавы галлия (Ga) можно затем превратить в порошок для последующих процессов порошковой металлургии (уплотнение). Аналогично, другие металлы, которые являются в противном случае жидкостями, также можно превратить в твердые вещества с помощью металла-носителя для того, чтобы приготовить порошки для применения в соответствии с вариантами осуществления изобретения.
[0053] В соответствии с одним вариантом осуществления изобретения продукт или деталь в близкой к заданной форме (например, желонка/заглушка, корпус кумулятивного заряда, труба и т.д.) могут производиться спеканием вышеупомянутых порошков разлагаемого сплава с применением способов, в которых используются методы порошковой металлургии, в том числе прессование и спекание.
[0054] В соответствии с некоторыми вариантами осуществления изобретения металлические порошки, которые по отдельности являются неразлагаемыми, можно смешать, спрессовать и спечь с получением конечного продукта, который является разлагаемым. Например, неразлагаемый алюминиевый порошок и один или более порошков легирующих продуктов (например, галлий, висмут, олово и т.д.) можно смешать и спрессовать в желаемый продукт близкой к конечной формы, с последующей высокотемпературной термообработкой (спеканием), чтобы получить твердый и связный продукт, который является разлагаемым при выбранных условиях.
[0055] В соответствии с некоторыми вариантами осуществления изобретения разлагаемый сплав (в порошковой форме) можно смешать с другими металлами или неметаллическими материалами (такими как керамика) с образованием композитного материала, который можно прессовать и спекать, получая продукт, который все еще является разлагаемым и имеет некоторые другие желаемые свойства, приданные этими другими материалами (такими как керамика). В некоторых вариантах осуществления изобретения можно вводить порошки огнеупорных продуктов (таких как углерод, кремний, вольфрам, карбид вольфрама и т.д.), в частности, для изменения плотности разлагаемого материала и/или продукта, наряду с другими свойствами. Эти порошки можно смешивать, прессовать и спекать с получением продуктов конечной формы или почти конечной формы.
Формовка и ковка (холодная или горячая обработка давлением)
[0056] В соответствии с некоторыми вариантами осуществления изобретения разлагаемые продукты, полученные литьем или методами порошковой металлургии, можно обрабатывать далее с помощью способов обработки металлов давлением (в том числе ковкой), которые обычно применяются в данной области техники.
[0057] Например, разлагаемые сплавы можно подвергать холодной обработке давлением перед термообработкой, чтобы получить тонкозернистые структуры и/или чтобы гомогенизировать сплавы. Аналогично, разлагаемые сплавы можно подвергать холодной обработке давлением для повышения их прочности. Например, холодная обработка трубы давлением может давать трубчатое изделие с прочностью 50 килофунтов/кв.дм (ksi), что требуется, например, для корпуса перфоратора.
[0058] Для устранения в разлагаемых сплавах внутренних дефектов, таких как литейные раковины (в частности, усадочные раковины из-за присутствия особых легирующих продуктов), может также применяться горячая обработка давлением. Таким образом, горячая обработка давлением (ковка) может использоваться для улучшения свойств (таких как плотность) разлагаемого металлического материала.
Нанесение покрытий и обработка поверхности
[0059] Сходным образом, методы нанесения покрытий (осаждение), которые обычно используются в промышленности, могут применяться для создания или улучшения продукта, обладающего способностью к разложению. Примеры включают осаждение разлагаемых сплавов на неразлагаемый материал с помощью таких процессов, как наплавка. Покрытие также может наноситься на отливки или полученные порошковой металлургией продукты с тем, чтобы снабдить эти продукты защитными слоями. Такие покрытия могут использоваться для задержки разложения разлагаемых материалов. Подобным образом, обработка поверхности может использоваться для регулирования способности к разложению поверхности разлагаемого сплава. Например, выбранные методы (например, травление, диффузия и т.д.) могут применяться для селективного модифицирования поверхности разлагаемого сплава.
[0060] В соответствии с некоторыми вариантами осуществления изобретения можно использовать методы нанесения послойного покрытия (осаждения) с тем, чтобы нарастить продукт до конечной формы или до формы, близкой к заданной, используя только разлагаемые материалы или используя разлагаемые материалы на базовой подложке, выполненной из неразлагаемого материала (такого как керамика или композит).
[0061] Продукты, изготовленные способами согласно вариантам осуществления изобретения, могут находиться в конечной форме готовыми к применению. Альтернативно, они могут быть деталями (частями) более крупного элемента. В этом случае для получения конечного элемента может проводиться дальнейшая сборка этих деталей, содержащих разлагаемые сплавы. Сборка может включать сварку этих деталей друг с другом или приваривание детали к более крупному элементу.
[0062] Фиг.7-10 показывают несколько примеров нефтепромысловых элементов, для которых может быть выгодным использовать разлагаемые сплавы в соответствии с вариантами осуществления изобретения.
[0063] Фиг.7 показывает трубу 71, которая может быть корпусом перфоратора для операций перфорации. Трубчатый корпус 71 перфоратора может иметь несколько расположенных на нем сменных носителей 72 заряда. После операции перфорации трубчатый корпус 71 перфоратора можно оставить разлагаться, если он сделан из разлагаемого сплава. Применение перфоратора из разлагаемого сплава устранит необходимость в его извлечении после перфорации.
[0064] Трубчатый продукт, какой показан на Фиг.7, может быть изготовлен, например, литьем, включая центробежное литье, ковкой и формовкой (экструзией или формовкой раскаткой с выдавливанием) продукта, сделанного из разлагаемого материала. Альтернативно, такой продукт может быть получен описанными ранее методами порошковой металлургии. Необязательно могут также применяться нанесение покрытий и обработка поверхности.
[0065] Фиг.8 показывает кумулятивный заряд, содержащий металлический корпус 81, облицовку 82, взрывчатое вещество 83 основного заряда, взрывчатое вещество (запал) 84 и металлический капсюль (или чашку) 85. После взрыва взрывчатые вещества 83 и 84 расходуются, а облицовка 82 кумулятивной струей выбрасывается в пласты. Корпус 81 остается сзади. Если корпус 81 сделан из разлагаемого материала, он может быть оставлен разлагаться, так что он не будет мешать последующим нефтепромысловым работам.
[0066] Фиг.9 показывает другие варианты реализации кумулятивного заряда, имеющего корпус 91, облицовку 92, взрывчатое вещество 93 основного заряда, взрывчатое вещество 95 запала, расположенное около отверстия 94 патрона, и крышку 99. Опять же, после взрыва корпус 91 и крышка 99 остаются сзади. Может быть желательным, чтобы корпус 91 и крышка 99 были сделаны из разлагаемого сплава с тем, чтобы эти оставшиеся части не мешали последующим нефтепромысловым работам.
[0067] Фиг.10 показывает желонку для обработки и добычи (TAP). Желонка этого типа опускается в скважину, чтобы обеспечить временную изоляцию зоны. После выполнения своих функций этот элемент разлагается, так что он не мешает последующим нефтепромысловым работам. В соответствии с вариантами осуществления изобретения тело желонки 101 может быть выполнено из разлагаемого сплава.
[0068] Кумулятивные заряды, показанные на Фиг.8 и Фиг.9, и TAP желонка, показанная на Фиг.10, могут производиться литьем, методами порошковой металлургии или формованием, например, с экструзией или вытягиванием. Первоначальные продукты также могут быть обработаны далее с помощью процессов нанесения покрытия, обработки поверхности, сварки и соединения, помимо прочих процессов.
[0069] Преимущества вариантов осуществления изобретения могут включать одно или более из следующих. Способы могут обеспечить разлагаемые нефтепромысловые элементы, которые могут разлагаться после того, как цели применения этих нефтепромысловых элементов были достигнуты, без ограничения будущих работ в стволе скважины. Варианты осуществления изобретения можно также легко приспособить к оборудованию, которое используется в настоящее время при изготовлении этих элементов. Модификации существующих способов являются простыми. Некоторые из этих способов могут быть осуществлены продавцами (поставщиками/производителями) на их существующем оборудовании с минимальными модификациями процедур их работы.
[0070] Хотя различные примеры были описаны в отношении ограниченного числа вариантов осуществления изобретения, специалисты в данной области техники, воспользовавшись этим раскрытием, поймут, что могут быть придуманы и другие варианты осуществления, которые не выходят за объем изобретения, как он раскрыт здесь. Соответственно, объем настоящих и любых будущих притязаний не должен излишне ограничиваться настоящей заявкой.

