RU2487137C2 - Способ получения разветвленных функционализированных диеновых (со)полимеров - Google Patents

Способ получения разветвленных функционализированных диеновых (со)полимеров Download PDF

Info

Publication number
RU2487137C2
RU2487137C2 RU2011140301/05A RU2011140301A RU2487137C2 RU 2487137 C2 RU2487137 C2 RU 2487137C2 RU 2011140301/05 A RU2011140301/05 A RU 2011140301/05A RU 2011140301 A RU2011140301 A RU 2011140301A RU 2487137 C2 RU2487137 C2 RU 2487137C2
Authority
RU
Russia
Prior art keywords
reactor
organolithium initiator
molar ratio
carried out
fed
Prior art date
Application number
RU2011140301/05A
Other languages
English (en)
Other versions
RU2011140301A (ru
Inventor
Анна Викторовна Будеева
Артур Игоревич Рахматуллин
Александр Викторович Рогалев
Виктор Иванович Аксенов
Original Assignee
ОТКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО "СИБУР Холдинг"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ОТКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО "СИБУР Холдинг" filed Critical ОТКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО "СИБУР Холдинг"
Priority to RU2011140301/05A priority Critical patent/RU2487137C2/ru
Priority to BR112014008316-9A priority patent/BR112014008316B1/pt
Priority to US14/350,032 priority patent/US9611384B2/en
Priority to PCT/RU2012/000806 priority patent/WO2013051966A1/ru
Publication of RU2011140301A publication Critical patent/RU2011140301A/ru
Application granted granted Critical
Publication of RU2487137C2 publication Critical patent/RU2487137C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L47/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F36/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/30Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
    • C08C19/42Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups
    • C08C19/44Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups of polymers containing metal atoms exclusively at one or both ends of the skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F136/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F136/02Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F136/04Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F136/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/08Isoprene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/10Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F36/08Isoprene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/22Incorporating nitrogen atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons

Abstract

Изобретение относится к области получения синтетических каучуков, в частности диеновых (со)полимеров, таких как полибутадиен, полиизопрен и бутадиен-стирольный каучук (БСК), применяемых при производстве шин, резинотехнических изделий, модификации битумов, в электротехнической и других областях. Описан способ получения (со)полимеров, который осуществляют в двух параллельных реакторах, в каждом из которых проводят полимеризацию диенов или сополимеризацию их между собой и/или с арилвинильными соединениями. При этом в первый реактор подают литийорганический инициатор, электронодонорную добавку и разветвляющий агент, во второй реактор подают литийорганический инициатор, электронодонорную добавку и функционализирующий агент. Полученные в первом и втором реакторах полимеризационные смеси смешивают друг с другом, затем осуществляют реакцию обрыва цепи. Технический результат - получение разветвленных функционализированных (со)полимеров диенов, характеризующихся статистическим распределением мономерных звеньев, содержанием виниловых звеньев более 60%, узким молекулярно-массовым распределением и регулируемым содержанием разветвленной и функционализированной частей в (со)полимере. 14 з.п. ф-лы, 20 пр.

