RU2497248C2 - Конструкция оптической накачки - Google Patents

Конструкция оптической накачки Download PDF

Info

Publication number
RU2497248C2
RU2497248C2 RU2011115096/28A RU2011115096A RU2497248C2 RU 2497248 C2 RU2497248 C2 RU 2497248C2 RU 2011115096/28 A RU2011115096/28 A RU 2011115096/28A RU 2011115096 A RU2011115096 A RU 2011115096A RU 2497248 C2 RU2497248 C2 RU 2497248C2
Authority
RU
Russia
Prior art keywords
support
rod
package
design
rings
Prior art date
Application number
RU2011115096/28A
Other languages
English (en)
Other versions
RU2011115096A (ru
Inventor
Франсуа ЛЮРО
Паскаль РУССО
Марк РЕНО
Ален ФЕРАЛЬ
Ален НИКОЛИНИ
Original Assignee
Таль
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Таль filed Critical Таль
Publication of RU2011115096A publication Critical patent/RU2011115096A/ru
Application granted granted Critical
Publication of RU2497248C2 publication Critical patent/RU2497248C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/025Constructional details of solid state lasers, e.g. housings or mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/042Arrangements for thermal management for solid state lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0405Conductive cooling, e.g. by heat sinks or thermo-electric elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/061Crystal lasers or glass lasers with elliptical or circular cross-section and elongated shape, e.g. rod

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)
  • Semiconductor Lasers (AREA)

Abstract

Изобретение относится к конструкции оптической накачки для оптического квантового генератора, которая содержит активную среду в виде цилиндрического стержня (1), имеющего круглое сечение, причем концы стержня введены в два кольца (11), выполненные из теплопроводного материала, по меньшей мере, три пакета (21, 22) небольших стержней диодов накачки, расположенных звездой вокруг стержня, опору (5) с регулировкой температуры посредством модуля (8) на основе эффекта Пельтье, причем кольца (11) находятся в контакте с опорой (5). При этом пакет диодов, так называемый нижний пакет (21), размещен между стержнем (1) и опорой (5) и содержит для каждого другого пакета (22) блок (7) теплопроводности, образующий опору для упомянутого пакета (22), причем блоки (7) установлены на охлажденной опоре (5) и не находятся в контакте ни между собой, ни с кольцами (11). Технический результат заключается в обеспечении возможности повышения эффективности охлаждения при уменьшении габаритов устройства. 5 з.п. ф-лы, 3 ил., 1 табл.