Claims (21)

1. Способ получения разлагаемого в среде ствола нефтепромысловой скважины алюминиевого сплава, включающий введение в расплав алюминия или алюминиевого сплава одного или более легирующих элементов, выбранных из группы, включающей галлий (Ga), ртуть (Hg), индий (In), висмут (Bi), олово (Sn), сурьму (Sb), таллий (Tl), магний (Mg) и цинк (Zn), при этом один или более из легирующих элементов вводят в виде твердых предварительно отформованных добавок, а если один или более легирующих элементов является жидким при температуре окружающей среды, то комбинируют этот один или более легирующих элементов с носителем, причем носитель является неметаллическим носителем или металлическим носителем, неметаллический носитель выполнен из пластиковых, керамических или огнеупорных материалов, а металлический носитель выбран из группы, состоящей из лития, магния, никеля и цинка, и растворение легирующих элементов в расплаве алюминия или алюминиевого сплава с образованием разлагаемого алюминиевого сплава.
2. Способ по п.1, в котором упомянутая группа одного или более легирующих элементов дополнительно включает свинец (Pb) и кремний (Si).
3. Способ по п.1, в котором упомянутые один или более легирующих элементов вводят в виде предварительно отформованной добавки, состоящей из слитка нескольких легирующих элементов.
4. Способ по п.1, в котором неметаллический носитель высвобождает несколько легирующих добавок.
5. Способ по п.3, в котором носитель повышает температуру плавления предварительно отформованной добавки.
6. Способ по п.1, в котором проводят отверждение таким образом, чтобы получить гомогенное распределение упомянутых одного или более легирующих элементов в разлагаемом алюминиевом сплаве.
7. Способ по п.1, в котором проводят отверждение таким образом, чтобы получить гетерогенное распределение упомянутых одного или более легирующих элементов в разлагаемом алюминиевом сплаве.
8. Способ по п.1, дополнительно включающий измельчение в порошок, дробление или размол отвержденного разлагаемого алюминиевого сплава с образованием порошка разлагаемого алюминиевого сплава.
9. Способ по п.1, дополнительно включающий горячую или холодную обработку давлением или ковку разлагаемого алюминиевого сплава для изменения его свойства.
10. Способ производства детали для нефтепромыслового устройства из разлагаемого в среде ствола нефтепромысловой скважины алюминиевого сплава, включающий введение в расплав алюминия или алюминиевого сплава в литейной форме одного или более легирующих элементов, выбранных из группы, включающей галлий (Ga), ртуть (Hg), индий (In), висмут (Bi), олово (Sn), сурьму (Sb), таллий (Tl), магний (Mg) и цинк (Zn), при этом, если один или более из вводимых легирующих элементов является жидкостью при температуре окружающей среды, то этот один или более вводимых легирующих элементов вводят в виде твердых предварительно отформованных добавок, содержащих носитель, растворение упомянутых одного или более легирующих элементов в расплаве алюминия или алюминиевого сплава с образованием расплава разлагаемого алюминиевого сплава и отверждение расплава разлагаемого алюминиевого сплава с образованием упомянутой детали.
11. Способ по п.10, в котором упомянутая группа легирующих элементов дополнительно включает свинец (Pb) и кремний (Si).
12. Способ по п.10, в котором упомянутые один или более легирующих элементов до введения предварительно отформовывают в слиток сплава, состоящего из нескольких легирующих элементов.
13. Способ по п.10, в котором носитель включает металл-носитель для изменения свойства упомянутых одного или более легирующих элементов.
14. Способ по п.10, в котором в качестве легирующего элемента вводят галлий и носитель.
15. Способ по п.10, в котором отверждение проводят таким образом, чтобы получить деталь с гомогенным распределением в ней свойств.
16. Способ по п.10, в котором отверждение проводят таким образом, чтобы получить деталь с гетерогенным распределением в ней свойств.
17. Способ по п.10, в котором деталь является деталью нефтепромыслового устройства.
18. Способ производства детали для нефтепромыслового устройства из разлагаемого в среде ствола нефтепромысловой скважины алюминиевого сплава, включающий помещение в пресс-форму порошков основного металла алюминия или основного алюминиевого сплава и порошков одного или более легирующих элементов, выбранных из группы, включающей галлий, ртуть, индий, висмут, олово, сурьму, таллий, магний, цинк и кремний, причем один или более из легирующих элементов выполнен из предварительно отформованной смеси, содержащей металл-носитель, выбранный из группы, состоящей из лития, магния, никеля и цинка, и прессование, и спекание этих порошков с образованием упомянутой детали.
19. Способ по п.18, в котором порошки основного металла алюминия или основного алюминиевого сплава и порошки упомянутых одного или более легирующих элементов предварительно смешивают до помещения в пресс-форму.
20. Способ по п.18, дополнительно включающий помещение порошков неметаллического материала в пресс-форму до упомянутых помещения и спекания, причем неметаллический материал выполнен из пластика, или керамики, или огнеупорного материала.
21. Способ по п.18, в котором металл-носитель изменяет свойство упомянутых одного или более легирующих элементов.
RU2009107632/02A 2008-03-04 2009-03-03 Способы производства нефтепромысловых разлагаемых сплавов и соответствующих продуктов RU2501873C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US3344008P 2008-03-04 2008-03-04
US61/033,440 2008-03-04

Publications (2)

Publication Number Publication Date
RU2009107632A RU2009107632A (ru) 2010-09-10
RU2501873C2 true RU2501873C2 (ru) 2013-12-20

Family

ID=41053790

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009107632/02A RU2501873C2 (ru) 2008-03-04 2009-03-03 Способы производства нефтепромысловых разлагаемых сплавов и соответствующих продуктов

Country Status (4)

Country Link
US (2) US8770261B2 (ru)
CN (1) CN101560619A (ru)
AR (1) AR070786A1 (ru)
RU (1) RU2501873C2 (ru)