Description

Изобретение относится к области получения синтетических каучуков, в частности диеновых (со)полимеров, таких как полибутадиен, полиизопрен и бутадиен-стирольный каучук (БСК), применяемых при производстве шин, резинотехнических изделий, модификации битумов, в электротехнической и других областях.
Получают диеновые (со)полимеры полимеризацией или сополимеризацией соответствующих мономеров в среде углеводородного растворителя в присутствии литийорганического соединения и электронодонорной добавки, используемой для сближения констант сополимеризации мономеров, в качестве которой используют либо алкотоляты щелочных металлов, либо третичные диамины, либо эфиры [РФ 2073023, US 6867265 В2, US 4397994, US 4575534].
С целью улучшения технологичности получаемого каучука при его синтезе используют различные разветвляющие агенты, благодаря которым происходит образование разветвленных молекул (со)полимеров. Разветвленность (со)полимеров влияет на такие их характеристики, как кристалличность, пласт-эластичные свойства, эластичность растворов, вязкость расплавов, давая возможность для создания новых сополимерных материалов с улучшенными свойствами.
Анализ литературы показывает [F.Tsutsumi, M.Sakakibara, and N. Oshima, Rubber Chem. TechnoL, 63,8 (1990), С.A.Sierra, С.Galan, M.J.Gomez Fatou, and V Ruiz Santa Quiteria, Rubber Chem. Technol., 68, 259 (1995)], что существуют две основные группы разветвляющих агентов: органические соединения кремния и олова (силаны, силоксаны, станнаны) и винильные производные (дивинилбензол, триацетобензол и др).
Органические соединения кремния и олова являются наиболее часто используемой группой. Она объединяет большое разнообразие соединений кремния и олова - от простейших представителей - три- и тетрагалогенидов кремния и олова до их функционализированных алкильных производных, таких как MeO3Si-(CH2)2-SiMeO3, Cl3Si-(CH2)2-SiCl3, SiCl3-CH2-C(CH2)-CH2-SiCl3, и силоксанов, например Cl3Si-O-SiCl3, Cl3Si-O-SiCl2-O-SiCl3.
Необходимо отметить, что в промышленности для производства БСК, используемого в качестве компонента резиновых смесей, предпочтение отдают простейшим представителям данной группы разветвляющих агентов: SiCl4 или SnCl4 [H.L.Hsieh and R.P.Quirk. Anionic Polymerization: Principles and Practical Applications, Dekker, New York, 1996].
В патенте US 4523618 описывается способ получения разветвленного бутадиен-стирольного каучука с применением в качестве разветвляющего агента соединений общего состава ClnMeR4-n, где n=3-4, Me=Si или Sn, R=Alk, Ar(С120). Способ заключается в том, что в реактор загружают раствор мономеров, электронодоноров (0,15-5% масс. ТГФ (тетрагидрофуран) или 0,01-0,5% масс. ТМЭДА (тетраметилэтилендиамин)) и литийорганического инициатора. Сополимеризацию проводят до полной конверсии мономеров при температуре 20-120°С в течение 0,1-24 часов, после чего в сополимеризующуюся смесь добавляют разветвляющий агент. После завершения разветвления сополимер выделяют из реакционной смеси путем добавления к ней низших спиртов. К полученному продукту добавляют стабилизатор - 2,6-ди-трет-бутил-n-крезол (0,5-1% от массы сополимера). Данный способ позволяет получать разветвленные БСК с содержанием стирола - 25%, 1,2-бутадиена - 32%.
Разветвленные сополимеры, полученные указанным выше способом, имеют низкое содержание 1,2-бутадиеновых звеньев (не более 47%), что является недостаточным для получения на их основе протекторных резин с требуемым комплексом свойств, а именно высоким сцеплением с мокрым дорожным покрытием, низким сопротивлением качению. Оптимальное содержание 1,2-бутадиеновых звеньев в каучуке для достижения вышеперечисленных свойств должно быть более 60% [Ф.Е.Куперман. Новые каучуки для шин. Приоритетные требования. Методы оценки. - Москва, 2005. - 329 с.; А.М.Пичугин. Материаловедческие аспекты создания шинных резин. - Москва, 2008. - 384 с.].
В патенте компании Bridgestone Corporation (Япония) US 5066721 А (19.11.1991) также описан способ получения разветвленного бутадиен-стирольного каучука, где в качестве разветвляющих агентов используют органические производные кремния, содержащие атомы галогена (хлора или брома). В способе используют простые эфиры (тетрагидрофуран, диметоксиэтан, диметиловый и дибутиловый эфиры диэтиленгликоля и др.) и третичные амины (пиридин, триэтиламин, N,N,N',N'-тетраметилэтилендиамин (ТМЭДА), N-метилморфолин и некоторые другие) в качестве электронодонорной добавки. В качестве инициатора процесса сополимеризации используют литийорганические соединения, в том числе н-бутиллитий. Данный способ позволяет получать сополимеры с содержанием 1,2-бутадиеновых звеньев около 60%.
Из литературы известно, что наличие в структуре сополимера функциональных групп, например олово-, кремний- или амино- содержащих групп, позволяет улучшить распределение усиливающих наполнителей в матрице каучука (сополимера), что в свою очередь приводит к уменьшению гистерезисных потерь и повышению износостойкости, а также сцепных свойств [V.R.-S.Quiteria, C.A.Sierra, J.M.Gómez-Fatou, С.Galán, L.M.Fraga. Tin-coupled styrene-butadiene rubbers (SBRs). Relationship between coupling type and properties // Macromolecular Materials and Engineering, 1999, 246, 2025-2032. С.A.Uraneck, J.N.Short. «Solution-polymerized rubbers with superior breakdown properties // J. Appl.Polym. Sci. 2003, 14, 1421-1432].
Известен способ получения разветвленного функционализированного БСК, патент US 5268439 (07.12.1993), в котором сополимеризацию стирола и бутадиена проводят в присутствии литийорганического инициатора и электронодонорной добавки с последующим добавлением разветвляющего агента. При этом литиевый инициатор представляет собой трибутилоловолитий (R)3SnLi, где R - алкил, который ввиду присутствия олова выступает и в качестве функционализирующего агента. В качестве электронодонорной добавки используют такие соединения, как N,N,N',N'-тетраметилэтилендиамин, тетрагидрофуран, и другие. В качестве разветвляющего агента используют соединения, выбранные из группы SnCl4, алкилоловохлориды, N,N'-диметилэтилмочевину. В результате получают сополимер общего строения R3SnYLi, где Y - сополимерный радикал, с содержанием стирола - 20,6%, винильных звеньев - 51,4%; вязкостью по Муни - 65 у.е.; условной прочностью - 21 МПа; относительным удлинением - 376%; tgδ (23°C) - 0,1079; tgδ (50°C) - 0,0739; Mn=556000 г/моль.
При использовании данного способа получают сополимеры с низким содержанием 1,2-бутадиеновых звеньев и высоким значением полидисперсности. Кроме того, недостатком этого способа является необходимость использования дорогостоящего и нестабильного литиевого инициатора, длительность приготовления которого около 20 часов.
Существует способ получения разветвленного функционализированного бутадиен-стирольного каучука, патент US 5959048 (28.09.1999), выбранный за прототип, в среде ациклического алканового растворителя в присутствии аминосодержащего литийорганического инициатора, представляющего собой смесь из 90-10 мас.ч. литийамина формулы A1L1 и 10-90 мас.ч. литийамина формулы A2Li, где A1 и А2 - разные или выбранные независимо из группы: диалкил-, алкил-, циклоалкил- и дициклоалкильных аминных радикалов, имеющих формулу
