RU2497296C2 - Система связи между сетью компьютеров в летательном аппарате и сетью компьютеров на земле - Google Patents

Система связи между сетью компьютеров в летательном аппарате и сетью компьютеров на земле Download PDF

Info

Publication number
RU2497296C2
RU2497296C2 RU2009140977/07A RU2009140977A RU2497296C2 RU 2497296 C2 RU2497296 C2 RU 2497296C2 RU 2009140977/07 A RU2009140977/07 A RU 2009140977/07A RU 2009140977 A RU2009140977 A RU 2009140977A RU 2497296 C2 RU2497296 C2 RU 2497296C2
Authority
RU
Russia
Prior art keywords
network
aircraft
ground
communication
data stored
Prior art date
Application number
RU2009140977/07A
Other languages
English (en)
Other versions
RU2009140977A (ru
Inventor
Фредерик СОНЬЯК
Original Assignee
Эрбюс
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Эрбюс filed Critical Эрбюс
Publication of RU2009140977A publication Critical patent/RU2009140977A/ru
Application granted granted Critical
Publication of RU2497296C2 publication Critical patent/RU2497296C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/008Registering or indicating the working of vehicles communicating information to a remotely located station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M3/00Automatic or semi-automatic exchanges
    • H04M3/22Arrangements for supervision, monitoring or testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18506Communications with or from aircraft, i.e. aeronautical mobile service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/66Arrangements for connecting between networks having differing types of switching systems, e.g. gateways
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L51/00User-to-user messaging in packet-switching networks, transmitted according to store-and-forward or real-time protocols, e.g. e-mail
    • H04L51/21Monitoring or handling of messages
    • H04L51/23Reliability checks, e.g. acknowledgments or fault reporting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/02Network architectures or network communication protocols for network security for separating internal from external traffic, e.g. firewalls
    • H04L63/0272Virtual private networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • H04L67/1095Replication or mirroring of data, e.g. scheduling or transport for data synchronisation between network nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F8/00Arrangements for software engineering
    • G06F8/70Software maintenance or management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/04Protocols specially adapted for terminals or networks with limited capabilities; specially adapted for terminal portability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M3/00Automatic or semi-automatic exchanges
    • H04M3/22Arrangements for supervision, monitoring or testing
    • H04M3/24Arrangements for supervision, monitoring or testing with provision for checking the normal operation
    • H04M3/247Knowledge-based maintenance systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M7/00Arrangements for interconnection between switching centres
    • H04M7/006Networks other than PSTN/ISDN providing telephone service, e.g. Voice over Internet Protocol (VoIP), including next generation networks with a packet-switched transport layer
    • H04M7/0081Network operation, administration, maintenance, or provisioning

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Computer Security & Cryptography (AREA)
  • General Engineering & Computer Science (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Small-Scale Networks (AREA)
  • Radio Relay Systems (AREA)
  • Computer And Data Communications (AREA)
  • Traffic Control Systems (AREA)

Abstract

Изобретение относится к технике связи и может использоваться как система связи между сетью компьютеров в летательном аппарате и сетью компьютеров на земле. Технический результат состоит в повышении эффективности использования каналов связи. Для этого система содержит средства, выполненные с возможностью установления сетевого соединения между сетью компьютеров на земле и сетью компьютеров в летательном аппарате через, по меньшей мере, один носитель связи в режиме синхронной связи. 3 н. и 5 з.п. ф-лы, 7 ил.