Description

Областью изобретения является оптическая накачка для оптического квантового генератора, в частности, накачка диодами.
Конструкция оптической накачки является решающей составной частью для характеристик оптического квантового генератора.
Она нуждается как в хорошем отводе тепловой мощности, рассеиваемой в активной среде, так и в хорошей однородности температур используемых диодов накачки для обеспечения однородного распределения коэффициента усиления оптического квантового генератора во время одного цикла вспышки и при различных интервалах между двумя последовательными импульсами, когда речь идет об импульсном оптическом квантовом генераторе. Следует напомнить, что для импульсного оптического квантового генератора средняя мощность (Pmoy), рассеиваемая конструкцией, представлена соотношением:
Pmoy=Pdiodes × количество диодов × продолжительность накачки × интервал импульсов,
где Pdiodes - мощность каждой совокупности диодов накачки.
Интервал и продолжительность накачки, связанные с продолжительностью цикла вспышки, изменяют рассеиваемую мощность таким образом, что оказывает влияние на оптические характеристики.
В настоящее время существуют конструкции накачки прямоугольной конфигурации, вид в разрезе которых представлен на фиг.2а. Такая конструкция содержит продольный стержень 1, имеющий квадратное сечение, который используется в качестве активной среды; он накачивается двумя сборками диодов 2, которые расположены вдоль стержня и симметрично напротив двух параллельных сторон, причем две другие стороны стержня находятся в контакте с элементом 3 отвода тепла путем теплопроводности. Если такая конфигурация эффективна для рассеяния тепла, то она таковой не является, если речь идет о качестве получаемого на выходе пучка: форма пучка на выходе 10, показанного в разрезе на фиг.2Ь, которая обусловлена геометрией сечения, не является круглой.
Другое решение заключается в использовании конструкции накачки с круглой конфигурацией, т.е. содержащей стержень 1, имеющий круглое сечение (вид в разрезе представлен на фиг.1а). Форма пучка на выходе 10, которая обусловлена геометрией сечения и показана на фиг.1b, является, таким образом, круглой, что обеспечивает хорошее качество пучка. Сборки диодов накачки 2, например, три сборки, расположены звездой вокруг стержня 1. Элементы рассеяния тепла в виде алюминиевых колец 4 зажимают, как это показано на фиг.1с, концы стержня 1; рассеяние тепла также обеспечивается посредством устройства охлаждения 3, использующего циркуляцию жидкости, которое соединяет сборки диодов 2, как это показано в разрезе на фиг.1а. Пример такой конструкции накачки с жидкостным охлаждением, содержащей четыре сборки диодов, расположенных звездой, представлен в патенте US 6101208, в котором также указывается, что охлаждение путем теплопроводности не является удовлетворительным. В данном случае хорошее качество пучка достигается в ущерб большим габаритным размерам и использованию жидкого теплоносителя.
Эффективное охлаждение, использующее газ (например, воздух) вместо жидкости, в минимальном габаритном объеме, является важной целью и задачей.
Вследствие этого на настоящий момент сохраняется потребность в конструкции накачки, которая удовлетворяет одновременно всей совокупности вышеперечисленных требований, а именно охлаждение газом, хороший отвод тепловой мощности, рассеиваемой в активной среде (снижение температур и осевых и продольных внутренних температурных градиентов), хорошая однородность температур используемых диодов накачки, минимальный габаритный объем и хорошее качество оптического пучка.
Если быть более точным, то технической задачей изобретения является конструкция оптической накачки для оптического квантового генератора, которая содержит активную среду в виде цилиндрического стержня, имеющего круглое сечение; причем концы стержня введены в два кольца, выполненные из теплопроводного материала; по меньшей мере, три пакета небольших стержней диодов накачки, расположенных звездой вокруг стержня; опору с регулировкой температуры посредством модуля на основе эффекта Пельтье. Она в основном отличается тем, что кольца находятся в контакте с опорой, а также тем, что пакет диодов, так называемый нижний пакет, размещен между стержнем и опорой, причем она содержит для каждого другого пакета блок теплопроводности, образующий опору для упомянутого пакета; причем эти блоки установлены на охлажденной опоре, но не находятся в контакте ни друг другом, ни с кольцами.
Кроме того, она содержит, предпочтительно, вставку, выполненную из теплопроводного материала, расположенную под нижним пакетом для адаптирования теплового сопротивления между этим пакетом и ее опорой.
Согласно одному отличительному признаку изобретения, вставка содержит, по меньшей мере, одно отверстие, возможно, заполненное теплопроводным материалом, отличным от материала вставки.
Согласно другому отличительному признаку изобретения, кольцо прикреплено к опоре посредством гибкого зажима, позволяющего поглощать различные температурные расширения между стержнем и его опорой, а именно кольцами.
Другие признаки и преимущества изобретения станут более очевидны после изучения нижеприводимого детального описания, которое носит иллюстративный, но не ограничительный характер, со ссылкой на прилагаемые чертежи, на которых:
фиг.1 (уже описана) схематично изображает виды в разрезе конструкции оптической накачки с цилиндрическим стержнем, имеющим круглое сечение, в соответствии с уровнем техники, спереди (фиг.1а), сбоку (фиг.1с) и форму образующегося пучка (фиг.1b);
фиг.2 (уже описана) схематично изображает виды в разрезе конструкции оптической накачки с цилиндрическим стержнем, имеющим квадратное сечение, в соответствии с уровнем техники, спереди (фиг.2а) и форму образующегося пучка (фиг.2b);
фиг.3 изображает последовательные этапы установки конструкции оптической накачки с цилиндрическим стержнем, имеющим круглое сечение, согласно изобретению.
В каждой из фигур одни и те же элементы обозначены одними и теми же цифровыми позициями.