Families Citing this family (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9079246B2 (en) 2009-12-08 2015-07-14 Baker Hughes Incorporated Method of making a nanomatrix powder metal compact
US8403037B2 (en) 2009-12-08 2013-03-26 Baker Hughes Incorporated Dissolvable tool and method
US8297364B2 (en) 2009-12-08 2012-10-30 Baker Hughes Incorporated Telescopic unit with dissolvable barrier
US9682425B2 (en) 2009-12-08 2017-06-20 Baker Hughes Incorporated Coated metallic powder and method of making the same
US9109429B2 (en) * 2002-12-08 2015-08-18 Baker Hughes Incorporated Engineered powder compact composite material
US9101978B2 (en) 2002-12-08 2015-08-11 Baker Hughes Incorporated Nanomatrix powder metal compact
US8327931B2 (en) * 2009-12-08 2012-12-11 Baker Hughes Incorporated Multi-component disappearing tripping ball and method for making the same
US10316616B2 (en) 2004-05-28 2019-06-11 Schlumberger Technology Corporation Dissolvable bridge plug
US8770261B2 (en) 2006-02-09 2014-07-08 Schlumberger Technology Corporation Methods of manufacturing degradable alloys and products made from degradable alloys
US20090078420A1 (en) * 2007-09-25 2009-03-26 Schlumberger Technology Corporation Perforator charge with a case containing a reactive material
US9500061B2 (en) * 2008-12-23 2016-11-22 Frazier Technologies, L.L.C. Downhole tools having non-toxic degradable elements and methods of using the same
GB0916995D0 (en) * 2009-09-29 2009-11-11 Rolls Royce Plc A method of manufacturing a metal component from metal powder
US8342094B2 (en) * 2009-10-22 2013-01-01 Schlumberger Technology Corporation Dissolvable material application in perforating
US8425651B2 (en) 2010-07-30 2013-04-23 Baker Hughes Incorporated Nanomatrix metal composite
US9243475B2 (en) 2009-12-08 2016-01-26 Baker Hughes Incorporated Extruded powder metal compact
US9227243B2 (en) 2009-12-08 2016-01-05 Baker Hughes Incorporated Method of making a powder metal compact
US9127515B2 (en) 2010-10-27 2015-09-08 Baker Hughes Incorporated Nanomatrix carbon composite
US10240419B2 (en) 2009-12-08 2019-03-26 Baker Hughes, A Ge Company, Llc Downhole flow inhibition tool and method of unplugging a seat
US8528633B2 (en) 2009-12-08 2013-09-10 Baker Hughes Incorporated Dissolvable tool and method
US8573295B2 (en) 2010-11-16 2013-11-05 Baker Hughes Incorporated Plug and method of unplugging a seat
US8584746B2 (en) * 2010-02-01 2013-11-19 Schlumberger Technology Corporation Oilfield isolation element and method
US8776884B2 (en) 2010-08-09 2014-07-15 Baker Hughes Incorporated Formation treatment system and method
US9090955B2 (en) 2010-10-27 2015-07-28 Baker Hughes Incorporated Nanomatrix powder metal composite
US9010424B2 (en) * 2011-03-29 2015-04-21 Baker Hughes Incorporated High permeability frac proppant
US9080098B2 (en) 2011-04-28 2015-07-14 Baker Hughes Incorporated Functionally gradient composite article
US8631876B2 (en) 2011-04-28 2014-01-21 Baker Hughes Incorporated Method of making and using a functionally gradient composite tool
US9139928B2 (en) 2011-06-17 2015-09-22 Baker Hughes Incorporated Corrodible downhole article and method of removing the article from downhole environment
US9707739B2 (en) 2011-07-22 2017-07-18 Baker Hughes Incorporated Intermetallic metallic composite, method of manufacture thereof and articles comprising the same
US9643250B2 (en) 2011-07-29 2017-05-09 Baker Hughes Incorporated Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle
US9833838B2 (en) 2011-07-29 2017-12-05 Baker Hughes, A Ge Company, Llc Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle
US9033055B2 (en) 2011-08-17 2015-05-19 Baker Hughes Incorporated Selectively degradable passage restriction and method
US9090956B2 (en) 2011-08-30 2015-07-28 Baker Hughes Incorporated Aluminum alloy powder metal compact
US9109269B2 (en) 2011-08-30 2015-08-18 Baker Hughes Incorporated Magnesium alloy powder metal compact
US9856547B2 (en) 2011-08-30 2018-01-02 Bakers Hughes, A Ge Company, Llc Nanostructured powder metal compact
US9643144B2 (en) 2011-09-02 2017-05-09 Baker Hughes Incorporated Method to generate and disperse nanostructures in a composite material
US9347119B2 (en) 2011-09-03 2016-05-24 Baker Hughes Incorporated Degradable high shock impedance material
US9133695B2 (en) 2011-09-03 2015-09-15 Baker Hughes Incorporated Degradable shaped charge and perforating gun system
US9187990B2 (en) 2011-09-03 2015-11-17 Baker Hughes Incorporated Method of using a degradable shaped charge and perforating gun system
US9284812B2 (en) 2011-11-21 2016-03-15 Baker Hughes Incorporated System for increasing swelling efficiency
US9010416B2 (en) 2012-01-25 2015-04-21 Baker Hughes Incorporated Tubular anchoring system and a seat for use in the same
US9068428B2 (en) 2012-02-13 2015-06-30 Baker Hughes Incorporated Selectively corrodible downhole article and method of use
US9605508B2 (en) 2012-05-08 2017-03-28 Baker Hughes Incorporated Disintegrable and conformable metallic seal, and method of making the same
US10145194B2 (en) 2012-06-14 2018-12-04 Halliburton Energy Services, Inc. Methods of removing a wellbore isolation device using a eutectic composition
US9657543B2 (en) 2012-06-14 2017-05-23 Halliburton Energy Services, Inc. Wellbore isolation device containing a substance that undergoes a phase transition
US9528343B2 (en) * 2013-01-17 2016-12-27 Parker-Hannifin Corporation Degradable ball sealer
CN110074880B (zh) * 2013-03-14 2022-04-29 Bio Dg股份有限公司 包含具有增强的降解速率的生物可降解的合金的可植入的医疗装置
CN104178663B (zh) * 2013-05-27 2016-10-05 中国科学院金属研究所 用于制备崩解压裂球的铝基合金材料及其制备方法
CN105358723B (zh) * 2013-07-11 2018-06-01 爱励轧制产品德国有限责任公司 生产包含锂的铝合金的方法
WO2015003940A1 (en) 2013-07-11 2015-01-15 Aleris Rolled Products Germany Gmbh System and method for adding molten lithium to a molten aluminium melt
US9816339B2 (en) 2013-09-03 2017-11-14 Baker Hughes, A Ge Company, Llc Plug reception assembly and method of reducing restriction in a borehole
WO2015057755A1 (en) * 2013-10-15 2015-04-23 Schlumberger Canada Limited Material processing for components
WO2015094449A1 (en) * 2013-12-20 2015-06-25 Halliburton Energy Services, Inc. Wellbore isolation device made from a powdered fusible alloy matrix
US11167343B2 (en) 2014-02-21 2021-11-09 Terves, Llc Galvanically-active in situ formed particles for controlled rate dissolving tools
US10689740B2 (en) 2014-04-18 2020-06-23 Terves, LLCq Galvanically-active in situ formed particles for controlled rate dissolving tools
US10865465B2 (en) 2017-07-27 2020-12-15 Terves, Llc Degradable metal matrix composite
US20170268088A1 (en) 2014-02-21 2017-09-21 Terves Inc. High Conductivity Magnesium Alloy
GB2537576A (en) 2014-02-21 2016-10-19 Terves Inc Manufacture of controlled rate dissolving materials
US10758974B2 (en) 2014-02-21 2020-09-01 Terves, Llc Self-actuating device for centralizing an object
CA2936851A1 (en) 2014-02-21 2015-08-27 Terves, Inc. Fluid activated disintegrating metal system
US20170174981A1 (en) * 2014-03-31 2017-06-22 Schlumberger Technology Corporation Degradable components
CN110004339B (zh) 2014-04-18 2021-11-26 特维斯股份有限公司 用于受控速率溶解工具的电化活性的原位形成的颗粒
US20170113275A1 (en) * 2014-05-30 2017-04-27 Schlumberger Technology Corporation Degradable powder blend
WO2015184043A1 (en) * 2014-05-30 2015-12-03 Schlumberger Canada Limited Degradable heat treatable components
US10167534B2 (en) 2014-08-28 2019-01-01 Halliburton Energy Services, Inc. Fresh water degradable downhole tools comprising magnesium and aluminum alloys
US10106872B2 (en) * 2014-08-28 2018-10-23 Halliburton Energy Services, Inc. Degradable downhole tools comprising magnesium alloys
US10888926B2 (en) * 2014-11-26 2021-01-12 Schlumberger Technology Corporation Shaping degradable material
WO2016099439A1 (en) 2014-12-15 2016-06-23 Halliburton Energy Services, Inc. Wellbore sealing system with degradable whipstock
CN104561714A (zh) * 2014-12-30 2015-04-29 淄博宏泰防腐有限公司 地下管道测压用可自蚀镁合金球阀及其制备方法
US9910026B2 (en) 2015-01-21 2018-03-06 Baker Hughes, A Ge Company, Llc High temperature tracers for downhole detection of produced water
US10378303B2 (en) 2015-03-05 2019-08-13 Baker Hughes, A Ge Company, Llc Downhole tool and method of forming the same
WO2016165041A1 (zh) * 2015-04-17 2016-10-20 西安费诺油气技术有限公司 一种高强度可溶解铝合金及其制备方法
CN104879109B (zh) * 2015-04-22 2018-08-14 中国石油天然气股份有限公司 可分解压裂球座表面复合膜层及球座及球座制备方法
US10221637B2 (en) 2015-08-11 2019-03-05 Baker Hughes, A Ge Company, Llc Methods of manufacturing dissolvable tools via liquid-solid state molding
US10016810B2 (en) 2015-12-14 2018-07-10 Baker Hughes, A Ge Company, Llc Methods of manufacturing degradable tools using a galvanic carrier and tools manufactured thereof
US10508525B2 (en) 2016-03-10 2019-12-17 Bubbletight, LLC Degradable downhole tools and\or components thereof, method of hydraulic fracturing using such tools or components, and method of making such tools or components
US11109976B2 (en) 2016-03-18 2021-09-07 Dean Baker Material compositions, apparatus and method of manufacturing composites for medical implants or manufacturing of implant product, and products of the same
US20170314102A1 (en) * 2016-05-02 2017-11-02 Schlumberger Technology Corporation Multiple portion grip
US20170314103A1 (en) * 2016-05-02 2017-11-02 Schlumberger Technology Corporation Degradable carbide grip
CA3038039C (en) 2016-10-28 2021-05-18 Halliburton Energy Services, Inc. Use of degradable metal alloy waste particulates in well treatment fluids
CN106834767B (zh) * 2017-01-06 2019-08-06 陕西科技大学 一种细化可溶解铝合金材料晶粒的方法
CN107081430B (zh) * 2017-04-05 2019-03-19 陕西科技大学 一种Mg2Sn合金粉体的制备方法
CN107012368B (zh) * 2017-04-05 2019-03-19 陕西科技大学 一种利用粉末冶金法制备高强可降解铝合金的方法
CN107671304B (zh) * 2017-08-21 2019-10-11 中国石油天然气股份有限公司 一种碳热还原法合成铝合金粉体的方法
GB2584237B (en) 2018-01-29 2022-04-06 Kureha Corp Degradable downhole plug
US11602788B2 (en) 2018-05-04 2023-03-14 Dean Baker Dissolvable compositions and tools including particles having a reactive shell and a non-reactive core
CA3039574A1 (en) 2018-05-10 2019-11-10 Josh Caris Degradable high-strength zinc compositions and method of manufacture
EP3623488B1 (en) 2018-05-21 2021-05-05 Obshchestvo S Ogranichennoy Otvetstvennost'yu "Obedinennaya Kompaniya Rusal Inzhenerno-Tekhnologicheskiy Tsentr" Aluminum alloy powder for additive techniques and parts produced from the powder
GB201819205D0 (en) * 2018-11-26 2019-01-09 Magnesium Elektron Ltd Corrodible downhole article
US11365597B2 (en) 2019-12-03 2022-06-21 Ipi Technology Llc Artificial lift assembly
CN111139379A (zh) * 2020-03-12 2020-05-12 兰州理工大学 一种可降解铝合金及其热处理方法、铝合金和其应用
CN111876636B (zh) * 2020-08-07 2021-08-10 广东省材料与加工研究所 可溶解铝合金材料、其制备方法及压裂球