Description

Настоящее изобретение касается системы связи между сетью компьютеров в летательном аппарате и сетью компьютеров на земле, а также сети компьютеров летательного аппарата и сети компьютеров на земле.
Система авионики в настоящее время содержит совокупность бортовых инструментов и баз данных, предназначенных, в частности, для информатизации инструментов, в частности, инструментов диагностики, обслуживания, и документы, такие как инструкции по диагностике неисправностей или инструкции по эксплуатации самолета. Инструменты используются в настоящее время, например, прикладными программами или базами данных.
В основном можно рассматривать два основных типа обслуживания.
Прежде всего, следует рассматривать обслуживание, которое выполняют либо на основной базе технического обслуживания самолета, либо за пределами этой базы и которое включает операции, ограниченные регулированием, обеспечением безопасности и подготовкой самолета к полету, называемой также диспетчеризацией, без задержки или в ограниченные сроки.
Затем следует рассматривать обслуживание, выполняемое на основной базе технического обслуживания самолета, где осуществляют дополнительные операции обслуживания, такие как обслуживание, проводимое через регулярные интервалы.
На фиг.1 показана диаграмма операций обслуживания, выполняемых в самолете и на наземной базе обслуживания согласно известному решению.
Обслуживание выполняют при помощи системы, в частности, центрального компьютера 100 обслуживания («Central Maintenance Computer» в англо-саксонской терминологии), который собирает, обобщает и выводит в виде отчета неисправности сменных блоков LRU 105 самолета («Line Replacable Unit» в англо-саксонской терминологии) с целью оказания помощи экипажу и обслуживающему персоналу в процессе обслуживания.
Неисправности сменных блоков 105 самолета являются объектом управления тревожной сигнализацией при помощи компьютера 110.
Центральный компьютер 100 обслуживания передает в компанию, эксплуатирующую самолет, в частности, в центр контроля обслуживания МСС (сокращение от «Maintenance Control Center» в англо-саксонской терминологии) сообщение 115 обслуживания.
С компьютером 110 управления тревожной сигнализацией соединен экран для индикации неисправностей сменных блоков 105 самолета.
Совокупность неисправностей или событий, происходящих в течение одного цикла эксплуатации самолета, заносится в бортовой журнал 125, называемый «logbook» в англо-саксонской терминологии. Этот бортовой журнал самолета ведется либо пилотами («technical logbook» в англо-саксонской терминологии), либо экипажем обслуживания салона («Cabin Logbook» в англосаксонской терминологии).
Для этого экипаж записывает от руки выявленные неисправности в бортовой журнал 125, а также полетные условия, в которых эти неисправности произошли.
Когда самолет находится на земле, бортовой журнал изымается 130 в самолете и проверяется на земле центром МСС 135 контроля обслуживания. После этого обслуживающий техник поднимается на борт самолета, чтобы проанализировать обнаруженные неисправности и произвести диагностику 140.
Затем техник возвращается на наземную базу обслуживания, чтобы получить процедуру 145 по изолированию неисправности.
С этой инструкцией, называемой также TSM (сокращение от troubleshooting manuel» в англо-саксонской терминологии) техник возвращается на борт самолета, чтобы осуществить эту процедуру по изолированию неисправностей 150.
По завершению изолирования неисправностей техник возвращается на наземную базу, чтобы получить инструкцию 155 по ремонту и, в случае необходимости, заказать запасную часть на складе запчастей.
Затем обслуживающий техник опять возвращается на самолет, чтобы осуществить процедуру ремонта 160.
После этого производят тесты 165, чтобы проверить работу после ремонта, и осуществляют процедуру приемки 179, подтверждающую готовность самолета к полету.
Наконец, эту приемку отмечают в бортовом журнале 175.
Как можно легко понять из всего вышесказанного, этот операционный цикл обслуживания требует больших затрат и приводит к значительной задержке самолета на земле.
Другое известное решение состоит в сохранении в памяти в бортовых запоминающих носителях (базы данных) совокупности процедур изолирования неисправностей и совокупности процедур ремонта, что позволяет избежать перемещений обслуживающего техника между самолетом и наземной базой обслуживания.
Вместе с тем, совокупность процедур изолирования неисправностей и совокупность процедур ремонта представляют собой огромный объем данных, который может составлять несколько гигабайт информации.
Кроме того, все инструменты, данные и документы необходимо регулярно обновлять, чтобы экипаж самолета и, в частности, пилот и обслуживающий техник всегда имели под рукой последнюю версию инструментов и документов.
Для этого инструменты и документация загружаются в компьютер или компьютеры самолета техником, отвечающим за поддержание обновлений этих инструментов и документов (или за синхронизацию бортовых баз данных, содержащих эти документы, с наземными базами данных). Для этого техник имеет портативный компьютер, содержащий в памяти последнюю версию инструментов и данных, и поднимается на борт самолета, чтобы произвести загрузку и обновление инструментов и данных.
Однако, учитывая, что эти инструменты и документация занимают большой объем информации, а именно несколько гигабайт, это обновление отнимает много времени и приводит к относительно длительной задержке самолета на земле.
Это же происходит, когда техник использует портативный компьютер с радиосоединением WiFi, при помощи которого он загружает данные и обновляет инструменты и данные, хранящиеся в памяти в сети самолета, на основании данных, загруженных в его портативный компьютер.
Кроме того, авиационная компания обычно эксплуатирует большой парк самолетов, что отражается на стоимости обслуживания инструментов и документов самолетов ее парка, а также в управлении конфигурацией большого объема данных на земле, которые необходимо загрузить на борту самолета.
Поэтому поддержание обновления такого объема затруднено. Как результат, обслуживающий техник, опираясь на эти процедуры, хранящиеся в памяти на самолете, может получить информацию, касающуюся предстоящих процедур изолирования и ремонта, которая может оказаться устаревшей и даже ошибочной. Кроме того, если данные по решению проблем находятся на борту, это не освобождает обслуживающего техника от необходимости связываться со складом запасных частей.
Настоящее изобретение призвано устранить, по меньшей мере, один из недостатков известных технологий и методов. Для этого изобретением предлагается система связи между сетью компьютеров в летательном аппарате и сетью компьютеров на земле, позволяющая, в частности, сократить расходы по обслуживанию, ускорить ввод в строй самолета, обновлять данные и инструменты летательного аппарата в условиях защищенности без необходимости вмешательства техника.
В связи с этим объектом настоящего изобретения является система связи между сетью компьютеров в летательном аппарате и сетью компьютеров на земле, отличающаяся тем, что содержит средства, выполненные с возможностью установления сетевого соединения между сетью компьютеров на земле и сетью компьютеров в летательном аппарате через, по меньшей мере, одну среду связи в режиме синхронной связи.
Согласно изобретению, по меньшей мере, одна система авионики связана в режиме реального времени и непрерывно с наземной инфраструктурой. Наземная инфраструктура и бортовая система авионики совместно используют, по меньшей мере, один информативный инструмент. Этот инструмент обеспечивает доступ в наземную систему, бортовую систему и в сеть и позволяет производить действия на расстоянии между землей и бортом самолета. Его может использовать единственный оператор, находящийся в определенном фиксированном месте.