Со ссылкой на фиг.3 приводится описание различных элементов одного примера конструкции оптической накачки, согласно изобретению, по мере сборки данной конструкции.
Она содержит опору 5, которая выполняет функцию распределителя тепла и на которой располагается пакет диодов накачки, так называемый нижний пакет 21, устанавливаемый на подложке 211. Эта опора 5 выполнена из теплопроводного материала, такого как медь или сплав алюминия.
Активная среда представлена в виде цилиндрического стержня 1, имеющего круглое сечение; она своими концами введена в два кольца 11, выполненные из меди или сплава алюминия, которые позволяют путем теплопроводности симметрично отводить на концах тепловую мощность, рассеиваемую в стержне. Этот стержень, снабженный двумя кольцами установлен на опоре 5, причем кольца 11 находятся в контакте с упомянутой опорой 5; при этом он крепится к опоре 5, например, посредством достаточно гибкого зажима 6, обеспечивающего удержание стержня, позволяя поглощать различные тепловые расширения между стержнем 1 и его опорой, а именно кольцами 11. Стержень установлен сверху пакета диодов 21 таким образом, что данный пакет 21 располагается вдоль центральной части стержня, которая остается свободной от колец, на небольшом расстоянии от стержня.
Второй пакет диодов накачки, так называемый боковой пакет 22, также устанавливаемый на подложке 221, крепится на блоке 7 теплопроводности, образуя опору для этого пакета 22; этот опорный блок 7 устанавливается на опоре 5 таким образом, что пакет располагается вдоль центральной части стержня 1, остающегося, как и в предыдущем случае, свободным от колец. Опорный блок 7 выполнен из меди или сплава алюминия и находится частично в контакте с опорой 5.
Как и в случае второго пакета, третий пакет диодов накачки, также называемый боковым пакетом 22, закрепленный на блоке 7 теплопроводности, образующем опору, устанавливается на опоре 5. Этот блок 7 также выполнен из меди или сплава алюминия. Три пакета диодов 21, 22 расположены симметрично вокруг стержня 1 звездой, то есть под углом приблизительно 120° друг от друга. Как это показано на фиг.3d и 3е, эти пакеты имеют одно и то же местоположение относительно продольной оси стержня, а блок 7 теплопроводности для нижнего 21 пакета диодов отсутствует.
Опорные блоки 7 не находятся в непосредственном контакте ни друг с другом, ни с кольцами 11 стержня. Таким образом, управление температурами диодов минимально взаимозависимо от управления температурой стержня. Такая тепловая и механическая концепция позволяет обеспечить однородность оптимальной температуры трех пакетов диодов.
Модуль 8 на основе эффекта Пельтье, установлен под опорой 5 для регулировки температуры пакетов диодов и отвода рассеиваемой теплоты, причем вся сборка установлена на металлическом теплообменнике с циркуляцией газа (например, воздуха) вместо жидкости в качестве жидкого теплоносителя; причем этот теплообменник находится в контакте с горячей стороной модуля на основе эффекта Пельтье. Также может добавляться средство сопряжения между модулем 8 и данным теплообменником.
Тепловое сопротивление между пакетом диодов 21 или 22 и его опорой 5 или 7 адаптировано таким образом, чтобы сделать три пакета диодов однородными по температуре, что позволяет минимизировать изменения длины волн во время одного цикла вспышки или при разных интервалах и обеспечить, таким образом, однородное распределение коэффициента усиления, которым обладает стержень.
В связи с этим конструкция содержит, предпочтительно, вставку 9, выполненную из теплопроводного материала, такого как медь или сплав алюминия, которая расположена под нижним пакетом 21, для адаптирования теплового сопротивления между этим пакетом и его опорой 5. Отверстие 91 или даже множество отверстий также могут быть образованы в этой вставке 9 и, возможно, заполнены теплопроводным материалом, отличным от материала вставки, как, например, индий или силиконы, насыщенные окисью алюминия, для подгонки теплового сопротивления между упаковкой и ее опорой.
Конструкция накачки, согласно изобретению, позволяет добиться небольшой разницы температур между упаковками диодов и симметрично отводить мощность, рассеиваемую в стержне.
Использование газа (например, воздуха) вместо жидкости в качестве жидкого теплоносителя позволяет, кроме того, уменьшить массу устройства, повысить его надежность, в частности, связанную с опасностью утечки жидкости, присущей для устройств из уровня техники, смягчить требования, предъявляемые к логистике и техническому обслуживанию.
Ее общий объем незначителен по сравнению с оптической формой.
И, наконец, оптимизирована процедура установки этой конструкции.
Конструкция оптической накачки, согласно изобретению, была выполнена со следующими характеристиками:
- диаметр стержня - приблизительно 4 мм;
- тепловая мощность, присущая стержню, выполненному из Nd:Yag - в среднем приблизительно 2 Вт;
- длина излучаемой волны равна приблизительно 1 µм;
- три пакета по 10 (приблизительно) небольших стержней диодов, рассредоточенных с интервалом в 120° и удаленных от стержня на расстояние приблизительно 1,5 мм;
- мощность одного пакета приблизительно 3 Вт;
- длина волны диодов приблизительно 808 нм;
- разница температур между основанием нижнего пакета и металлическим теплообменником с циркуляцией газов <3°С;
- разница температур между верхом основания бокового пакета и низом основания <3°С;
- разница температур между нижним пакетом и боковым пакетом <1°С;
- габаритный объем приблизительно 0,07 л;
- постоянные характеристики для одного интервала изменяются от 1 до 20 Гц.
В нижеследующей таблице для сведения приводятся примеры использованных материалов.
Деталь Материалы
подложки диодов 211, 212 Медь
Опоры боковых пакетов (блок 7) Медь или сплав алюминия
Регулировочные вставки 9 Медь или сплав алюминия
Стержень 1 Иттриево-алюминиевый гранат (Yag)
Кольца 11 Медь или сплав алюминия
Средство сопряжения с модулем на основе эффекта Пельтье Индий или силикон, насыщенный окисью алюминия
Опора 5 Медь или сплав алюминия