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU337425A1 (ru) * Способ получения алюминиевого антифрикционногосплава
SU1585079A1 (ru) * 1987-12-22 1990-08-15 Предприятие П/Я Р-6543 Способ легировани алюминиевого порошка свинцом и/или оловом
RU2015187C1 (ru) * 1992-06-15 1994-06-30 Предприятие "Безотходные и малоотходные технологии БМТ Лтд." Способ получения низколегированного алюминиево-кремниевого сплава
US6261432B1 (en) * 1997-04-19 2001-07-17 Daimlerchrysler Ag Process for the production of an object with a hollow space

Family Cites Families (208)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2261292A (en) 1939-07-25 1941-11-04 Standard Oil Dev Co Method for completing oil wells
US2558427A (en) 1946-05-08 1951-06-26 Schlumberger Well Surv Corp Casing collar locator
GB666281A (en) 1949-04-27 1952-02-06 Nat Res Dev Improvements relating to the production of magnesium-lithium alloys
US2809891A (en) * 1954-10-12 1957-10-15 Aluminum Co Of America Method of making articles from aluminous metal powder
NL94598C (ru) 1955-07-06
US3106959A (en) 1960-04-15 1963-10-15 Gulf Research Development Co Method of fracturing a subsurface formation
US3316748A (en) 1960-12-01 1967-05-02 Reynolds Metals Co Method of producing propping agent
US3311956A (en) 1965-05-24 1967-04-04 Kaiser Aluminium Chem Corp Casting process employing soluble cores
US3348616A (en) 1965-06-11 1967-10-24 Dow Chemical Co Jetting device
GB1187305A (en) 1967-05-22 1970-04-08 Dow Chemical Co Process for production of Extruded Magnesium-Lithium Alloy Articles
GB1237035A (en) 1969-08-20 1971-06-30 Tsi Travmatologii I Ortopedii Magnesium-base alloy for use in bone surgery
US3971657A (en) * 1974-02-13 1976-07-27 Alcan Aluminum Corporation Sintering of particulate metal
US3938764A (en) 1975-05-19 1976-02-17 Mcdonnell Douglas Corporation Frangible aircraft floor
US4157732A (en) 1977-10-25 1979-06-12 Ppg Industries, Inc. Method and apparatus for well completion
DE2818656A1 (de) 1978-04-27 1979-10-31 Siemens Ag Breitbandkommunikationssystem
US4270761A (en) 1979-12-03 1981-06-02 Seals Eastern Inc. Seal for geothermal wells and the like
US4450136A (en) 1982-03-09 1984-05-22 Pfizer, Inc. Calcium/aluminum alloys and process for their preparation
DE3482772D1 (de) 1984-10-11 1990-08-23 Kawasaki Steel Co Rostfreie martensitische staehle fuer nahtlose rohre.
DE3518909A1 (de) 1985-05-25 1986-11-27 Felten & Guilleaume Energie Starkstromkabel, insbesondere fuer spannungen von 6 bis 60 kv, mit eingelegten lichtwellenleitern
US4664816A (en) 1985-05-28 1987-05-12 Texaco Inc. Encapsulated water absorbent polymers as lost circulation additives for aqueous drilling fluids
JPS622412A (ja) 1985-06-28 1987-01-08 株式会社フジクラ 光ファイバ複合架空線
US4652274A (en) 1985-08-07 1987-03-24 Minnesota Mining And Manufacturing Company Coated abrasive product having radiation curable binder
US4735632A (en) 1987-04-02 1988-04-05 Minnesota Mining And Manufacturing Company Coated abrasive binder containing ternary photoinitiator system
US4859054A (en) 1987-07-10 1989-08-22 The United States Of America As Represented By The United States Department Of Energy Proximity fuze
US4923714A (en) 1987-09-17 1990-05-08 Minnesota Mining And Manufacturing Company Novolac coated ceramic particulate
US4906523A (en) 1987-09-24 1990-03-06 Minnesota Mining And Manufacturing Company Primer for surfaces containing inorganic oxide
US5057600A (en) 1987-10-09 1991-10-15 The Dow Chemical Company Process for forming an article comprising poly(etheretherketone) (PEEK) type polymers
US4871008A (en) 1988-01-11 1989-10-03 Lanxide Technology Company, Lp Method of making metal matrix composites
US4856584A (en) 1988-08-30 1989-08-15 Conoco Inc. Method for monitoring and controlling scale formation in a well
US4903440A (en) 1988-11-23 1990-02-27 Minnesota Mining And Manufacturing Company Abrasive product having binder comprising an aminoplast resin
US4919209A (en) 1989-01-17 1990-04-24 Dowell Schlumberger Incorporated Method for treating subterranean formations
US4898239A (en) 1989-02-23 1990-02-06 Teledyne Industries, Inc. Retrievable bridge plug
US5204183A (en) 1989-12-14 1993-04-20 Exxon Research And Engineering Company Composition comprising polymer encapsulant for sealing layer encapsulated substrate
SU1733617A1 (ru) 1990-01-09 1992-05-15 Башкирский государственный научно-исследовательский и проектный институт нефтяной промышленности Отклонитель
FR2661762B1 (fr) 1990-05-03 1992-07-31 Storck Jean Procede et dispositif de transaction entre un premier et au moins un deuxieme supports de donnees et support a cette fin.
US5236472A (en) 1991-02-22 1993-08-17 Minnesota Mining And Manufacturing Company Abrasive product having a binder comprising an aminoplast binder
US5188183A (en) 1991-05-03 1993-02-23 Baker Hughes Incorporated Method and apparatus for controlling the flow of well bore fluids
GB9110451D0 (en) 1991-05-14 1991-07-03 Schlumberger Services Petrol Cleaning method
US5485745A (en) 1991-05-20 1996-01-23 Halliburton Company Modular downhole inspection system for coiled tubing
BE1005201A4 (fr) 1991-08-28 1993-05-25 Diamant Boart Stratabit S A En Couronne de carottier.
US5178646A (en) 1992-01-22 1993-01-12 Minnesota Mining And Manufacturing Company Coatable thermally curable binder presursor solutions modified with a reactive diluent, abrasive articles incorporating same, and methods of making said abrasive articles
US5417285A (en) 1992-08-07 1995-05-23 Baker Hughes Incorporated Method and apparatus for sealing and transferring force in a wellbore
GB2275953B (en) 1992-09-01 1996-04-17 Halliburton Co Downhole logging tool
US5355956A (en) 1992-09-28 1994-10-18 Halliburton Company Plugged base pipe for sand control
JPH06228694A (ja) 1993-02-04 1994-08-16 Furukawa Alum Co Ltd 熱交換器用高強度高耐食性アルミニウム合金複合材
US5542471A (en) 1993-11-16 1996-08-06 Loral Vought System Corporation Heat transfer element having the thermally conductive fibers
US5765641A (en) 1994-05-02 1998-06-16 Halliburton Energy Services, Inc. Bidirectional disappearing plug
US5826661A (en) 1994-05-02 1998-10-27 Halliburton Energy Services, Inc. Linear indexing apparatus and methods of using same
US5479986A (en) 1994-05-02 1996-01-02 Halliburton Company Temporary plug system
US5573225A (en) 1994-05-06 1996-11-12 Dowell, A Division Of Schlumberger Technology Corporation Means for placing cable within coiled tubing
US5526881A (en) 1994-06-30 1996-06-18 Quality Tubing, Inc. Preperforated coiled tubing
US5507345A (en) 1994-11-23 1996-04-16 Chevron U.S.A. Inc. Methods for sub-surface fluid shut-off