Операцию обслуживания и одновременное обновление баз данных можно осуществлять синхронно и с координацией всего за один раз, благодаря использованию общего информативного инструмента. Операция обслуживания может включать тест и обращение к документации самолета.
Система предусматривает одну операцию обслуживания, скоординированную в режиме реального времени между землей и бортом самолета. Она предусматривает одну последовательность операций обслуживания, скоординированных в режиме реального времени между землей и бортом самолета, и позволяет идентифицировать, ремонтировать и следить (отслеживать) в базах данных осуществляемые действия.
Связь может осуществляться, например, по защищенному протоколу IP. Координация и синхронизация баз данных происходит в режиме реального времени.
Самолет может находиться в полете, и оператор на земле может производить тестирование системы во время полета.
Альтернативно самолет может находиться на земле, и оператор может находиться на борту самолета или на земле в центре обслуживания.
Изобретение предоставляет систему связи между сетью компьютеров в летательном аппарате и сетью компьютеров на земле за счет установления сетевого соединения в режиме синхронной связи, чтобы создать непрерывность сети летательного аппарата с сетью компьютеров на земле.
Кроме того, эта система позволяет производить обновление данных, хранящихся в памяти сети летательного аппарата, для сети компьютеров на земле и наоборот.
Кроме того, согласно изобретению, можно осуществлять интерактивную навигацию в данных, хранящихся в памяти в наземной инфраструктуре, а также в сайтах документов, содержащих, например, документацию самолета (TSM или другую).
При этом нет необходимости в проверке или в операции синхронизации баз данных между землей и бортом самолета. Система обеспечивает возможность выполнения операций на земле с борта самолета (совместно используемые инструменты земля/борт) или на борту самолета с земли, благодаря синхронной связи.
Средой связи является, например, сеть мобильной телефонии, сеть беспроводной связи, сеть спутниковой связи и/или линия проводной связи.
Согласно отличительному признаку, система содержит средства обновления данных, хранящихся в памяти сети компьютеров летательного аппарата на основании данных, хранящихся в памяти сети компьютеров на земле.
Согласно другому отличительному признаку, система содержит средства передачи данных, хранящихся в памяти сети компьютеров летательного аппарата, в сеть компьютеров на земле.
Согласно варианту выполнения, сеть компьютеров в летательном аппарате и сеть компьютеров на земле соединены через виртуальную частную сеть.
Объектом настоящего изобретения является также сеть компьютеров летательного аппарата, отличающаяся тем, что содержит средства, выполненные с возможностью установления сетевого соединения с сетью компьютеров на земле через, по меньшей мере, одну среду связи в режиме синхронной связи.
Это устройство имеет те же преимущества, что и кратко описанная выше система связи.
Объектом настоящего изобретения является также сеть компьютеров на земле, отличающаяся тем, что содержит средства, выполненные с возможностью установления сетевого соединения с сетью компьютеров летательного аппарата через, по меньшей мере, одну среду связи в режиме синхронной связи.
Это устройство имеет те же преимущества, что и кратко описанная выше система связи.
Другие преимущества, задачи и отличительные признаки настоящего изобретения будут более очевидны из нижеследующего подробного описания, представленного в качестве не ограничительного примера, со ссылками на прилагаемые чертежи, на которых:
Фиг.1 - схема операций обслуживания, выполняемых в самолете и на наземной базе обслуживания согласно известным техническим решениям.
Фиг.2 - общий вид системы, в которой применяется изобретение.
Фиг.3 - возможный вариант применения в бортовой инфраструктуре соединения с наземной инфраструктурой в соответствии с настоящим изобретением.
Фиг.4 - схема операций обслуживания, выполняемых в самолете и на наземной базе обслуживания в соответствии с настоящим изобретением.
Фиг.5 - применение сервера связи в самолете в соответствии с настоящим изобретением.
Фиг.6 - вариант выполнения виртуальной частной сети в соответствии с настоящим изобретением.
Фиг.7 - различные виртуальные частные сети между сервером самолета и наземным сервером в соответствии с настоящим изобретением.
Согласно изобретению, на борту самолета установлена электронная система обслуживания, выполненная с возможностью осуществления операций обслуживания, в частности, предназначенная заменить бумажный процесс электронным процессом.
Эта система обслуживания основана на бортовой инфраструктуре самолета, то есть на системе авионики, содержащей, в частности, совокупность функциональных блоков самолета, например, сменных блоков самолета, содержащих приложения для экипажа и для обслуживания, на наземной инфраструктуре для подготовки, индивидуализации и управления данными, которые должны использоваться на борту, например, для осуществления операций обслуживания или для получения данных с самолета для их использования на земле, и на инфраструктуре соединения для обмена данными между наземной инфраструктурой и бортовой инфраструктурой и для обновления инструментов и данных, хранящихся в памяти в бортовой инфраструктуре.
Наземная инфраструктура находится, например, на базе обслуживания авиационной компании, эксплуатирующей самолет.
На фиг.2 показан общий вид системы, используемой в настоящем изобретении.
Так, на фигуре показаны совокупность самолетов 200 (бортовых инфраструктур) авиационной компании и наземная инфраструктура 205 этой авиакомпании. Эта наземная инфраструктура содержит, в частности, совокупность блоков обработки, соединенных друг с другом через телекоммуникационную сеть. Эта сеть содержит также соединение 210, например, типа Интернета для соединения с серверами заводов-производителей или с любым третьим лицом 215.
Наземная инфраструктура соединена также через сеть связи 220 (инфраструктура соединения) с сетью авионики самолетов. Сеть связи 220 основана, например, на среде беспроводной связи, например, WiFi или WiMax, на среде мобильной телефонной связи, например, GSM/GPRS или UMTS или на среде спутниковой связи. Кроме того, самолет может соединяться с землей через проводную связь в случае осуществления ремонта при недоступности радиосвязи.
Так, сеть наземной инфраструктуры содержит, в частности, сервер 225, выполненный с возможностью передачи данных на самолет и приема данных от самолета по спутниковой связи, и сервер 230, выполненный с возможностью передачи данных на самолет и приема данных от самолета с использованием среды беспроводной связи или мобильной телефонной связи.
Кроме того, можно использовать портативный носитель 235, такой как портативный компьютер, ключ USB («Universal Serial Bus» в англо-саксонской терминологии), CD/DVD для обмена данными с самолетом.
Согласно изобретению, инфраструктура самолета является мобильной сетью, выполненной с возможностью установления связи с наземной инфраструктурой авиакомпании таким образом, чтобы обеспечивать непрерывность между бортовой инфраструктурой и наземной инфраструктурой.
Согласно частному варианту выполнения, бортовая инфраструктура сообщается с наземной инфраструктурой в режиме синхронной связи, причем этот тип связи позволяет вести интерактивную навигацию в сайтах документов, содержащих, например, документацию самолета.
Синхронная связь состоит в установлении связи или канала связи между системой авионики и наземной инфраструктурой, специально предназначенного для связи между ними, то есть он является свободным, когда, например, необходимо обратиться к данным в наземной инфраструктуре с борта летательного аппарата или получить информацию, хранящуюся в памяти в наземной инфраструктуре.
Таким образом, нет необходимости в установлении связи или канала связи каждый раз, когда необходимо осуществить связь.
Следовательно, связь между летательном аппаратом и наземной инфраструктурой надежно обеспечена, поскольку не зависит от занятости или незанятости канала связи.