Claims (6)

1. Конструкция оптической накачки для лазеров, которая содержит:
- активную среду в виде цилиндрического стержня, имеющего круглое сечение; причем концы стержня введены в два кольца, выполненные из теплопроводного материала;
- по меньшей мере, три пакета стержней диодов накачки, расположенных звездой вокруг стержня;
- опору с регулировкой температуры посредством модуля на основе эффекта Пельтье,
отличающаяся тем, что кольца находятся в контакте с опорой, а также тем, что пакет диодов, так называемый нижний пакет, размещен между стержнем и опорой, при этом конструкция содержит для каждого другого пакета блок теплопроводности, образующий опору для упомянутого пакета; причем эти блоки установлены на охлажденной опоре, но не находятся в контакте ни между собой, ни с кольцами.
2. Конструкция оптической накачки для лазеров по п.1, отличающаяся тем, что она содержит теплообменник, использующий газ в качестве теплоносителя и закрепленный на стороне модуля (8) на основе эффекта Пельтье рядом с опорой.
3. Конструкция оптической накачки для лазеров по п.1, отличающаяся тем, что она содержит, кроме того, вставку, выполненную из теплопроводного материала, которая расположена под нижним пакетом, для адаптирования теплового сопротивления между данным пакетом и его опорой.
4. Конструкция оптической накачки для лазеров по п.3, отличающаяся тем, что вставка (9) содержит, по меньшей мере, одно отверстие.
5. Конструкция оптической накачки для лазеров по п.4, отличающаяся тем, что отверстие заполнено теплопроводным материалом, отличным от материала вставки.
6. Конструкция оптической накачки для лазеров по п.1, отличающаяся тем, что она содержит гибкий зажим для удержания кольца.
RU2011115096/28A 2008-09-17 2009-07-06 Конструкция оптической накачки RU2497248C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0805111 2008-09-17
FR0805111A FR2936109B1 (fr) 2008-09-17 2008-09-17 Structure de pompage optique.
PCT/EP2009/058523 WO2010031606A1 (fr) 2008-09-17 2009-07-06 Structure de pompage optique