GB9425240D0 (en) 1994-12-14 1995-02-08 Head Philip Dissoluable metal to metal seal
DK0718602T3 (da) 1994-12-20 2002-11-25 Schlumberger Ind S R L Enkeltstråle-væskemåler med forbedret følsomhed og reguleringseffekt
RU2073696C1 (ru) 1995-02-22 1997-02-20 Беляев Юрий Александрович Состав для удаления парафиногидратных и/или асфальтеносмолопарафиновых отложений и способ его применения
US6116345A (en) 1995-03-10 2000-09-12 Baker Hughes Incorporated Tubing injection systems for oilfield operations
ES2136980T3 (es) * 1995-03-20 1999-12-01 Alusuisse Bayrisches Druckguss Procedimiento para la produccion de piezas fundidas a presion.
US5566757A (en) 1995-03-23 1996-10-22 Halliburton Company Method and apparatus for setting sidetrack plugs in open or cased well bores
US6157893A (en) 1995-03-31 2000-12-05 Baker Hughes Incorporated Modified formation testing apparatus and method
US6581455B1 (en) 1995-03-31 2003-06-24 Baker Hughes Incorporated Modified formation testing apparatus with borehole grippers and method of formation testing
FR2737563B1 (fr) 1995-08-04 1997-10-10 Schlumberger Ind Sa Compteur de liquide a jet unique a couple moteur ameliore
US5898517A (en) 1995-08-24 1999-04-27 Weis; R. Stephen Optical fiber modulation and demodulation system
GB9517378D0 (en) 1995-08-24 1995-10-25 Sofitech Nv Hydraulic jetting system
GB9606673D0 (en) 1996-03-29 1996-06-05 Sensor Dynamics Ltd Apparatus for the remote measurement of physical parameters
US6012526A (en) 1996-08-13 2000-01-11 Baker Hughes Incorporated Method for sealing the junctions in multilateral wells
TW361051B (en) 1997-01-09 1999-06-11 Matsushita Electric Ind Co Ltd Motion vector detection apparatus
US5913003A (en) 1997-01-10 1999-06-15 Lucent Technologies Inc. Composite fiber optic distribution cable
US6281489B1 (en) 1997-05-02 2001-08-28 Baker Hughes Incorporated Monitoring of downhole parameters and tools utilizing fiber optics
GB2324818B (en) 1997-05-02 1999-07-14 Sofitech Nv Jetting tool for well cleaning
RU2122628C1 (ru) 1997-06-20 1998-11-27 Беляев Юрий Александрович Устройство для удаления асфальтеносмолопарафиновых и/или парафиногидратных отложений
DE19731021A1 (de) 1997-07-18 1999-01-21 Meyer Joerg In vivo abbaubares metallisches Implantat
GB9717572D0 (en) 1997-08-20 1997-10-22 Hennig Gregory E Main bore isolation assembly for multi-lateral use
US6346315B1 (en) 1997-10-20 2002-02-12 Henry Sawatsky House wares and decorative process therefor
GB2331103A (en) 1997-11-05 1999-05-12 Jessop Saville Limited Non-magnetic corrosion resistant high strength steels
US6009216A (en) 1997-11-05 1999-12-28 Cidra Corporation Coiled tubing sensor system for delivery of distributed multiplexed sensors
US6173771B1 (en) 1998-07-29 2001-01-16 Schlumberger Technology Corporation Apparatus for cleaning well tubular members
GB2335213B (en) 1998-03-09 2000-09-13 Sofitech Nv Nozzle arrangement for well cleaning apparatus
JPH11264042A (ja) 1998-03-18 1999-09-28 Furukawa Electric Co Ltd:The 流体通路構成用アルミニウム合金ブレージングシート
US6192983B1 (en) 1998-04-21 2001-02-27 Baker Hughes Incorporated Coiled tubing strings and installation methods
WO1999057417A2 (en) 1998-05-05 1999-11-11 Baker Hughes Incorporated Chemical actuation system for downhole tools and method for detecting failure of an inflatable element
US6168755B1 (en) 1998-05-27 2001-01-02 The United States Of America As Represented By The Secretary Of Commerce High nitrogen stainless steel
US6162766A (en) 1998-05-29 2000-12-19 3M Innovative Properties Company Encapsulated breakers, compositions and methods of use
US6247536B1 (en) 1998-07-14 2001-06-19 Camco International Inc. Downhole multiplexer and related methods
BR9906613B1 (pt) 1998-07-22 2010-03-23 partÍcula composta, mÉtodos para sua produÇço, mÉtodo de tratamento de fratura e mÉtodo para a filtragem de Água.
GB2341404A (en) 1998-09-12 2000-03-15 Weatherford Lamb Plug and plug set for use in a wellbore
DE29816469U1 (de) 1998-09-14 1998-12-24 Huang Wen Sheng Stahlseilstruktur mit Lichtleitfasern
US6325146B1 (en) 1999-03-31 2001-12-04 Halliburton Energy Services, Inc. Methods of downhole testing subterranean formations and associated apparatus therefor
US6209646B1 (en) 1999-04-21 2001-04-03 Halliburton Energy Services, Inc. Controlling the release of chemical additives in well treating fluids
US6561269B1 (en) 1999-04-30 2003-05-13 The Regents Of The University Of California Canister, sealing method and composition for sealing a borehole
US6155348A (en) 1999-05-25 2000-12-05 Halliburton Energy Services, Inc. Stimulating unconsolidated producing zones in wells
US6534449B1 (en) 1999-05-27 2003-03-18 Schlumberger Technology Corp. Removal of wellbore residues
US6519568B1 (en) 1999-06-15 2003-02-11 Schlumberger Technology Corporation System and method for electronic data delivery
US6241021B1 (en) 1999-07-09 2001-06-05 Halliburton Energy Services, Inc. Methods of completing an uncemented wellbore junction
RU2149247C1 (ru) 1999-08-04 2000-05-20 Общество с ограниченной ответственностью "ИНТЕНСИФИКАЦИЯ" Способ строительства многозабойной скважины
US6349768B1 (en) 1999-09-30 2002-02-26 Schlumberger Technology Corporation Method and apparatus for all multilateral well entry
US6399546B1 (en) 1999-10-15 2002-06-04 Schlumberger Technology Corporation Fluid system having controllable reversible viscosity
US6878782B2 (en) 1999-12-01 2005-04-12 General Electric Thermoset composition, method, and article
US6708769B2 (en) 2000-05-05 2004-03-23 Weatherford/Lamb, Inc. Apparatus and methods for forming a lateral wellbore
US6311773B1 (en) 2000-01-28 2001-11-06 Halliburton Energy Services, Inc. Resin composition and methods of consolidating particulate solids in wells with or without closure pressure
MY132567A (en) 2000-02-15 2007-10-31 Exxonmobil Upstream Res Co Method and apparatus for stimulation of multiple formation intervals
US6571875B2 (en) 2000-02-17 2003-06-03 Schlumberger Technology Corporation Circulation tool for use in gravel packing of wellbores
US20020007945A1 (en) 2000-04-06 2002-01-24 David Neuroth Composite coiled tubing with embedded fiber optic sensors
US7285772B2 (en) 2000-04-07 2007-10-23 Schlumberger Technology Corporation Logging tool with a parasitic radiation shield and method of logging with such a tool
US6745159B1 (en) 2000-04-28 2004-06-01 Halliburton Energy Services, Inc. Process of designing screenless completions for oil or gas wells
US6444316B1 (en) 2000-05-05 2002-09-03 Halliburton Energy Services, Inc. Encapsulated chemicals for use in controlled time release applications and methods
WO2001094744A1 (en) 2000-06-06 2001-12-13 T R Oil Services Limited Microcapsule well treatment