Поскольку инфраструктура самолета становится неразрывным продолжением наземной инфраструктуры, можно производить обновление и операции обслуживания синхронно между землей и бортом самолета.
Кроме того, связь можно инициировать через бортовую инфраструктуру или через наземную инфраструктуру.
Согласно изобретению, сеть связи 220, соединяющая бортовую инфраструктуру самолета и наземную инфраструктуру, позволяет отказаться от установки всех программных инструментов и данных на борту самолета, а устанавливать только основные инструменты, при этом другие данные можно получать через соединение, когда это необходимо. Таким образом, обслуживающий техник в самолете может получить доступ к данным, хранящимся в памяти в наземной инфраструктуре и позволяющим ему производить операции обслуживания без перемещений между самолетом и базой обслуживания.
Кроме того, обслуживающий техник в самолете может производить обновление инструментов и данных, хранящихся в памяти в инфраструктуре самолета.
Кроме того, обслуживающий техник может производить обновление инструментов и данных в самолете с земли в ходе операции, называемой дистанционным обновлением («remote update» в англо-саксонской терминологии). Например, обслуживающий техник может обновлять содержание бортового журнала самолета после обслуживания.
Точно так же, пилот или обслуживающий оператор может обратиться в наземные серверы в режиме реального времени, чтобы получить доступ к совокупности серверов компании, эксплуатирующей самолет, и одновременно обновить данные и инструменты на борту при помощи операций, которые тоже называются дистанционными («remote operations» в англосаксонской терминологии).
Наконец, техник на земле может осуществить тесты на системе авионики до выполнения операций обслуживания путем передачи команд через сеть связи 220. Таким образом, обслуживающий техник может, например, еще до посадки самолета осуществить тесты с целью идентификации неисправных сменных блоков самолета.
Согласно частному варианту выполнения, в среде связи между бортовой инфраструктурой и наземной инфраструктурой, в частности, в беспроводной сети или в сети мобильной телефонии создают протокол инкапсуляции, называемый также туннелизацией («tunneling» в англо-саксонской терминологии), который может инкапсулировать передаваемые данные в зашифрованном виде. Эту создаваемую сеть называют виртуальной частной сетью (обозначаемой RPV или VPN от «Virtual Private Network» в англосаксонской терминологии). Эту сеть называют виртуальной, так как она соединяет две физические сети при помощи не обязательно надежной среды связи, и частной, так как доступ к данным могут получать только компьютеры сетей с двух сторон виртуальной частной сети. Кроме того, она обеспечивает защиту обменов на не обязательно надежной среде связи.
Таким образом, при меньших затратах создают защищенную линию связи.
На фиг.3 показан возможный вариант применения этой системы в соответствии с настоящим изобретением.
Согласно этому варианту применения, сервер 300 авиационной компании за пределами самолета, в данном случае на земле, соединен с сервером 32 0 связи бортовой инфраструктуры самолета через виртуальную сеть 305. Сервер 310 самолета содержит сетевой сервер ANSU («Aircraft Network Server Unit» в англо-саксонской терминологии) 315, тоже соединенный с сервером 320 связи.
С сервером ANSU 315 соединены, в частности, блок 325 интерфейса сервера, различные бортовые терминалы 330, 335, 34 0 при помощи электронного сетевого блока маршрутизации ESU («Ethernet Switch Unit» в англо-саксонской терминологии) 345.
Согласно частному варианту выполнения изобретения, электронный блок хранения информации соединен с сетью спутниковой связи типа Satcom, которая, в свою очередь, может быть соединена с сервером авиационной компании.
Сервер 32 0 связи выполнен с возможностью соединения через сетевое соединение, например, через виртуальную частную сеть, с сервером 300 авиационной компании с использованием различных сред связи, в частности, сети мобильной телефонии, например, сети GSM («Global System for Mobile Communication» в англосаксонской терминологии)/EDGE/UMTS («Universal Mobile Telecommunications System» в англо-саксонской терминологии)/HSDPA («High Speed Downlink Packet Access» в англо-саксонской терминологии) или сети беспроводной связи, например, сети WiFi 802.11 a/b/g или сети спутниковой связи, например, сети HSD («High Speed Data Satcom» в англо-саксонской терминологии).
Таким образом, сеть компьютеров самолета соединена с наземной сетью компьютеров авиационной компании, эксплуатирующей самолет.
Во время установления сетевого соединения между сетью компьютеров самолета и сетью компьютеров на земле среду выбирают из множества имеющихся в наличии сред связи, в частности, в зависимости от незанятости сред связи или от скорости передачи информации сред связи.
Серверы 300 и 330 производят инкапсуляцию и декапсуляцию данных через механизмы шифрования и кодирования.
Эти среды связи выполнены с возможностью повышенной скорости передачи, чтобы обеспечивать передачу больших масс данных между наземной инфраструктурой и бортовой инфраструктурой самолета за приемлемое время и, в частности, чтобы позволять производить загрузку последних версий инструментов, документов и данных с наземной инфраструктуры авиационной компании в компьютеры самолета, причем операцию загрузки может производить по команде техник на борту самолета или техник на земле с наземной инфраструктуры.
Обслуживающий техник на борту самолета может также получать доступ к данным обслуживания и к центральным инструментам управления информацией авиационной компании («Maintenance information server» в англо-саксонской терминологии или «Flight Ops Information server»), хранящимся в памяти в наземной инфраструктуре.
Кроме того, этот тип соединения, благодаря соединениям Интернет, позволяет, с самолета, входить в серверы, соединенные с наземной инфраструктурой авиакомпании, такие как сервер производителя самолета или определенного основного оборудования самолета или его салона.
Кроме того, согласно этой архитектуре, обслуживающий техник на борту самолета может получать доступ к поставщикам, например, чтобы обратиться к полетным данным или документации обслуживания или чтобы связаться с сервисными предприятиями на земле, которые поддерживают операции обслуживания самолета.
При помощи такой архитектуры обслуживание самолета, состоящее в устранении неисправностей, поддержании самолета в хорошем полетном состоянии и в ремонте самолета, осуществляют в самые короткие сроки и наиболее оптимально, так как все наземные инструменты обслуживания самолета обновляются, в частности, в момент выдачи разрешения на диспетчеризацию самолета.
Кроме того, согласно изобретению, электронное обслуживание позволяет устранять неисправности и поддерживать самолет в хорошем полетном состоянии в любой момент и независимо от его местонахождения.
Для этого в самолет загружают минимум данных информации, таких как инструмент диагностики, электронный бортовой журнал, минимальный список оборудования MEL («Minimum Equipment List» в англо-саксонской терминологии), или даже часть этих данных.
Затем, через сеть 220 связи обслуживающий техник на борту самолета при помощи соединения, называемого дистанционным соединением («remote access» в англо-саксонской терминологии), в частности, защищенного соединения получает доступ к данным, имеющимся в наземной инфраструктуре компании, таким как руководство по ремонту TSM, руководство по обслуживанию АММ (сокращение от «Aircraft Maintenance Manuel» в англо-саксонской терминологии) или каталог IPC (сокращение от «Identification Part Catalogue» в англо-саксонской терминологии), который позволяет идентифицировать номер детали, которую надо заменить, и заказать ее на складе запчастей.