Publications (2)

Publication Number Publication Date
RU2011115096A RU2011115096A (ru) 2012-10-27
RU2497248C2 true RU2497248C2 (ru) 2013-10-27

Family

ID=40551428

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011115096/28A RU2497248C2 (ru) 2008-09-17 2009-07-06 Конструкция оптической накачки

Country Status (8)

Country Link
US (1) US9343866B2 (ru)
EP (1) EP2327127B9 (ru)
JP (1) JP5439688B2 (ru)
CN (1) CN102171895B (ru)
FR (1) FR2936109B1 (ru)
IL (1) IL211781A0 (ru)
RU (1) RU2497248C2 (ru)
WO (1) WO2010031606A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2592056C1 (ru) * 2015-01-21 2016-07-20 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Излучатель твердотельного лазера без жидкостного охлаждения с термостабилизацией диодной накачки

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010042453A1 (de) * 2010-10-14 2012-04-19 Robert Bosch Gmbh Laserzündeinrichtung für eine Brennkraftmaschine und Betriebsverfahren hierfür
JP6736127B2 (ja) * 2016-08-23 2020-08-05 株式会社ブイ・テクノロジー レーザポンプチャンバ装置
CN112636134A (zh) * 2020-12-21 2021-04-09 北京遥测技术研究所 一种空间激光器结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2276973A (en) * 1993-03-20 1994-10-12 Gec Ferranti Defence Syst A pulsed laser
WO1996037021A1 (de) * 1995-05-19 1996-11-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Diodenlasergepumpter festkörperlaser
US6330259B1 (en) * 1999-06-24 2001-12-11 Jonathan S. Dahm Monolithic radial diode-pumped laser with integral micro channel cooling
US6704341B1 (en) * 1999-11-19 2004-03-09 The Regents Of The University Of California Diode-pumped laser with improved pumping system
RU2315404C1 (ru) * 2006-03-23 2008-01-20 Павел Владимирович Аракчеев Твердотельный лазер с поперечной накачкой линейками лазерных диодов

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5311528A (en) * 1991-08-30 1994-05-10 Hoya Corporation Solid-state laser device capable of stably producing an output laser beam at high power
JPH06283783A (ja) * 1993-03-29 1994-10-07 Nec Corp レーザロッド冷却機構及び冷却用スリーブ
US5774488A (en) * 1994-06-30 1998-06-30 Lightwave Electronics Corporation Solid-state laser with trapped pump light
US5778020A (en) * 1996-06-04 1998-07-07 Cj Laser, Inc. ND: YAG laser pump head
JPH1187813A (ja) * 1997-09-12 1999-03-30 Toshiba Corp 固体レーザ発振器
FR2853146B1 (fr) * 2003-03-28 2007-06-22 Thales Sa Structure de pompage optique d'un milieu amplificateur
US7082149B1 (en) * 2003-06-24 2006-07-25 Photonics Industries Int'l High power diode side pumped solid state laser
US20090304040A1 (en) * 2005-12-28 2009-12-10 Ram Oron Diode-pumped cavity
FR2913269B1 (fr) 2007-03-02 2009-04-17 Thales Sa Telemetre multicolore