Figure 00000001
и циклических аминных радикалов, имеющих формулу
Figure 00000002
где каждый R1 независимо выбран из группы алкилов, циклоалкилов и арилов с 3-12 атомами углерода, R2 выбран из группы алкилена, окси- или аминоалкилена с 3-16 метиленовыми группами (например, смесь триметилгексаметиленамидлития и 3,3,5-триметилтетрагидроазепинлития), с последующим взаимодействием полученного сополимера с разветвляющим агентом, в качестве которого может, в частности, использоваться соединение формулы (R3)aZXb, где Z - олово или кремний, R3 выбран из группы алкилов с 1-20 атомами углерода, арилов с 6-20 атомами углерода; Х - хлор или бром; а=0-3, b=1-4, a+b=4. Получение используемого в известном способе инициатора осуществляют взаимодействием н-бутиллития со смесью разветвленных аминов указанного выше строения в среде алифатического растворителя. В качестве электронодонорных добавок используют тетрагидрофуран, 2-2'-дитетрагидрофуранпропан, дипиперидинэтан, диметиловый эфир, диэтиловый эфир, трибутиламин, ТМЭДА, эфиры этиленгликоля, краун-эфиры. Полученный полимер вулканизуют и получают резины с низкими гистерезисными потерями, уменьшением сопротивления качению и пониженным теплообразованием. Полученный сополимер содержит 20,1% - стирола (1,6% блочного стирола), 43,8% - 1,2-бутадиеновых звеньев, температура стеклования - -49°С, Mn=145511, полидисперсность - 1,9, вязкость по Муни - 62 ед.
Сополимеры, получаемые по данному способу, имеют низкое содержание 1,2-бутадиеновых звеньев. Кроме того, недостатком описанного способа получения функционализированного разветвленного сополимера является необходимость использования в качестве инициатора раствора нестабильных амидов лития, при хранении которого более 30 суток наблюдается выпадение азотсодержащего инициатора, что приводит к снижению его концентрации в растворе, в связи с чем становится затруднительна подача на полимеризацию требуемого количества инициатора. Также получение такого инициатора осуществляют при взаимодействии н-бутиллития со смесью двух различных аминов, так как при использовании только одного из аминов происходит практически мгновенное его осаждение [Патент РФ 2175330].
Задачей настоящего изобретения является разработка эффективного способа получения разветвленных функционализированных (со)полимеров диенов, характеризующихся статистическим распределением мономерных звеньев, высоким содержанием виниловых звеньев (1,2-бутадиеновых и/или 3,4-изопреновых звеньев (более 60%)) и узким молекулярно-массовым распределением (1,4-1,7), позволяющего регулировать содержание разветвленной и функционализированной частей в (со)полимере.
Поставленная задача и технический результат достигаются тем, что получение разветвленных функционализированных (со)полимеров диенов проводят путем полимеризации диенов или сополимеризации их между собой и/или с арилвинильными соединениями в углеводородном растворителе в присутствии литийорганического инициатора, электронодонорной добавки, функционализирующего и разветвляющего агентов. При этом в качестве диенов предпочтительно использовать сопряженные диены, такие как бутадиен и/или изопрен. В качестве арилвинильного соединения можно использовать стирол, альфа-метилстирол и др. В качестве литийорганического инициатора используют соединение, выбранное из группы, включающей этиллитий, изопропиллитий, н-бутиллитий, трет-октиллитий, фениллитий, 2-нафтиллитий, 4-бутилфениллитий, 4-фенилбутиллитий и циклогексиллитий.
В качестве электронодонорной добавки используют соединение, содержащее, по крайней мере, один гетероатом и/или его смесь с алкоксидами щелочных и/или щелочноземельных металлов. Например, соединения, представленные одной из нижеследующих формул:
Figure 00000003
где n=1-20; R, R'=СН3, C2H5, n-С3Н7, i-С3Н7, n-С4Н9, s-C4H9, t-C4H9, i-С4Н9, С5Н11, С6Н13, C7H15, C8H17, C9H19, C10H21, С6Н5, o-С6Н4СН3, m-С6Н4СН3, p-С6Н4СН3, o-С6Н4С2Н5, m-С6Н4СН3, p-С6Н4СН3 и
Figure 00000004
где n=1-20; m=1-4; Me=Li, Na, K; X=-CH2-, -C2H4-, -С3Н6-, -C4H8-; -С5Н10-, -С6Н12-, -C7H14-, -C8Hl6-; R=СН3, С2Н5, n-С3Н7, i-С3Н7, n-С4Н9, s-C4H9, t-С4Н9, i-C4H9, С5Н11, С6Н13, C7H15, C8H17, C9H19, C10H21, С6Н5, o-С6Н4СН3, m-С6Н4СН3, p-С6Н4СН3, о-С6Н4С2Н5, m-С6Н4СН3, p-С6Н4СН3.
Также в качестве электронодонорной добавки могут выступать и продукты взаимодействия вышеперечисленных соединений, которые могут образовываться как до введения их в полимеризационную смесь, так и после. При этом мольное соотношение литийорганического инициатора к соединению, содержащему, по крайней мере, один гетероатом, составляет 1:(0,1-1,0), а мольное соотношение литийорганического инициатора к алкоксиду щелочного и/или щелочноземельного металла составляет 1:(0,1-1,0). Указанные пределы мольных соотношений определяются необходимостью получения заданного значения винильных групп в бутадиеновой составляющей полимерной цепи, регулирования степени статистического распределения (микроблочности) стирола в каучуке.
Процесс сополимеризации осуществляют при температуре 30-80°С в двух параллельных реакторах, в каждом из которых проводят (со)полимеризацию соответствующих мономеров, при этом в первый реактор подают литийорганический инициатор в количестве 1,2-2,0 ммоль на 100 г мономеров с последующим добавлением разветвляющего агента предпочтительно на конверсии 50-100%, а во второй реактор подают литийорганический инициатор в количестве 0,8-1,4 ммоль на 100 г мономеров с последующим добавлением функционализирующего агента предпочтительно на конверсии 95-100%; затем полученные полимеризационные смеси из реакторов подают в третий реактор в массовом соотношении первого ко второму в интервале (0,01-0,99) - (0,99-0,01), где смешивают друг с другом, с последующим осуществлением реакции обрыва цепи.
В качестве разветвляющего агента добавляют одновременно или последовательно, как каждый в отдельности, так и в различных сочетаниях следующие соединения ЭНаl3R2, ЭНаl3R, Э'Наl4, где Э и Э' выбраны из группы Sn, Ge, Si; Hal=F, Cl, Br, I; R - алкил C1-C20, или арил; и С6Н6: у которого, по крайней мере, два атома водорода замещены на группу, выбранную из следующего ряда -Hal, -CH=CH2, -C(O)Alk. При этом разветвляющий агент используют в мольном соотношении к литийорганическому инициатору 0,01-0,99. Разветвление предпочтительно проводить при температуре 60-80°С в течение 5-120 мин.