US6419014B1 (en) 2000-07-20 2002-07-16 Schlumberger Technology Corporation Apparatus and method for orienting a downhole tool
US6394185B1 (en) 2000-07-27 2002-05-28 Vernon George Constien Product and process for coating wellbore screens
US6494263B2 (en) 2000-08-01 2002-12-17 Halliburton Energy Services, Inc. Well drilling and servicing fluids and methods of removing filter cake deposited thereby
US6422314B1 (en) 2000-08-01 2002-07-23 Halliburton Energy Services, Inc. Well drilling and servicing fluids and methods of removing filter cake deposited thereby
US6789621B2 (en) 2000-08-03 2004-09-14 Schlumberger Technology Corporation Intelligent well system and method
US20040035199A1 (en) 2000-11-01 2004-02-26 Baker Hughes Incorporated Hydraulic and mechanical noise isolation for improved formation testing
US6474152B1 (en) 2000-11-02 2002-11-05 Schlumberger Technology Corporation Methods and apparatus for optically measuring fluid compressibility downhole
JP2002161325A (ja) 2000-11-20 2002-06-04 Ulvac Japan Ltd アルミニウム合金、水素ガス発生方法、水素ガス発生器及び発電機
US6457525B1 (en) 2000-12-15 2002-10-01 Exxonmobil Oil Corporation Method and apparatus for completing multiple production zones from a single wellbore
US6607036B2 (en) 2001-03-01 2003-08-19 Intevep, S.A. Method for heating subterranean formation, particularly for heating reservoir fluids in near well bore zone
US6866306B2 (en) 2001-03-23 2005-03-15 Schlumberger Technology Corporation Low-loss inductive couplers for use in wired pipe strings
US6896056B2 (en) 2001-06-01 2005-05-24 Baker Hughes Incorporated System and methods for detecting casing collars
US20030070811A1 (en) 2001-10-12 2003-04-17 Robison Clark E. Apparatus and method for perforating a subterranean formation
US6780525B2 (en) 2001-12-26 2004-08-24 The Boeing Company High strength friction stir welding
ATE465099T1 (de) 2002-03-06 2010-05-15 Bacchus Technologies Ltd Stopfen
US6732802B2 (en) 2002-03-21 2004-05-11 Halliburton Energy Services, Inc. Isolation bypass joint system and completion method for a multilateral well
US7353867B2 (en) 2002-04-12 2008-04-08 Weatherford/Lamb. Inc. Whipstock assembly and method of manufacture
US7153575B2 (en) 2002-06-03 2006-12-26 Borden Chemical, Inc. Particulate material having multiple curable coatings and methods for making and using same
US6968898B2 (en) 2002-06-28 2005-11-29 Halliburton Energy Services, Inc. System and method for removing particles from a well bore penetrating a possible producing formation
AU2003268086A1 (en) 2002-08-13 2004-02-25 Bunn-O-Matic Corporation Liquid beverage conductivity detecting system
MXPA05001618A (es) 2002-08-15 2005-04-25 Schlumberger Technology Bv Uso de sensores de temperatura distribuidos durante los tratamientos de pozos de sondeo.
US20040040707A1 (en) 2002-08-29 2004-03-04 Dusterhoft Ronald G. Well treatment apparatus and method
US6978832B2 (en) 2002-09-09 2005-12-27 Halliburton Energy Services, Inc. Downhole sensing with fiber in the formation
US6854522B2 (en) 2002-09-23 2005-02-15 Halliburton Energy Services, Inc. Annular isolators for expandable tubulars in wellbores
US6896058B2 (en) 2002-10-22 2005-05-24 Halliburton Energy Services, Inc. Methods of introducing treating fluids into subterranean producing zones
US7090020B2 (en) 2002-10-30 2006-08-15 Schlumberger Technology Corp. Multi-cycle dump valve
US6877563B2 (en) 2003-01-21 2005-04-12 Halliburton Energy Services, Inc. Methods of drilling and completing well bores
US6971448B2 (en) 2003-02-26 2005-12-06 Halliburton Energy Services, Inc. Methods and compositions for sealing subterranean zones
US6983798B2 (en) 2003-03-05 2006-01-10 Halliburton Energy Services, Inc. Methods and fluid compositions for depositing and removing filter cake in a well bore
US6956099B2 (en) 2003-03-20 2005-10-18 Arizona Chemical Company Polyamide-polyether block copolymer
US6924254B2 (en) 2003-03-20 2005-08-02 Halliburton Energy Services, Inc. Viscous well treating fluids and methods
US6966376B2 (en) 2003-03-28 2005-11-22 Schlumberger Technology Corporation Method and composition for downhole cementing
US6918445B2 (en) 2003-04-18 2005-07-19 Halliburton Energy Services, Inc. Methods and compositions for treating subterranean zones using environmentally safe polymer breakers
GB2417617B (en) 2003-06-20 2006-10-11 Schlumberger Holdings Method and apparatus for deploying a line in coiled tubing
US6966368B2 (en) 2003-06-24 2005-11-22 Baker Hughes Incorporated Plug and expel flow control device
US7044220B2 (en) 2003-06-27 2006-05-16 Halliburton Energy Services, Inc. Compositions and methods for improving proppant pack permeability and fracture conductivity in a subterranean well
US7140437B2 (en) 2003-07-21 2006-11-28 Halliburton Energy Services, Inc. Apparatus and method for monitoring a treatment process in a production interval
US6976538B2 (en) 2003-07-30 2005-12-20 Halliburton Energy Services, Inc. Methods and high density viscous salt water fluids for treating subterranean zones
US7036588B2 (en) 2003-09-09 2006-05-02 Halliburton Energy Services, Inc. Treatment fluids comprising starch and ceramic particulate bridging agents and methods of using these fluids to provide fluid loss control
US6968903B2 (en) 2003-09-23 2005-11-29 Tiw Corporation Orientable whipstock tool and method
US7000701B2 (en) 2003-11-18 2006-02-21 Halliburton Energy Services, Inc. Compositions and methods for weighting a breaker coating for uniform distribution in a particulate pack
AT412727B (de) 2003-12-03 2005-06-27 Boehler Edelstahl Korrosionsbeständige, austenitische stahllegierung
US20050121192A1 (en) 2003-12-08 2005-06-09 Hailey Travis T.Jr. Apparatus and method for gravel packing an interval of a wellbore
US7308941B2 (en) 2003-12-12 2007-12-18 Schlumberger Technology Corporation Apparatus and methods for measurement of solids in a wellbore
US7036586B2 (en) 2004-01-30 2006-05-02 Halliburton Energy Services, Inc. Methods of cementing in subterranean formations using crack resistant cement compositions
US7210533B2 (en) 2004-02-11 2007-05-01 Halliburton Energy Services, Inc. Disposable downhole tool with segmented compression element and method
US7424909B2 (en) 2004-02-27 2008-09-16 Smith International, Inc. Drillable bridge plug
US7244492B2 (en) 2004-03-04 2007-07-17 Fairmount Minerals, Ltd. Soluble fibers for use in resin coated proppant
US7353879B2 (en) 2004-03-18 2008-04-08 Halliburton Energy Services, Inc. Biodegradable downhole tools
US7093664B2 (en) 2004-03-18 2006-08-22 Halliburton Energy Services, Inc. One-time use composite tool formed of fibers and a biodegradable resin