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2276973A (en) * 1993-03-20 1994-10-12 Gec Ferranti Defence Syst A pulsed laser
WO1996037021A1 (de) * 1995-05-19 1996-11-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Diodenlasergepumpter festkörperlaser
US6330259B1 (en) * 1999-06-24 2001-12-11 Jonathan S. Dahm Monolithic radial diode-pumped laser with integral micro channel cooling
US6704341B1 (en) * 1999-11-19 2004-03-09 The Regents Of The University Of California Diode-pumped laser with improved pumping system
RU2315404C1 (ru) * 2006-03-23 2008-01-20 Павел Владимирович Аракчеев Твердотельный лазер с поперечной накачкой линейками лазерных диодов

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2592056C1 (ru) * 2015-01-21 2016-07-20 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Излучатель твердотельного лазера без жидкостного охлаждения с термостабилизацией диодной накачки

Also Published As

Publication number Publication date
CN102171895A (zh) 2011-08-31
US20110235662A1 (en) 2011-09-29
US9343866B2 (en) 2016-05-17
FR2936109A1 (fr) 2010-03-19
EP2327127A1 (fr) 2011-06-01
RU2011115096A (ru) 2012-10-27
CN102171895B (zh) 2012-12-19
EP2327127B1 (fr) 2012-10-24
JP2012503302A (ja) 2012-02-02
WO2010031606A1 (fr) 2010-03-25
EP2327127B9 (fr) 2013-01-09
IL211781A0 (en) 2011-06-30
JP5439688B2 (ja) 2014-03-12
FR2936109B1 (fr) 2010-10-08

Similar Documents

Publication Publication Date Title
US9574541B2 (en) Compact laser ignition device for combustion engine
US5140607A (en) Side-pumped laser with angled diode pumps
JPH05508265A (ja) 端面発光レーザダイオードのアレーの冷却用薄板パッケージ
ES2528735T3 (es) Refrigeración líquida homogénea de distribución de LEDS
CA2372976C (en) Light source having plural laser diode modules
RU2497248C2 (ru) Конструкция оптической накачки
WO2007061515A2 (en) Vertically displaced stack of multi-mode single emitter laser diodes
JPH07109909B2 (ja) 集積レーザダイオードポンプレーザ装置
TW201824670A (zh) 具有雷射陣列照明的系統和裝置
US6650668B2 (en) Cylindrical two-dimensional diode-laser arrays and method for making same
US20220123519A1 (en) Integrated thermal management of fiber coupled diode laser packaging
US8669697B2 (en) Cooling large arrays with high heat flux densities
JP2005268650A (ja) レーザアレイモジュールおよび冷却マニホールド
KR101618747B1 (ko) 레이저 다이오드가 장착된 기판의 냉각장치
US20040115911A1 (en) Method and apparatus for laser diode assembly and array
RU2597941C2 (ru) Оптическая усилительная головка с диодной накачкой (варианты)
RU2592056C1 (ru) Излучатель твердотельного лазера без жидкостного охлаждения с термостабилизацией диодной накачки
RU2579188C1 (ru) Квантрон твердотельного лазера с термостабилизацией диодной накачки
CN211829521U (zh) 二极管泵浦重复频率激光器中晶体棒冷却结构
KR102332955B1 (ko) 레이저 펌프 챔버 장치
KR20210121651A (ko) 다이렉트 액티브 쿨링 구조체 및 이를 포함하는 레이저 소스
CN111403998A (zh) 二极管泵浦重复频率激光器中晶体棒冷却结构
JP2007220717A (ja) 固体レーザロッドおよび大出力レーザ光発生方法ならびに大出力レーザ光発生装置