В качестве функционализирующих агентов используют соединения, выбранные из группы: N,N-ди-замещенные аминоалкилакриламиды и N,N-ди-замещенные аминоалкилметакриламиды, такие как N,N-диметиламинопропил акриламид и N,N-диметиламинопропил метакриламид; N,N-дизамещенные аминоароматические соединения, такие как N,N-диметиламиноэтил стирол и N,N-диэтиламиноэтил стирол; N-замещенные циклические амиды, такие как N-метил-2-пирролидон, N-винил-2-пирролидон, N-фенил-2-пирролидон, N-метил-эпсилон-капролактам; N-замещенные циклические мочевины, такие как 1,3-диметилэтилен мочевина и 1,3-диэтил-2-имидазолидинон; а также N-замещенные аминокетоны, такие, например, как N,N'-бис-(диметиламино)бензофенон (кетон Михлера) и N,N'-бис-(диэтиламино)бензофенон. Функционализирующий агент используют при мольном соотношении к литийорганическому инициатору в пределах 0,5-1,0. Функционализацию предпочтительно проводить при температуре 60-80°С в течение 15-60 минут.
После проведения синтеза осуществляют дезактивацию катализатора и стабилизацию каучука путем введения в полимеризат раствора антиоксиданта, например, агидол-2 или другого типа в количестве 0,2-0,6% масс. Затем проводят выделение каучука известными способами, такими как водно-паровая дегазация и сушка на вальцах.
Использование заявленного способа позволяет получать разветвленные функционализированные (со)полимеры диенов со статистическим распределением мономерных звеньев, узким ММР, высоким содержанием виниловых звеньев (1,2-бутадиеновых и/или 3,4-изопреновых звеньев (более 60%)). Основным достоинством данного способа является то, что возможно регулирование разветвленной и функционализированной частей в каучуке. Это дает возможность получать каучуки различной природы (например, с большей степенью разветвленности, но с меньшей степенью функционализации и наоборот либо с равной степенью функционализации и разветвленности), что в свою очередь повлияет на свойства как самого каучука, так и резиновых смесей, получаемых на его основе. При большей степени разветвленности (60-90%) улучшаются технологические свойства каучука, при большей степени функционализации улучшаются динамические показатели резиновых смесей на их основе. Таким образом, можно получать каучуки с различным диапазоном свойств, тем самым удовлетворять требования потребителей и расширять область их применения.
Изобретение иллюстрируется следующими нижеприведенными примерами.
Пример 1 (по прототипу). В стеклянный заполненный азотом реактор с мешалкой загружают 144 г бутадиена и 36 г стирола и дозируют 2 мл 0,9 М (1,8 ммоль) раствора инициатора (смесь гексаметиленамида лития и пиридина лития), затем вводят N,N,N',N',-тетраметилэтилендиамин (ТМЭДА) в мольном соотношении ТМЭДА/RLi=0,30. Реакционную массу перемешивают при 50°С в течение 1,5 часа, затем при этой же температуре вводят разветвляющий агент тетрахлорид олова (SnCl4) 3,6·10-4 моль в молярном соотношении SnCl4:1/4 RLi=0,8:1. Полученный продукт содержит 20,1% - стирола (1,6% блочного стирола), 43,8% - 1,2-бутадиеновых звеньев, температура стеклования - -49°С, Mn=145511, полидисперсность - 1,9, вязкость по Муни - 62 ед.
Пример 2. В два параллельных стеклянных реактора, каждый из которых объемом 1 литр, снабженных устройствами для замера температуры и давления, загрузки и выгрузки, мешалкой и рубашкой, вводят шихту, состоящую из 350 г нефраса, предварительно осушенного и обескислороженного, 46 г бутадиена и 12 г стирола (массовое соотношение мономеров в реакционной среде 80:20). Температура подачи шихты в реакторы минус 10°С, по достижении в реакторах 15°С вводят каталитическую систему, состоящую из н-бутиллития и смеси электронодонорных добавок. Смесь электронодонорных добавок включает в себя тетраметилэтилендиамин в виде раствора в нефрасе концентрацией 0,066 М из расчета ТМЭДА/н-бутиллитий = 0,7 моль и раствор тетрагидрофурфурилата натрия в толуоле концентрацией 0,07 М из расчета ТГФН/н-бутиллитий = 0,6 моль. В первый реактор н-бутиллитий подают в виде раствора в нефрасе (концентрацией 0,16 М) из расчета 1,5 ммоль на 100 г мономеров. Во второй реактор подают н-бутиллитий той же концентрации из расчета 1,0 ммоль на 100 г мономеров. Процесс сополимеризации в обоих реакторах проводят при температуре 60°С до конверсии 98,7%. По достижении конверсии в первый реактор вводят раствор дибутилоловодихлорида в нефрасе концентрацией 0,083 М при мольном соотношении к Li=0,1; реакцию проводят при температуре 80°С в течение 30 минут, затем подают раствор тетрахлорида олова в нефрасе концентрацией 0,085 М при мольном соотношении к Li=0,2, реакцию проводят еще 45 минут при той же температуре. Во второй реактор по достижении конверсии подают функционализирующий агент кетон Михлера в виде раствора концентрацией 0,037 М при мольном соотношении к Li=0,8; реакцию продолжают еще 30 минут при той же температуре. После этого полимеризационную смесь из первого реактора смешивают с полимеризационной смесью второго реактора в массовом соотношении 0,01/0,99 в течение 5 минут. В качестве антиоксиданта используют агидол-2 в количестве 0,5% масс.
Полученный продукт содержит 21,1% - стирола, 64% - 1,2-бутадиеновых звеньев, температура стеклования - -24°С, Mn=318000, полидисперсность - 1,4, вязкость по Муни - 45 ед.
Пример 3. Осуществляют, как описано в примере 2.
Отличается тем, что дозировка н-бутиллития в первом реакторе составляет 1,2 ммоль на 100 г мономера, а во втором - 0,8 ммоль на 100 г мономеров. В качестве разветвляющего агента в первый реактор вводят раствор дибромдифенилсилан в нефрасе концентрацией 0,082 М при мольном соотношении к Li=0,2; реакцию проводят в течение 45 минут при температуре 60°С, затем вводят раствор тетрахлорида германия концентрацией 0,089 М при мольном соотношении к Li=0,15, реакцию проводят в течение 45 минут при той же температуре. Во второй реактор по достижении конверсии 99,0% подают функционализирующий агент кетон Михлера, реакцию продолжают еще 15 минут при той же температуре. После этого полимеризационную смесь из первого реактора смешивают с полимеризационной смесью второго реактора в массовом соотношении 0,99/0,01 в течение 15 минут. Полученный продукт содержит 20% - стирола, 63% - 1,2-бутадиеновых звеньев, температура стеклования - -25°С, Mn=330000, полидисперсность - 1,7, вязкость по Муни - 48 ед.
Пример 4. Осуществляют, как описано в примере 2.
Отличается тем, что в качестве смеси электронодонорных добавок используют диэтиламин в виде раствора в нефрасе концентрацией 0,066 М из расчета диэтиламин/н-бутиллитий = 0,7 моль и раствор ди-трет-бутилового эфира этиленгликоля в нефрасе концентрацией 0,047 М из расчета ДТБЭЭГ/н-бутиллитий=0,7 моль. По достижении конверсии 99,5% в первый реактор вводят раствор дифенилдифторсилана в нефрасе концентрацией 0,082 М при мольном соотношении к Li=0,3, реакцию проводят в течение 30 минут при температуре 60°С, затем вводят раствор тетрахлорида олова концентрацией 0,085 М при мольном соотношении к Li=0,1, реакцию проводят в течение 45 минут при той же температуре. Реакцию с функционализирующим агентом во втором реакторе проводят в течение 60 минут. После этого полимеризационную смесь из первого реактора смешивают с полимеризационной смесью второго реактора в массовом соотношении 0,2/0,8 в течение 2 минут.
Полученный продукт содержит 20,5% - стирола, 62% - 1,2-бутадиеновых звеньев, температура стеклования - -27°С, Mn=310000, полидисперсность - 1,4, вязкость по Муни - 45 ед.