Таким образом, через сеть 220 связи, в частности, используя защищенный канал типа VPN, техник получает доступ к руководствам, хранящимся в памяти в наземной инфраструктуре, причем эти руководства представлены своими последними версиями, как показано на фиг.4, не прибегая к перемещениям между самолетом и наземной инфраструктурой обслуживания.
Как показано на фиг.4, где используются обозначения, уже указанные в связи с фиг.1, техник на борту самолета путем дистанционных команд, в частности, команд по консультации получает доступ к процедуре изолирования диагностированной неисправности 14 5, называемой также сбоем в работе, а также к процедуре ремонта изолированной неисправности 155 и, в случае необходимости, к складу запчастей через среду 220 связи.
Согласно частному варианту выполнения, это сетевое соединение является соединением синхронной связи.
Согласно другому варианту выполнения, перед прибытием самолета на аэродром техник на земле может передать команды через сеть 22 0 связи на бортовую инфраструктуру, чтобы произвести определенное число тестов с целью диагностики, изолирования и последующего устранения неисправностей.
Согласно варианту выполнения, инструменты, в частности, инструменты диагностики, и данные могут быть загружены в бортовую инфраструктуру самолета через сеть 220 связи, которая выполнена с возможностью осуществления обменов между бортовой инфраструктурой и наземной инфраструктурой при помощи высокоскоростного средства связи.
Для этого сеть 220 связи можно выполнить с возможностью установления связи между сервером 320 связи и сервером 300 компании через сеть мобильной телефонии и/или через сеть беспроводной связи, в частности, с использованием защищенного канала типа VPN.
Согласно варианту сценария, наличии неисправности оборудования узнают, благодаря сохранению неисправности в бортовом журнале (logbook). Оператор на земле связывается с самолетом из центра обслуживания (МСС) на земле.
Если в результате испытания оказывается, что неисправностью оборудования является «spurious message» (ложное сообщение), оператор может, находясь в своем служебном помещении, решить, что оборудование является рабочим и послать статус «ОК» на борт самолета (обновление бортовой базы данных) одновременно с обновлением наземной базы данных.
Существует только один инструмент земля/борт, обеспечивающий обслуживание самолета. Речь идет об инструменте, который можно использовать с борта самолета или из центра обслуживания.
На фиг.5 показана архитектура применения сервера 32 0 связи в самолете, выполненного с возможностью установления связи через сеть мобильной телефонии или через сеть беспроводной связи.
Сервер 32 0 связи содержит модуль 510 беспроводной связи TWLU («Terminal Wireless LAN Unit» в англо-саксонской терминологии), выполненный с возможностью установления связи, например, согласно стандартам WiFi a/b/g или WiMax, и модуль 515 мобильной телефонии, такой как модуль GSM/GPRS или UMTS, причем оба эти модуля соединены с модулем-триплексором 520, соединенным с антенной 525.
В модуле 515 мобильной телефонии установлена эксплуатационная система 530, в которой присутствует маршрутизатор 535, выполненный с возможностью маршрутизации связи либо в направлении модуля беспроводной связи TWLU 510, либо напрямую в направлении модуля-триплексора 520, чтобы использовать протокол мобильной телефонии.
Связью сервера самолета с сервером авиационной компании управляет модуль VPN 540.
Кроме того, на входе модуля VPN 54 0 между данными, поступающими от сетевого сервера ANSU 315, и модулем VPN 54 0 установлен защитный модуль («firewall» в англо-саксонской терминологии) для защиты сервера 315 от проникновения.
На фиг.6 показан вариант установления связи между сетью компьютеров, образующей, по меньшей мере, часть бортовой инфраструктуры самолета, и сетью компьютеров, образующих, по меньшей мере, часть наземной инфраструктуры авиационной компании, в соответствии с настоящим изобретением, основанный на архитектуре, показанной на фиг.5, содержащей беспроводную связь и мобильную телефонную связь.
Как было указано выше, на самолете установлены сервер ANSU 315 и сервер 320 связи, содержащий в данном примере модуль 510 беспроводной связи TWLU и модуль 515 мобильной телефонии.
Что касается сети авиационной компании, с которой устанавит связь сервер 310 самолета, то она содержит прокси-сервер 605 («ргоху server» в англо-саксонской терминологии, называемый также «уполномоченным сервером») типа RADIUS («Remote Authentification Dial-In User Service» в англо-саксонской терминологии), выполненный с возможностью приема и передачи запросов и данных через антенну 610.
Прокси-сервер является машиной, выполняющей функцию посредника между компьютерами локальной сети авиационной компании и второй сетью, сетью компьютеров самолета.
Прокси-сервер 605 соединен через локальную сеть 615 с другими серверами 620, 625 RADIUS. Действительно, необходимо отметить, что сервер RADIUS может выполнять функцию уполномоченного посредника, то есть передавать запросы от клиента на другие серверы RADIUS.
Сервер RADIUS позволяет устанавливать связь между функциями идентификации и базой пользователей, обеспечивая
стандартизированную передачу данных по аутентификации.
Чтобы осуществлять обмены данными между сервером самолета и локальной сетью авиационной компании, сервер ANSU 315 создает сертификат самолета и передает его на модуль 510 беспроводной связи через модуль 515 мобильной телефонии, как было указано выше.
Модуль 510 беспроводной связи выдает запрос в локальную сеть авиационной компании по протоколу EAP-TLS («Extensible Authentication Protocol - Transport Layer Security» в англосаксонской терминологии), чтобы произвести обмен сертификатами и создать, таким образом, защищенный туннель между сетью самолета и локальной сетью авиационной компании. Созданная таким образом сеть является виртуальной частной сетью.
Для этого протокол EAP-TLS использует два сертификата для создания защищенного туннеля, который затем обеспечивает идентификацию: со стороны сервера и со стороны клиента.
Этот протокол использует инфраструктуру с открытыми ключами («Public Key Infrastructure» в англо-саксонской терминологии) для защиты сообщений идентификации между клиентами, а именно между серверами самолетов авиационной компании и серверами RADIUS авиационной компании.
После этого идентификацию производят, в частности, путем передачи запроса типа DHCP («Dynamic Host Configuration Protocol» в англо-саксонской терминологии) на прокси-сервер локальной сети авиационной компании 305, чтобы себя идентифицировать.
На фиг.7 показаны различные виртуальные частные сети, которые могут быть созданы между сетью компьютеров самолета и сетью компьютеров на земле, в частности, сетью авиационной компании.
На этой фигуре показано создание виртуальной частной сети на основе среды мобильной телефонной связи, а именно сети GSM/GPRS или UMTS. Вместе с тем можно использовать любой тип сети мобильной телефонии в качестве среды связи для виртуальной частной сети в соответствии с настоящим изобретением.
Этот тип виртуальной частной сети, обеспечивающий связь сети компьютеров самолета с наземной сетью, реализуют через провайдера 710 сети радиосвязи в пакетном режиме и сеть Интернет или частную локальную сеть 715.
Кроме того, на фигуре показано создание виртуальной частной сети на основе среды 720 беспроводной связи, например, сети WiFi или WiMax, которая является сетью аэропорта. Эту виртуальную частную сеть реализуют также через сеть Интернет или частную локальную сеть 715.
Кроме того, виртуальную частную сеть можно создавать между сетью компьютеров самолета и наземной сетью, когда самолет находится в полете, в частности, используя спутниковую связь 725.
После создания этой виртуальной частной сети техник на борту или на земле может производить операции обслуживания и загрузки, используя последние версии руководств, хранящихся в памяти в наземной инфраструктуре.
Кроме того, можно обновлять инструменты и данные, сохраненные в памяти компьютерами самолета, в условиях полной защищенности.