US7168494B2 (en) 2004-03-18 2007-01-30 Halliburton Energy Services, Inc. Dissolvable downhole tools
KR101173713B1 (ko) 2004-04-28 2012-08-13 니폰 제온 가부시키가이샤 적층체, 발광 소자 및 그의 사용
US20050269083A1 (en) 2004-05-03 2005-12-08 Halliburton Energy Services, Inc. Onboard navigation system for downhole tool
ATE328294T1 (de) 2004-05-17 2006-06-15 Schlumberger Technology Bv Bohrlochmessgerät mit strahlenschutzabschirmung und messverfahren
US8211247B2 (en) 2006-02-09 2012-07-03 Schlumberger Technology Corporation Degradable compositions, apparatus comprising same, and method of use
US10316616B2 (en) 2004-05-28 2019-06-11 Schlumberger Technology Corporation Dissolvable bridge plug
US20090151936A1 (en) 2007-12-18 2009-06-18 Robert Greenaway System and Method for Monitoring Scale Removal from a Wellbore
US7617873B2 (en) 2004-05-28 2009-11-17 Schlumberger Technology Corporation System and methods using fiber optics in coiled tubing
WO2006017459A2 (en) 2004-08-02 2006-02-16 Enventure Global Technology, Llc Expandable tubular
JP4379804B2 (ja) 2004-08-13 2009-12-09 大同特殊鋼株式会社 高窒素オーステナイト系ステンレス鋼
WO2006023172A2 (en) 2004-08-16 2006-03-02 Fairmount Minerals, Ltd. Control of particulate flowback in subterranean formations using elastomeric resin coated proppants
US7124827B2 (en) 2004-08-17 2006-10-24 Tiw Corporation Expandable whipstock anchor assembly
US7420475B2 (en) 2004-08-26 2008-09-02 Schlumberger Technology Corporation Well site communication system
US7322412B2 (en) 2004-08-30 2008-01-29 Halliburton Energy Services, Inc. Casing shoes and methods of reverse-circulation cementing of casing
US7401665B2 (en) 2004-09-01 2008-07-22 Schlumberger Technology Corporation Apparatus and method for drilling a branch borehole from an oil well
US7322417B2 (en) 2004-12-14 2008-01-29 Schlumberger Technology Corporation Technique and apparatus for completing multiple zones
RU46031U1 (ru) 2005-01-14 2005-06-10 Балдаев Лев Христофорович Насосно-компрессорная труба
WO2006088603A1 (en) 2005-01-21 2006-08-24 Fairmount Minerals, Ltd. Soluble diverting agents
US7963341B2 (en) 2005-03-04 2011-06-21 Weatherford/Lamb, Inc. Apparatus and methods of use for a whipstock anchor
US20060249310A1 (en) 2005-05-06 2006-11-09 Stowe Calvin J Whipstock kick off radius
US8584772B2 (en) 2005-05-25 2013-11-19 Schlumberger Technology Corporation Shaped charges for creating enhanced perforation tunnel in a well formation
RU2296217C1 (ru) 2005-06-23 2007-03-27 Общество с ограниченной ответственностью "Научно-производственное объединение "Волгахимэкспорт" Способ обработки призабойной зоны скважины
US20070034384A1 (en) 2005-07-08 2007-02-15 Pratt Christopher A Whipstock liner
US8567494B2 (en) 2005-08-31 2013-10-29 Schlumberger Technology Corporation Well operating elements comprising a soluble component and methods of use
US8231947B2 (en) 2005-11-16 2012-07-31 Schlumberger Technology Corporation Oilfield elements having controlled solubility and methods of use
RU52996U1 (ru) 2005-12-05 2006-04-27 Закрытое акционерное общество "Агат" Корпус кумулятивного заряда перфоратора
US7448448B2 (en) 2005-12-15 2008-11-11 Schlumberger Technology Corporation System and method for treatment of a well
CN101326340B (zh) 2005-12-19 2012-10-31 埃克森美孚上游研究公司 一种与烃的生产有关的系统和方法
US20110067889A1 (en) 2006-02-09 2011-03-24 Schlumberger Technology Corporation Expandable and degradable downhole hydraulic regulating assembly
US8220554B2 (en) 2006-02-09 2012-07-17 Schlumberger Technology Corporation Degradable whipstock apparatus and method of use
US8770261B2 (en) 2006-02-09 2014-07-08 Schlumberger Technology Corporation Methods of manufacturing degradable alloys and products made from degradable alloys
US8211248B2 (en) 2009-02-16 2012-07-03 Schlumberger Technology Corporation Aged-hardenable aluminum alloy with environmental degradability, methods of use and making
US7686100B2 (en) 2006-08-02 2010-03-30 Schlumberger Technology Corporation Technique and apparatus for drilling and completing a well in one half trip
US7464764B2 (en) 2006-09-18 2008-12-16 Baker Hughes Incorporated Retractable ball seat having a time delay material
US7726406B2 (en) 2006-09-18 2010-06-01 Yang Xu Dissolvable downhole trigger device
US7436252B2 (en) 2006-09-28 2008-10-14 Silicon Laboratories Inc. Performing a coordinate rotation digital computer (CORDIC) operation for amplitude modulation (AM) demodulation
US7581590B2 (en) 2006-12-08 2009-09-01 Schlumberger Technology Corporation Heterogeneous proppant placement in a fracture with removable channelant fill
US7658883B2 (en) 2006-12-18 2010-02-09 Schlumberger Technology Corporation Interstitially strengthened high carbon and high nitrogen austenitic alloys, oilfield apparatus comprising same, and methods of making and using same
US20080149351A1 (en) 2006-12-20 2008-06-26 Schlumberger Technology Corporation Temporary containments for swellable and inflatable packer elements
US7976949B2 (en) 2007-03-12 2011-07-12 Saint-Gobain Ceramics & Plastics, Inc. High strength ceramic elements and methods for making and using the same
US20080236842A1 (en) 2007-03-27 2008-10-02 Schlumberger Technology Corporation Downhole oilfield apparatus comprising a diamond-like carbon coating and methods of use
US8162055B2 (en) 2007-04-02 2012-04-24 Halliburton Energy Services Inc. Methods of activating compositions in subterranean zones
US7757773B2 (en) 2007-07-25 2010-07-20 Schlumberger Technology Corporation Latch assembly for wellbore operations
US9157141B2 (en) 2007-08-24 2015-10-13 Schlumberger Technology Corporation Conditioning ferrous alloys into cracking susceptible and fragmentable elements for use in a well
US8312931B2 (en) 2007-10-12 2012-11-20 Baker Hughes Incorporated Flow restriction device
US7909110B2 (en) 2007-11-20 2011-03-22 Schlumberger Technology Corporation Anchoring and sealing system for cased hole wells
US7775279B2 (en) 2007-12-17 2010-08-17 Schlumberger Technology Corporation Debris-free perforating apparatus and technique
US7708066B2 (en) 2007-12-21 2010-05-04 Frazier W Lynn Full bore valve for downhole use
US20090242189A1 (en) 2008-03-28 2009-10-01 Schlumberger Technology Corporation Swell packer
US20100012708A1 (en) 2008-07-16 2010-01-21 Schlumberger Technology Corporation Oilfield tools comprising modified-soldered electronic components and methods of manufacturing same
US7775286B2 (en) 2008-08-06 2010-08-17 Baker Hughes Incorporated Convertible downhole devices and method of performing downhole operations using convertible downhole devices
US8276670B2 (en) 2009-04-27 2012-10-02 Schlumberger Technology Corporation Downhole dissolvable plug