Пример 5. Осуществляют, как описано в примере 2.
Отличается тем, что по достижении конверсии 99,0% в первый реактор вводят раствор метилоловотрихлорида в нефрасе концентрацией 0,083 М при мольном соотношении к Li=0,1, реакцию проводят в течение 30 минут при температуре 70°С, затем вводят раствор тетрабромида кремния концентрацией 0,089 М при мольном соотношении к Li=0,2, реакцию проводят в течение 60 минут при той же температуре. Полимеризационную смесь из первого реактора смешивают с полимеризационной смесью второго реактора в массовом соотношении 0,8/0,2 в течение 10 минут.
Полученный продукт содержит 20,2% - стирола, 66% - 1,2-бутадиеновых звеньев, температура стеклования - -21°С, Mn=307000, полидисперсность - 1,6, вязкость по Муни - 46 ед.
Пример 6. Осуществляют, как описано в примере 2.
Отличается тем, что раствор дибутилоловодибромида в нефрасе концентрацией 0,083 М при мольном соотношении к Li=0,2 и раствор тетрахлорида германия в нефрасе концентрацией 0,089 М при мольном соотношении к Li=0,15 подают одновременно в первый реактор, реакцию проводят при температуре 80°С в течение 45 минут. Во второй реактор в качестве функционализирующего агента добавляют N,N-диметиламинопропил метакриламид при мольном соотношении к Li=1,0; реакцию проводят в течение 30 минут. Полимеризационную смесь из первого реактора смешивают с полимеризационной смесью второго реактора в массовом соотношении 0,3/0,7 в течение 5 минут.
Полученный продукт содержит 20,5% - стирола, 65% - 1,2-бутадиеновых звеньев, температура стеклования - -25°С, Mn=322000, полидисперсность - 1,5, вязкость по Муни - 46 ед.
Пример 7. Осуществляют, как описано в примере 2.
Отличается тем, что в качестве смеси электронодонорных добавок используют тетрагидрофурфурилат калия в виде раствора в толуоле концентрацией 0,075 М из расчета ТГФК/н-бутиллитий = 0,8 моль и раствор ди-трет-бутилового эфира этиленгликоля в нефрасе концентрацией 0,047 М из расчета ДТБЭЭГ/н-бутиллитий = 0,6 моль. Дозировка н-бутиллития в первом реакторе составляет 2,0 ммоль на 100 г мономера, а во втором - 1,2 ммоль на 100 г мономеров. Разветвление проводят одновременно раствором трибромэтилсилана в нефрасе концентрацией 0,082 М при мольном соотношении к Li=0,25 и раствором тетрахлорида олова концентрацией 0,085 М при мольном соотношении к Li=0,125; реакцию проводят в течение 30 минут при температуре 60°С. Полимеризационную смесь из первого реактора смешивают с полимеризационной смесью второго реактора в массовом соотношении 0,5/0,5 в течение 20 минут.
Полученный продукт содержит 19,8% - стирола, 61% - 1,2-бутадиеновых звеньев, температура стеклования - -20°С, Mn=260000, полидисперсность - 1,45, вязкость по Муни - 42 ед.
Пример 8. Осуществляют, как описано в примере 2.
Отличается тем, что разветвление проводят одновременно раствором фенилтрихлорсилана в нефрасе концентрацией 0,082 М при мольном соотношении к Li=0,1 и раствором тетрахлорида кремния в нефрасе концентрацией 0,089 М при мольном соотношении к Li=0,2, реакцию проводят в течение 60 минут при температуре 65°С. Полимеризационную смесь из первого реактора смешивают с полимеризационной смесью второго реактора в массовом соотношении 0,4/0,6 в течение 20 минут.
Полученный продукт содержит 19,7% - стирола, 63% - 1,2-бутадиеновых звеньев, температура стеклования - -23°С, Mn=328000, полидисперсность - 1,5, вязкость по Муни - 47 ед.
Пример 9. Осуществляют, как описано в примере 2.
Отличается тем, что дозировка н-бутиллития в первом реакторе составляет 1,6 ммоль на 100 г мономера, а во втором - 1,0 ммоль на 100 г мономеров, разветвление проводят одновременно раствором дифенилоловодихлорида в нефрасе концентрацией 0,083 М при мольном соотношении к Li=0,2 и раствором тетрахлорида германия в нефрасе концентрацией 0,089 М при мольном соотношении к Li=0,15, реакцию проводят в течение 30 минут при температуре 65°С. Полимеризационную смесь из первого реактора смешивают с полимеризационной смесью второго реактора в массовом соотношении 0,6/0,4 в течение 7 минут.
Полученный продукт содержит 20% - стирола, 64% - 1,2-бутадиеновых звеньев, температура стеклования - -24°С, Mn=299000, полидисперсность - 1,6, вязкость по Муни - 45 ед.
Пример 10. Осуществляют, как описано в примере 2.
Отличается тем, что дозировка н-бутиллития в первом реакторе составляет 1,7 ммоль на 100 г мономера, а во втором - 1,1 ммоль на 100 г мономеров, разветвление проводят одновременно раствором дифенилоловодихлорида в нефрасе концентрацией 0,08 М при мольном соотношении к Li=0,2 и раствором тетрахлорида олова в нефрасе концентрацией 0,089 М при мольном соотношении к Li=0,15, реакцию проводят в течение 60 минут при температуре 70°С. Полимеризационную смесь из первого реактора смешивают с полимеризационной смесью второго реактора в массовом соотношении 0,5/0,5 в течение 12 минут.
Полученный продукт содержит 21% - стирола, 65% - 1,2-бутадиеновых звеньев, температура стеклования - -22°С, Mn=315000, полидисперсность - 1,5, вязкость по Муни - 46 ед.
Пример 11. Осуществляют, как описано в примере 2.
Отличается тем, что дозировка н-бутиллития в первом реакторе составляет 1,6 ммоль на 100 г мономера, а во втором - 1,0 ммоль на 100 г мономеров, разветвление проводят одновременно раствором метилтрихлорсилана в нефрасе концентрацией 0,08 М при мольном соотношении к Li=0,2 и раствором тетрахлорида германия в нефрасе концентрацией 0,09 М при мольном соотношении к Li=0,15, реакцию проводят в течение 60 минут при температуре 70°С. Полимеризационную смесь из первого реактора смешивают с полимеризационной смесью второго реактора в массовом соотношении 0,4/0,6 в течение 20 минут.
Полученный продукт содержит 21% - стирола, 63% - 1,2-бутадиеновых звеньев, температура стеклования - -23°С, Mn=330000, полидисперсность - 1,6, вязкость по Муни - 48 ед.
Пример 12. Осуществляют, как описано в примере 2.
Отличается тем, что по достижении конверсии 50,0% в первый реактор в качестве разветвляющего агента вводят раствор дивинилбензола в нефрасе концентрацией 0,09 М при мольном соотношении к Li=0,1, реакцию проводят в течение 45 минут при температуре 70°С, затем вводят раствор тетрабромида олова концентрацией 0,08 М при мольном соотношении к Li=0,2, реакцию проводят в течение 60 минут при той же температуре.
Полимеризационную смесь из первого реактора смешивают с полимеризационной смесью второго реактора в массовом соотношении 0,8/0,2 в течение 10 минут.
Полученный продукт содержит 20,8% - стирола, 64% - 1,2-бутадиеновых звеньев, температура стеклования - 25°С, Mn=300000, полидисперсность - 1,5, вязкость по Муни - 42 ед.
Пример 13. Осуществляют, как описано в примере 2.
Отличается тем, что в качестве инициатора используется фениллитий, в качестве электронодонорной добавки используют диэтиламин в виде раствора в нефрасе концентрацией 0,066 М из расчета диэтиламин/фениллитий=1 моль. В первый реактор фенилллитий подают в виде раствора в эфире (концентрацией 0,16 М) из расчета 1,5 ммоль на 100 г мономеров. Во второй реактор подают фенилллитий той же концентрации из расчета 1,0 ммоль на 100 г мономеров.