Claims (8)

1. Система связи летательного аппарата, установленная в летательном аппарате, при этом система содержит: сеть, установленную в летательном аппарате; процессор, установленный в летательном аппарате и сконфигурированный с возможностью выполнения совместно используемого инструмента обслуживания летательного аппарата; и контроллер, устанавливающий сетевое соединение между сетью на земле и сетью в летательном аппарате через, по меньшей мере, одну среду связи в режиме синхронной связи, при этом совместно используемый инструмент обслуживания летательного аппарата выполняет действие обслуживания на летательном аппарате под управлением оператора на земле, при этом сеть, установленная в летательном аппарате, является сетью, выполненной с возможностью установления связи с сетью на земле таким образом, чтобы создавать непрерывность между сетью в летательном аппарате и сетью на земле, причем режим синхронной связи позволяет интерактивную навигацию в данных, хранящихся в сети компьютеров на земле, а оператор в летательном аппарате может обращаться к данным, хранящимся в сети на земле, при этом система дополнительно содержит средства обновления данных, хранящихся в сети, установленной в летательном аппарате, на основании данных, хранящихся в сети на земле.
2. Система связи по п.1, отличающаяся тем, что содержит средства передачи данных, хранящихся в памяти в сети компьютеров летательного аппарата, в сеть компьютеров на земле.
3. Система связи по п.1, отличающаяся тем, что, по меньшей мере, одна среда связи является сетью мобильной телефонии.
4. Система связи по п.1, отличающаяся тем, что, по меньшей мере, одна среда связи является сетью беспроводной связи.
5. Система связи по п.1, отличающаяся тем, что, по меньшей мере, одна среда связи является проводной связью.
6. Система связи по п.1, отличающаяся тем, что сеть компьютеров в летательном аппарате и сеть компьютеров на земле соединены при помощи виртуальной частной сети.
7. Сеть компьютеров летательного аппарата, отличающаяся тем, что содержит средства, выполненные с возможностью установления сетевого соединения с сетью компьютеров на земле через, по меньшей мере, одну среду связи в режиме синхронной связи, причем режим синхронной связи позволяет интерактивную навигацию в данных, хранящихся в сети компьютеров на земле, а оператор в летательном аппарате может обращаться к данным, хранящимся в сети на земле, при этом сеть дополнительно содержит средства обновления данных, хранящихся в сети, установленной в летательном аппарате, на основании данных, хранящихся в сети на земле.
8. Сеть компьютеров на земле, отличающаяся тем, что содержит средства, выполненные с возможностью установления сетевого соединения с сетью компьютеров летательного аппарата через, по меньшей мере, одну среду связи в режиме синхронной связи, причем режим синхронной связи позволяет интерактивную навигацию в данных, хранящихся в сети компьютеров на земле, а оператор в летательном аппарате может обращаться к данным, хранящимся в сети на земле, при этом сеть дополнительно содержит средства обновления данных, хранящихся в сети, установленной в летательном аппарате, на основании данных, хранящихся в сети на земле.
RU2009140977/07A 2007-04-06 2008-04-04 Система связи между сетью компьютеров в летательном аппарате и сетью компьютеров на земле RU2497296C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0754396 2007-04-06
FR0754396A FR2914804B1 (fr) 2007-04-06 2007-04-06 Systeme de communication entre un reseau d'ordinateurs dans un aeronef et un reseau d'ordinateurs au sol
PCT/FR2008/000475 WO2008139060A2 (fr) 2007-04-06 2008-04-04 Systeme de communication entre un reseau d'ordinateurs dans un aeronef et un reseau d'ordinateurs au sol