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU337425A1 (ru) * Способ получения алюминиевого антифрикционногосплава
SU349746A1 (ru) * В. И. Добаткин, Н. А. Буше, В. И. Елагин , Г. А. Мудренко Способ получения алюминиево-свинцового сплава
SU1585079A1 (ru) * 1987-12-22 1990-08-15 Предприятие П/Я Р-6543 Способ легировани алюминиевого порошка свинцом и/или оловом
RU2015187C1 (ru) * 1992-06-15 1994-06-30 Предприятие "Безотходные и малоотходные технологии БМТ Лтд." Способ получения низколегированного алюминиево-кремниевого сплава
US6261432B1 (en) * 1997-04-19 2001-07-17 Daimlerchrysler Ag Process for the production of an object with a hollow space

Also Published As

Publication number Publication date
US20140286810A1 (en) 2014-09-25
CN101560619A (zh) 2009-10-21
US20090226340A1 (en) 2009-09-10
US8770261B2 (en) 2014-07-08
AR070786A1 (es) 2010-05-05
RU2009107632A (ru) 2010-09-10
US9789544B2 (en) 2017-10-17

Similar Documents

Publication Publication Date Title
RU2501873C2 (ru) Способы производства нефтепромысловых разлагаемых сплавов и соответствующих продуктов
CA3141049C (en) Corrodible downhole article
US20200385842A1 (en) Degradable Metal Matrix Composite
US9789663B2 (en) Degradable metal composites, methods of manufacture, and uses thereof
US10016810B2 (en) Methods of manufacturing degradable tools using a galvanic carrier and tools manufactured thereof
CA3056776C (en) Downhole tools having controlled disintegration and applications thereof
US10221637B2 (en) Methods of manufacturing dissolvable tools via liquid-solid state molding
US11685971B2 (en) Degradable high-strength zinc compositions and method of manufacture
CN107109542B (zh) 用于生产低氮、基本上不含氮化物的铬和含有铬加铌的镍基合金的方法以及所得铬和镍基合金
CA2888137A1 (en) Engineered reactive matrix composites
US10947612B2 (en) High strength, flowable, selectively degradable composite material and articles made thereby
CH652752A5 (fr) Piece resistante a l'usure.
US9382776B2 (en) Wellbore isolation device made from a powdered fusible alloy matrix
US20230399917A1 (en) Plug and Abandon with Fusible Alloy Seal Created with a Magnesium Reaction
CA2925108C (en) Wellbore isolation device made from a powdered fusible alloy matrix