Полученный продукт содержит 20% - стирола, 60% - 1,2-бутадиеновых звеньев, температура стеклования - -26°С, Mn=240000, полидисперсность - 1,5, вязкость по Муни - 35 ед.
Пример 14. Осуществляют, как описано в примере 2.
Отличается тем, что в качестве инициатора используется полибутадиениллития. В качестве разветвляющего агента в первый реактор вводят раствор дибромдифенилсилан в нефрасе концентрацией 0,082 М при мольном соотношении к Li=0,1; реакцию проводят в течение 45 минут при температуре 60°С, затем вводят раствор тетрахлорида германия концентрацией 0,089 М при мольном соотношении к Li=0,2, реакцию проводят в течение 45 минут при той же температуре. Во второй реактор по достижении конверсии 99,0% подают функционализирующий агент 1,3-диэтил-2-имидазолидинон, реакцию продолжают еще 45 минут при той же температуре. После этого полимеризационную смесь из первого реактора смешивают с полимеризационной смесью второго реактора в массовом соотношении 0,5/0,5 в течение 15 минут.
Полученный продукт содержит 20% - стирола, 63% - 1,2-бутадиеновых звеньев, температура стеклования - -25°С, Mn=380000, полидисперсность - 1,5, вязкость по Муни - 55 ед.
Пример 15. Осуществляют, как описано в примере 13.
Отличие заключается в том, что в два параллельных металлических реактора, каждый из которых объемом 2 литра, снабженных устройствами для замера температуры и давления, загрузки и выгрузки, мешалкой и рубашкой, вводят шихту, состоящую из 700 г нефраса, предварительно осушенного и обескислороженного, 116 г бутадиена. По достижении конверсии 99,5% в первый реактор вводят раствор дифенилдифторсилана в нефрасе концентрацией 0,082 М при мольном соотношении к Li=0,4, реакцию проводят в течение 30 минут при температуре 60°С, затем вводят раствор тетрахлорида олова концентрацией 0,085 М при мольном соотношении к Li=0,05, реакцию проводят в течение 45 минут при той же температуре. Реакцию с функционализирующим агентом - N,N-диметиламинопропилакриламидом во втором реакторе проводят в течение 30 минут. После этого полимеризационную смесь из первого реактора смешивают с полимеризационной смесью второго реактора в массовом соотношении 0,8/0,2 в течение 20 минут.
Полученный продукт имеет 66% - 1,2-бутадиеновых звеньев, температура стеклования - -38°С, Mn=380000, полидисперсность - 1,7, вязкость по Муни - 55 ед.
Пример 16. Осуществляют, как описано в примере 13.
Отличие заключается в том, что в два параллельных металлических реактора, каждый из которых объемом 1 литр, снабженных устройствами для замера температуры и давления, загрузки и выгрузки, мешалкой и рубашкой, вводят шихту, состоящую из 350 г нефраса, предварительно осушенного и обескислороженного, 54 г бутадиена и 4 г изопрена. В качестве электронодонорной добавки используют бутилат кальция в виде раствора в толуоле концентрацией 0,066 М из расчета бутилат кальция/фениллитий=1 моль. По достижении конверсии 99,5% в первый реактор вводят раствор дифенилдифторсилана в нефрасе концентрацией 0,082 М при мольном соотношении к Li=0,5, реакцию проводят в течение 30 минут при температуре 60°С, затем вводят раствор тетрахлорида олова концентрацией 0,085 М при мольном соотношении к Li=0,2, реакцию проводят в течение 45 минут при той же температуре.
Полученный продукт имеет состав изопрен/бутадиен=7/93, 60% - 3,4-изопреновых звеньев, 66% - 1,2-бутадиеновых звеньев, температура стеклования - -14°С, Mn=380000, полидисперсность - 1,7, вязкость по Муни - 55 ед.
Пример 17. Осуществляют, как описано в примере 7.
Отличается тем, что в два параллельных металлических реактора, каждый из которых объемом 1 литр, снабженных устройствами для замера температуры и давления, загрузки и выгрузки, мешалкой и рубашкой, вводят шихту, состоящую из 350 г нефраса, предварительно осушенного и обескислороженного, 58 г изопрена. В качестве инициатора используется полиизопрениллития. Дозировка полиизопрениллития в первом реакторе составляет 2 ммоль на 100 г мономера, а во втором - 1,4 ммоль на 100 г мономеров.
Полученный продукт содержит 57% - 3,4 - изопреновых звеньев, температура стеклования - 22°С, Mn=240000, полидисперсность - 2, вязкость по Муни - 60 ед.
Пример 18. Осуществляют, как описано в примере 2.
Приложение 2.
Отличается тем, что в качестве электронодонорной добавки используют диметилсульфид в виде раствора в толуоле концентрацией 0,066 М из расчета диметилсульфид/н-бутиллитий=1 моль. Во второй реактор после достижения конверсии 95% подают функционализирующий агент N-метил-эпсилон-капролактам, реакцию ведут при 60°С в течение 30 минут.
Полученный продукт содержит 20% - стирола, 60% - 1,2-бутадиеновых звеньев, температура стеклования - -26°С, Mn=240000, полидисперсность - 1,5, вязкость по Муни - 35 ед.
Пример 19. Осуществляют, как описано в примере 2.
Отличие заключается в том, что в два параллельных металлических реактора, каждый из которых объемом 1 литр, снабженных устройствами для замера температуры и давления, загрузки и выгрузки, мешалкой и рубашкой, вводят шихту, состоящую из 350 г нефраса, предварительно осушенного и обескислороженного, 17 г стирола, 20 г бутадиена и 20 г изопрена. Смесь электронодонорных добавок включает в себя тетраметилэтилендиамин в виде раствора в нефрасе концентрацией 0,066 М из расчета ТМЭДА/н-бутиллитий=0,15 моль и раствор тетрагидрофурфурилата натрия в толуоле концентрацией 0,07 М из расчета ТГФН/н-бутиллитий=0,1 моль. Во второй реактор после достижения конверсии 98% подают функционализирующий агент N,N-диэтиламиноэтилстирол, реакцию ведут при 60°С в течение 30 минут.
Полученный продукт имеет состав стирол/изопрен/бутадиен=28/36/36, 52% - 3,4-изопреновых звеньев, 45% - 1,2-бутадиеновых звеньев, температура стеклования - -21°С, Mn=300000, полидисперсность - 1,8, вязкость по Муни - 55 ед.
Пример 20. Осуществляют, как описано в примере 7.
Отличие заключается в том, что в два параллельных металлических реактора, каждый из которых объемом 1 литр, снабженных устройствами для замера температуры и давления, загрузки и выгрузки, мешалкой и рубашкой, вводят шихту, состоящую из 350 г нефраса, предварительно осушенного и обескислороженного, 10 г альфа-метилстирола, 20 г бутадиена и 25 г изопрена. Смесь электронодонорных добавок включает в себя тетраметилэтилендиамин в виде раствора в нефрасе концентрацией 0,066 М из расчета ТМЭДА/н-бутиллитий=0,5 моль и раствор тетрагидрофурфурилата калия в толуоле концентрацией 0,1 М из расчета ТГФН/н-бутиллитий=0,15 моль. Во второй реактор после достижения конверсии 98% подают функционализирующий агент N-метилпирролидон, реакцию ведут при 60°С в течение 30 минут.
Полученный продукт имеет состав альфа-метилстирол/изопрен/бутадиен=18/36/46, 60% - 3,4-изопреновых звеньев, 49% - 1,2-бутадиеновых звеньев, температура стеклования - -18°С, Mn=308000, полидисперсность - 1,86, вязкость по Муни - 57 ед.