Publications (2)

Publication Number Publication Date
RU2009140977A RU2009140977A (ru) 2011-05-20
RU2497296C2 true RU2497296C2 (ru) 2013-10-27

Family

ID=38945593

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009140977/07A RU2497296C2 (ru) 2007-04-06 2008-04-04 Система связи между сетью компьютеров в летательном аппарате и сетью компьютеров на земле

Country Status (9)

Country Link
US (1) US8856277B2 (ru)
EP (1) EP2145426B1 (ru)
JP (1) JP2010524750A (ru)
CN (1) CN101675646B (ru)
BR (1) BRPI0809184A2 (ru)
CA (1) CA2682009C (ru)
FR (1) FR2914804B1 (ru)
RU (1) RU2497296C2 (ru)
WO (1) WO2008139060A2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2673692C1 (ru) * 2014-07-08 2018-11-29 Сафран Электроникс Энд Дифенс Система для дистанционно управляемых систем
RU2747336C2 (ru) * 2016-08-01 2021-05-04 Зе Боинг Компани Система и способ обеспечения безопасных соединений при передаче данных в авиационной среде

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2225638B1 (en) * 2007-11-29 2015-06-24 Airbus Operations GmbH Electronic technical logbook
CN102246210B (zh) * 2008-12-15 2014-09-24 松下航空电子公司 用于执行实时数据分析的系统和方法
US8155816B2 (en) * 2008-12-30 2012-04-10 Ppg Industries Ohio, Inc Method of and system for maintaining operating performance of a transparency
US8656162B2 (en) * 2009-10-22 2014-02-18 Honeywell International Inc. Aeronautical security management over broadband air/ground network
FR2952258B1 (fr) * 2009-11-05 2011-11-11 Airbus Procede et dispositif pour acceder a des fonctions de maintenance d'un aeronef a partir d'un terminal mobile de maintenance
FR2959633B1 (fr) 2010-04-29 2012-08-31 Airbus Operations Sas Procede de mise a niveau d'un aeronef
US9571181B2 (en) * 2012-03-01 2017-02-14 Honeywell International Inc. Programmable portable electronic device for airborne operational communications
FR2988244B1 (fr) * 2012-03-16 2014-12-26 Airbus Operations Sas Procede et systeme de transmission de donnees dans un reseau d'aeronefs en vol
US10638526B2 (en) * 2012-09-24 2020-04-28 Qualcomm Incorporated Transport of control protocol for trusted WLAN (TWAN) offload
US9160801B1 (en) * 2012-10-01 2015-10-13 Maritime Telecommunications Network Inc Local event overlays to global social media network
FR2998749B1 (fr) * 2012-11-23 2014-11-21 Thales Sa Systeme de gestion de donnees d un aeronef
US10320908B2 (en) 2013-03-25 2019-06-11 Sita Information Networking Computing Ireland Limited In-flight computing device for aircraft cabin crew
US9336248B2 (en) * 2013-04-24 2016-05-10 The Boeing Company Anomaly detection in chain-of-custody information
CA2932712C (en) 2013-12-13 2022-07-19 Bombardier Inc. Apparatus and methods for providing network security on a mobile platform
US9295032B2 (en) * 2014-01-28 2016-03-22 The Boeing Company Secure aircraft data transmission using multiple communication channels
US9826039B2 (en) * 2014-02-04 2017-11-21 Honeywell International Inc. Configurable communication systems and methods for communication
GB2528630A (en) * 2014-04-28 2016-02-03 Univ Central Lancashire Computer based system and method of functionally testing aircraft subsystems
US9916701B2 (en) * 2014-09-10 2018-03-13 The Boeing Company Vehicle auditing and control of maintenance and diagnosis for vehicle systems
CN104270266A (zh) * 2014-09-27 2015-01-07 无锡市恒通智能交通设施有限公司 一种列车与管理中心之间的通信方法
US9753969B2 (en) * 2014-12-03 2017-09-05 Honeywell International Inc. Systems and method for wirelessly and securely updating a terrain awareness warning system database
CN104468800A (zh) * 2014-12-12 2015-03-25 广西科技大学 一种监控中心
FR3032579B1 (fr) 2015-02-05 2017-03-10 Dassault Aviat Procede et dispositif d'echange de donnees avec un dispositif de stockage d'un aeronef
US9590718B1 (en) 2015-09-22 2017-03-07 Honeywell International Inc. End-to-end wireless connectivity between vehicle and remote server using wireless radios of two mobile devices
US10652027B2 (en) * 2015-10-20 2020-05-12 The Boeing Company Airplane identity management with redundant line replaceable units (LRUs) and composite airplane modifiable information (AMI)
CN105323255A (zh) * 2015-11-24 2016-02-10 北京交控科技有限公司 一种轨道交通信息安全防护系统
CN105376102B (zh) * 2015-12-18 2019-05-24 武汉虹信通信技术有限责任公司 一种机载ap工作模式实现方法及系统
US20170233104A1 (en) * 2016-02-12 2017-08-17 Ge Aviation Systems Llc Real Time Non-Onboard Diagnostics of Aircraft Failures
US10079757B2 (en) 2016-04-07 2018-09-18 Gogo Llc Systems and methods for on-board access control
US10002112B2 (en) * 2016-06-08 2018-06-19 Honeywell International Inc. Methods and apparatus for obtaining flight data for electronic logbook and graphical summary presentation
US10200110B2 (en) 2016-06-30 2019-02-05 Ge Aviation Systems Llc Aviation protocol conversion
US10444748B2 (en) 2016-06-30 2019-10-15 Ge Aviation Systems Llc In-situ measurement logging by wireless communication unit for communicating engine data
US10529150B2 (en) 2016-06-30 2020-01-07 Aviation Systems LLC Remote data loading for configuring wireless communication unit for communicating engine data
US10712377B2 (en) 2016-06-30 2020-07-14 Ge Aviation Systems Llc Antenna diagnostics for wireless communication unit for communicating engine data
US10470114B2 (en) 2016-06-30 2019-11-05 General Electric Company Wireless network selection
US10318451B2 (en) 2016-06-30 2019-06-11 Ge Aviation Systems Llc Management of data transfers
US10681132B2 (en) 2016-06-30 2020-06-09 Ge Aviation Systems Llc Protocol for communicating engine data to wireless communication unit
US10467016B2 (en) 2016-06-30 2019-11-05 General Electric Company Managing an image boot
US10819601B2 (en) 2016-06-30 2020-10-27 Ge Aviation Systems Llc Wireless control unit server for conducting connectivity test
US10764747B2 (en) 2016-06-30 2020-09-01 Ge Aviation Systems Llc Key management for wireless communication system for communicating engine data
CN107682170A (zh) * 2016-08-01 2018-02-09 深圳市多尼卡电子技术有限公司 机载Wi‑Fi系统的维护方法及装置
CN106327094A (zh) * 2016-08-30 2017-01-11 四川泰尔科技有限公司 综合应急救援管理平台
FR3060162B1 (fr) * 2016-12-13 2021-10-22 Thales Sa Gestion du journal de bord d'un aeronef
US10148653B2 (en) * 2016-12-14 2018-12-04 The Boeing Company Authenticating an aircraft data exchange using detected differences of onboard electronics
US10297162B2 (en) * 2016-12-28 2019-05-21 Honeywell International Inc. System and method to activate avionics functions remotely
US20190110334A1 (en) * 2017-10-09 2019-04-11 Honeywell International Inc. Systems and methods for enhanced vehicle operator connectivity to external networks and onboard systems via single access point
CN111082852B (zh) * 2018-10-22 2022-12-02 中兴通讯股份有限公司 建立操作维护通道的方法、机载终端以及存储介质
JP7252114B2 (ja) * 2019-10-24 2023-04-04 株式会社Subaru 航空機の運航支援システム、航空機の運航支援方法及び航空機の運航支援プログラム
CN111935098B (zh) * 2020-07-16 2023-04-18 腾讯科技(深圳)有限公司 一种数字客舱中数据授权的方法、装置及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4167967A (en) * 1977-03-01 1979-09-18 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Automobile air-conditioning apparatus
WO2002079918A2 (en) * 2001-02-13 2002-10-10 The Boeing Company Methods and apparatus for wireless upload and download of aircraft data
RU2251746C2 (ru) * 1999-11-11 2005-05-10 Вольво Ластвагнар Аб Система и способ связи между транспортными средствами и станцией наблюдения
US20050256616A1 (en) * 2004-05-07 2005-11-17 Panasonic Avionics Corporation System and method for managing content on mobile platforms
US20060052921A1 (en) * 2002-11-07 2006-03-09 Bodin William K On-demand system for supplemental diagnostic and service resource planning for mobile systems
US20070010236A1 (en) * 2005-07-07 2007-01-11 David Allen Mobile platform distributed data load management system

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4924456A (en) * 1986-09-18 1990-05-08 Racal Data Communications, Inc. High speed modem
US5826198A (en) * 1992-01-13 1998-10-20 Microcom Systems, Inc. Transmission of data over a radio frequency channel
US7113780B2 (en) 1992-03-06 2006-09-26 Aircell, Inc. System for integrating an airborne wireless cellular network with terrestrial wireless cellular networks and the public switched telephone network
US5935267A (en) * 1996-04-12 1999-08-10 Fuji Photo Film Co., Ltd. Data communication method and a data communication system for use with a digital network
US6115656A (en) * 1997-06-17 2000-09-05 Mcdonnell Douglas Corporation Fault recording and reporting method
GB9909825D0 (en) * 1998-09-08 1999-06-23 Airnet Global Holdings Limited Communications system for aircraft
US6755743B1 (en) * 1999-12-08 2004-06-29 Kabushiki Kaisha Sega Enterprises Communication game system and processing method thereof
US6901377B1 (en) * 2000-01-07 2005-05-31 General Electric Company Methods and systems for aviation parts, information and services
JP2001206297A (ja) * 2000-01-21 2001-07-31 Japan Aircraft Mfg Co Ltd 航空機運航・整備情報管理システム
US7054593B2 (en) * 2000-09-28 2006-05-30 The Boeing Company Return link design for PSD limited mobile satellite communication systems
US20030105565A1 (en) 2001-12-03 2003-06-05 Loda David C. Integrated internet portal and deployed product microserver management system
US20050027826A1 (en) * 2001-12-03 2005-02-03 Loda David C. Microserver test port retrofit kit
US20030120501A1 (en) * 2001-12-20 2003-06-26 Peters David Alan Storage and updating of electronic documents in aircraft
US6829527B2 (en) * 2002-08-26 2004-12-07 Honeywell International Inc. Relational database for maintenance information for complex systems
CA2583720A1 (en) * 2004-11-05 2006-06-22 Thales Avionics, Inc. System for providing in-flight entertainment with data redundancy
FR2888362B1 (fr) * 2005-07-05 2007-10-12 Airbus France Sas Outil de diagnostic pour la reparation d'aeronefs et procede utilisant cet outil
US7756145B2 (en) * 2005-12-02 2010-07-13 The Boeing Company Methods and apparatus providing an airborne e-enabled architecture as a system of systems
EP2225638B1 (en) * 2007-11-29 2015-06-24 Airbus Operations GmbH Electronic technical logbook
FR2927210B1 (fr) * 2008-02-01 2010-02-26 Airbus France Dispositif de commutation adapte a commuter un reseau sans fil d'aeronef d'une configuration de maintenance a une configuration commerciale et reciproquement.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4167967A (en) * 1977-03-01 1979-09-18 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Automobile air-conditioning apparatus
RU2251746C2 (ru) * 1999-11-11 2005-05-10 Вольво Ластвагнар Аб Система и способ связи между транспортными средствами и станцией наблюдения
WO2002079918A2 (en) * 2001-02-13 2002-10-10 The Boeing Company Methods and apparatus for wireless upload and download of aircraft data
US20060052921A1 (en) * 2002-11-07 2006-03-09 Bodin William K On-demand system for supplemental diagnostic and service resource planning for mobile systems
US20050256616A1 (en) * 2004-05-07 2005-11-17 Panasonic Avionics Corporation System and method for managing content on mobile platforms
US20070010236A1 (en) * 2005-07-07 2007-01-11 David Allen Mobile platform distributed data load management system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2673692C1 (ru) * 2014-07-08 2018-11-29 Сафран Электроникс Энд Дифенс Система для дистанционно управляемых систем
RU2747336C2 (ru) * 2016-08-01 2021-05-04 Зе Боинг Компани Система и способ обеспечения безопасных соединений при передаче данных в авиационной среде
US11190531B2 (en) 2016-08-01 2021-11-30 The Boeing Company Systems for secure data connections in an aviation environment

Also Published As

Publication number Publication date
CA2682009A1 (en) 2008-11-20
RU2009140977A (ru) 2011-05-20
CN101675646A (zh) 2010-03-17
EP2145426A2 (fr) 2010-01-20
US8856277B2 (en) 2014-10-07
US20100121938A1 (en) 2010-05-13
FR2914804B1 (fr) 2009-09-18
CN101675646B (zh) 2016-02-10
EP2145426B1 (fr) 2018-09-19
WO2008139060A3 (fr) 2009-02-05
CA2682009C (en) 2016-08-16
FR2914804A1 (fr) 2008-10-10
JP2010524750A (ja) 2010-07-22
BRPI0809184A2 (pt) 2014-09-16
WO2008139060A2 (fr) 2008-11-20

Similar Documents

Publication Publication Date Title
RU2497296C2 (ru) Система связи между сетью компьютеров в летательном аппарате и сетью компьютеров на земле
RU2475990C2 (ru) Способ и устройство обслуживания в летательном аппарате
CN101322356B (zh) 提供作为系统体系的空运电子化体系结构方法和设备
US6671589B2 (en) Method and apparatus to support remote and automatically initiated data loading and data acquisition of airborne computers using a wireless spread spectrum aircraft data services link
JP4620686B2 (ja) 車両内の事象を記録するシステムおよび方法
US8676191B2 (en) Method and device for managing communication channels for data exchange from an aircraft
US20140163782A1 (en) Aircraft data management system
DE102018208430B3 (de) Testvorrichtung und Verfahren zum globalen Testen von Onlinediensten im Fahrzeug
US11902083B1 (en) Techniques to provide a flexible witness in a distributed system
CN117499965A (zh) 一种基于lte专用无线通信的终端分布式维护方法
CN117240648A (zh) 一种基于arinc825网络的机载机电系统维护单元
Gnat et al. Communication and Infrastructure
Ruiz et al. IDEFIX, New Component of the CNES Multimission Network an Innovant Autonomous System for Ingestion, Processing and Distribution of X-Band Data
Lundell et al. Design of a Telematics System for Saab Giraffe AMB

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170405