Claims (15)

1. Способ получения разветвленных функционализированных диеновых (со)полимеров путем полимеризации диенов или сополимеризации их между собой и/или с арилвинильными соединениями в углеводородном растворителе в присутствии литийорганического инициатора, электронодонорной добавки, функционализирующего и разветвляющего агентов, отличающийся тем, что процесс осуществляют в двух параллельных реакторах, в каждом из которых проводят полимеризацию диенов или сополимеризацию их между собой и/или с арилвинильными соединениями, при этом в первый реактор подают литийорганический инициатор, электронодонорную добавку и разветвляющий агент, во второй реактор подают литийорганический инициатор, электронодонорную добавку и функционализирующий агент с последующим смешением полученных полимеризационных смесей друг с другом.
2. Способ по п.1, отличающийся тем, что в качестве диена используют соединение, выбранное из группы бутадиен, изопрен.
3. Способ по п.1, отличающийся тем, что в качестве литийорганического инициатора используют соединение, выбранное из группы алкиллитий, ариллитий, алкениллитий.
4. Способ по п.1, отличающийся тем, что литийорганический инициатор в первый реактор подают в количестве 1,2-2,0 ммоль на 100 г мономеров.
5. Способ по п.1, отличающийся тем, что литийорганический инициатор во второй реактор подают в количестве 0,8-1,2 ммоль на 100 г мономеров.
6. Способ по п.1, отличающийся тем, что в качестве электронодонорных добавок используют соединение, содержащее, по крайней мере, один гетероатом или его смесь с алкоксидами щелочных и/или щелочноземельных металлов.
7. Способ по п.1, отличающийся тем, что в качестве электронодонорных добавок используют продукты взаимодействия соединения, содержащего, по крайней мере, один гетероатом, и алкоксида щелочного и/или щелочноземельного металла.
8. Способ по п.1, отличающийся тем, что мольное соотношение литийорганический инициатор:алкоксид щелочного и/или щелочноземельного металла составляет 1:(0,1-1,0), мольное соотношение литийорганический инициатор: соединение, содержащее, по крайней мере, один гетероатом, составляет 1:(0,1-1,0).
9. Способ по п.1, отличающийся тем, что разветвляющий агент добавляют на 50-100% конверсии мономеров.
10. Способ по п.1, отличающийся тем, что в качестве разветвляющего агента добавляют одновременно или последовательно, как каждый в отдельности, так и в различных сочетаниях, следующие соединения: ЭНаl2R2, ЭНаl3R, Э'Hal4, где Э и Э' выбраны из группы Sn, Ge, Si; Hal=F, Cl, Br, I; R=алкил C1-C20, или арил; и С6Н6, у которого, по крайней мере, два атома водорода замещены на группу, выбранную из следующего ряда -Hal, -CH=CH2, -С(O)Аlк.
11. Способ по п.1, отличающийся тем, что разветвляющий агент используют в мольном соотношении к литийорганическому инициатору 0,01-0,99.
12. Способ по п.1, отличающийся тем, что в качестве функционализирующего агента используют соединение, выбранное из группы N,N-дизамещенные аминоалкилакриламиды и N,N-дизамещенные аминоалкилметакриламиды, N,N-дизамещенные аминоароматические соединения, N-замещенные циклические амиды, N-замещенные циклические мочевины, N-замещенные аминокетоны.
13. Способ по п.1, отличающийся тем, что функционализирующий агент добавляют на 95-100% конверсии мономеров.
14. Способ по п.1, отличающийся тем, что функционализирующий агент используют в мольном соотношении к литийорганическому инициатору 0,5-1,0.
15. Способ по п.1, отличающийся тем, что полимеризационные смеси из реакторов смешивают друг с другом в массовом соотношении первого ко второму в интервале (0,01-0,99)÷(0,99-0,01).
RU2011140301/05A 2011-10-04 2011-10-04 Способ получения разветвленных функционализированных диеновых (со)полимеров RU2487137C2 (ru)

Priority Applications (4)

Application Number Priority Date Filing Date Title
RU2011140301/05A RU2487137C2 (ru) 2011-10-04 2011-10-04 Способ получения разветвленных функционализированных диеновых (со)полимеров
BR112014008316-9A BR112014008316B1 (pt) 2011-10-04 2012-10-03 método para a produção de (co)polímeros diênicos funcionalizados ramificados
US14/350,032 US9611384B2 (en) 2011-10-04 2012-10-03 Method for producing branched functionalized diene (co)polymers
PCT/RU2012/000806 WO2013051966A1 (ru) 2011-10-04 2012-10-03 Способ получения разветвленных функционализированных диеновых (со) полимеров

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011140301/05A RU2487137C2 (ru) 2011-10-04 2011-10-04 Способ получения разветвленных функционализированных диеновых (со)полимеров

Publications (2)

Publication Number Publication Date
RU2011140301A RU2011140301A (ru) 2013-04-10
RU2487137C2 true RU2487137C2 (ru) 2013-07-10

Family

ID=48043982

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011140301/05A RU2487137C2 (ru) 2011-10-04 2011-10-04 Способ получения разветвленных функционализированных диеновых (со)полимеров

Country Status (4)

Country Link
US (1) US9611384B2 (ru)
BR (1) BR112014008316B1 (ru)
RU (1) RU2487137C2 (ru)
WO (1) WO2013051966A1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2700937C1 (ru) * 2016-07-22 2019-09-24 Публичное акционерное общество "СИБУР Холдинг" Способ получения разветвленно-модифицированного каучука и резиновая смесь, содержащая полученный данным способом разветвленно-модифицированный каучук, а также ее применение
WO2020106173A1 (en) 2018-11-23 2020-05-28 Public Joint Stock Company "Sibur Holding" Polymer composition and a method for preparing thereof
US11001661B2 (en) 2017-01-03 2021-05-11 Lg Chem, Ltd. Modified conjugated diene-based polymer and rubber composition including the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101772796B1 (ko) * 2016-01-21 2017-08-29 한화토탈 주식회사 변성공액디엔계 중합체 제조방법 및 이 방법에 의해 제조된 중합체를 이용한 고무조성물
US20220185921A1 (en) * 2019-04-12 2022-06-16 Bridgestone Corporation Polyisoprene, rubber composition, and tire
WO2023091603A1 (en) 2021-11-18 2023-05-25 Epilady 2000 Llc System and method for pigment removal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1001671A1 (ru) * 1981-06-04 1992-02-23 Предприятие П/Я В-8415 Способ получени полибутадиена с высоким содержанием 1,2-звеньев и регулируемым молекул рно-массовым распределением
US5959048A (en) * 1992-10-30 1999-09-28 Bridgestone Corporation Soluble anionic polymerization initiators for preparing functionalized polymer
RU2175330C1 (ru) * 2001-01-25 2001-10-27 Федеральное государственное унитарное предприятие "Научно-исследовательский институт синтетического каучука им. академика С.В. Лебедева" Способ получения диеновых (со)полимеров, содержащих функциональные группы
WO2009077837A1 (en) * 2007-12-14 2009-06-25 Petroflex Industria E Comercio S.A. A1,3-butadiene and styrene copolymer product, functionalized at the extremities of its polymeric chains, and the preparation process

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL86588C (ru) 1980-09-20
JPS58168611A (ja) 1982-03-30 1983-10-05 Sumitomo Chem Co Ltd 分岐重合体及びその製造方法
JPS59187041A (ja) 1983-04-06 1984-10-24 Japan Synthetic Rubber Co Ltd スチレン−ブタジエン共重合体ゴム組成物
JPH0713158B1 (ru) 1987-01-14 1995-02-15 Bridgestone Corp
US5268439A (en) 1991-01-02 1993-12-07 Bridgestone/Firestone, Inc. Tin containing elastomers and products having reduced hysteresis properties
RU2073023C1 (ru) 1994-11-23 1997-02-10 Щербань Георгий Трофимович Способ получения статистических бутадиен-стирольных каучуков
US6489403B1 (en) * 1999-12-14 2002-12-03 The Goodyear Tire & Rubber Company Process for improved coupling of rubbery polymers
DE10105401A1 (de) * 2001-02-07 2002-08-22 Bayer Ag Kontinuierliches Verfahren zur Herstellung von Elastomeren
RU2348653C2 (ru) * 2003-02-21 2009-03-10 Дау Глобал Текнолоджиз Инк. Способ гомо- или сополимеризации сопряженных олефинов
EP1910426B1 (en) * 2005-08-02 2018-01-03 Ineos Sales (UK) Limited Diene polymerisation
EP1918311A1 (en) * 2006-10-31 2008-05-07 Ineos Europe Limited Diene polymerisation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1001671A1 (ru) * 1981-06-04 1992-02-23 Предприятие П/Я В-8415 Способ получени полибутадиена с высоким содержанием 1,2-звеньев и регулируемым молекул рно-массовым распределением
US5959048A (en) * 1992-10-30 1999-09-28 Bridgestone Corporation Soluble anionic polymerization initiators for preparing functionalized polymer
RU2175330C1 (ru) * 2001-01-25 2001-10-27 Федеральное государственное унитарное предприятие "Научно-исследовательский институт синтетического каучука им. академика С.В. Лебедева" Способ получения диеновых (со)полимеров, содержащих функциональные группы
WO2009077837A1 (en) * 2007-12-14 2009-06-25 Petroflex Industria E Comercio S.A. A1,3-butadiene and styrene copolymer product, functionalized at the extremities of its polymeric chains, and the preparation process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2700937C1 (ru) * 2016-07-22 2019-09-24 Публичное акционерное общество "СИБУР Холдинг" Способ получения разветвленно-модифицированного каучука и резиновая смесь, содержащая полученный данным способом разветвленно-модифицированный каучук, а также ее применение
US11001661B2 (en) 2017-01-03 2021-05-11 Lg Chem, Ltd. Modified conjugated diene-based polymer and rubber composition including the same
WO2020106173A1 (en) 2018-11-23 2020-05-28 Public Joint Stock Company "Sibur Holding" Polymer composition and a method for preparing thereof

Also Published As

Publication number Publication date
RU2011140301A (ru) 2013-04-10
BR112014008316A2 (pt) 2017-04-25
BR112014008316A8 (pt) 2018-03-06
US20140249276A1 (en) 2014-09-04
US9611384B2 (en) 2017-04-04
WO2013051966A1 (ru) 2013-04-11
BR112014008316B1 (pt) 2021-02-02

Similar Documents

Publication Publication Date Title
JP6004081B2 (ja) タイヤ用部材、及び、重合体組成物
RU2487137C2 (ru) Способ получения разветвленных функционализированных диеновых (со)полимеров
CN108699181B (zh) 基于[双(三烃基硅烷基)氨基硅烷基]官能化苯乙烯的弹性体共聚物及其用于橡胶制备
KR102526006B1 (ko) 수소 첨가 공액 디엔계 중합체의 제조 방법, 수소 첨가 공액 디엔계 중합체, 중합체 조성물, 가교 중합체 및 타이어
JP6725921B2 (ja) [ビス(トリヒドロカルビルシリル)アミノシリル]官能化スチレンをベースとするエラストマーコポリマーおよびゴムの製造におけるそれらの使用
EP2431395B1 (en) Method for producing radial conjugated diene polymer
RU2667061C1 (ru) Дилитиевый инициатор для анионной (со)полимеризации, способ его получения, способ получения диеновых каучуков на его основе
WO2016162482A1 (en) Initiators for the copolymerisation of diene monomers and vinyl aromatic monomers
JP3411405B2 (ja) ブロック共重合体
JP2018510922A (ja) 変性共役ジエン系重合体、この製造方法及びこれを含むゴム組成物
JP2017222883A (ja) オルガノホスフィン官能基を有するポリジエンおよびジエンコポリマー
RU2497837C2 (ru) Способ получения разветвленных функционализированных диеновых (со)полимеров
RU2780620C2 (ru) Смеси аминосилил-функционализованных стиролов, их получение и их использование при производстве эластомерных сополимеров
JP7358378B2 (ja) アミノシリル官能化スチレンの混合物、それらの調製及びエラストマーコポリマーの製造におけるそれらの使用
US3635923A (en) Process for adding sulfite esters to organo-alkali metal catalyzed polymerization systems
EA045508B1 (ru) Аминосилил-функционализованные сопряженные диены, их получение и их использование при производстве каучуков

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Free format text: LICENCE

Effective date: 20131112

PD4A Correction of name of patent owner