RU2485139C1 - Способ получения высокореактивного низкомолекулярного полиизобутилена - Google Patents

Способ получения высокореактивного низкомолекулярного полиизобутилена Download PDF

Info

Publication number
RU2485139C1
RU2485139C1 RU2012113319/04A RU2012113319A RU2485139C1 RU 2485139 C1 RU2485139 C1 RU 2485139C1 RU 2012113319/04 A RU2012113319/04 A RU 2012113319/04A RU 2012113319 A RU2012113319 A RU 2012113319A RU 2485139 C1 RU2485139 C1 RU 2485139C1
Authority
RU
Russia
Prior art keywords
isobutylene
butyl
molecular weight
polymerization
catalyst
Prior art date
Application number
RU2012113319/04A
Other languages
English (en)
Inventor
Людмила Васильевна Шпанцева
Виктор Иванович Аксенов
Людмила Евгеньевна Тюленцева
Нина Ивановна Иванченко
Сергей Васильевич Чибизов
Юрий Андреевич Комаров
Original Assignee
Открытое акционерное общество "ЭКТОС-Волга"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "ЭКТОС-Волга" filed Critical Открытое акционерное общество "ЭКТОС-Волга"
Priority to RU2012113319/04A priority Critical patent/RU2485139C1/ru
Application granted granted Critical
Publication of RU2485139C1 publication Critical patent/RU2485139C1/ru

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Изобретение относится к способу получения низкомолекулярного полиизобутилена и может найти применение в промышленности синтетического каучука, а получаемый продукт может быть использован в качестве основы для сукцинимидных и загущающих присадок. Высокореактивный низкомолекулярный полиизобутилен получают путем полимеризации изобутилена или изобутиленсодержащей углеводородной фракции в присутствии катализатора Фриделя-Крафтса и регулятора скорости - димеров или тримеров изобутилена, или их смеси в соотношении димер:тример от 1:1 до 10:1 по массе в количестве 1-15% мас. к изобутилену. Регулятор скорости вводят до или после подачи катализатора. В качестве катализатора используют предварительно сформированный комплекс (BF3)×(ROH)×(ROR)×растворитель, где R - н-бутил -, втор-бутил-, трет-бутил-, фенил - радикал, R - метил-, этил -, изобутил -, н-бутил - радикал, R - изобутил-, бутил - радикал и растворитель - толуол, гексан, при мольном соотношении (BF3):(РОН):(R′OR″):растворитель равном 1:(0,01÷3):(0,001÷0,1):(10÷100). Полимеризацию проводят при температуре от минус 15°C до плюс 15°C и дозировке каталитического комплекса по BF3 0,02-0,4% мас. к изобутилену. Технический результат-способ позволяет получать полиизобутилен с повышенным содержанием концевых двойных связей в α-положении (не менее 85% мол.), с коэффициентом полидисперсности Mw/Mn не более 2,0 и со стабильным интервалом средней молекулярной массы в пределах 800÷1500 ед. 1 з.п. ф-лы, 1 табл., 9 пр.

Description

Изобретение относится к способу получения низкомолекулярного полиизобутилена и может найти применение в промышленности синтетического каучука, а получаемый продукт может быть использован в качестве основы для сукцинимидных и загущающих присадок.
Качество низкомолекулярного полиизобутилена, используемого как основа для синтеза сукцинимидных присадок, определяется такими показателями, как концентрация концевых винилиденовых групп (реактивность), молекулярная масса и значение коэффициента полидисперсности Mw/Mn молекулярно-массового распределения.
Реактивность полимера повышается с увеличением доли в полимере концевых винилиденовых связей и этот факт определяет увеличение выхода присадки после функционализации полимера малеиновым ангидридом [Минскер К.С., Сангалов Ю.А. Изобутилен и его полимеры. - М.: изд. Химия, 1986, с.135].
Известно, что с целью повышения реактивности полимера высокоскоростной процесс полимеризации изобутилена проводят либо в несколько ступеней, осуществляя дробную подачу изобутилена и катализатора [пат. ФРГ №19520078, 1996.12.12], либо применяют специальные добавки - регуляторы, которые позволяют снизить скорость полимеризации, обеспечивая тем самым стабильный температурный режим по всей зоне реакции и повышая реактивность получаемого полимера [пат. ФРГ №4231748, 1994.03.24].
Известен способ получения низкомолекулярного высокореактивного полиизобутилена с содержанием концевых винилиденовых связей выше 80% и коэффициентом полидисперсности Mw/Mn не более 2,0, в котором предусматривают применение перечисленных приемов. Процесс проводят в две стадии с применением на второй стадии регулятора скорости полимеризации [пат. РФ №2203910, 2003.05.10]. Недостатком этого способа является сложность управления процессом полимеризации.
Наиболее близким по технической сущности к предлагаемому является способ получения высокореактивного низкомолекулярного полиизобутилена с реактивностью выше 80% и коэффициентом полидисперсности Mw/Mn от 1,5 до 2,5 при использовании регулятора скорости полимеризации децена - 1 [пат. РФ №2229480, 2004.05.27].
Недостатком способа является то, что получаемый олигоизобутилен имеет большой разброс по среднечисловой молекулярной массе от 650 до 3500 ед., что ухудшает показатели полимера в синтезе сукцинимидных присадок или делает необходимым дополнительное разделение получаемого продукта по молекулярной массе.
Задачей настоящего изобретения является получение низкомолекулярного полиизобутилена с повышенным содержанием концевых двойных связей в α-положении (винилиденовых) не менее 85% мол., узким молекулярно-массовым распределением (коэффициент полидисперсности Mw/Mn не более 2,0) и стабильным интервалом среднечисловой молекулярной массы в пределах 800÷1500 ед.
Сущность изобретения заключается в том, что полимеризацию изобутилена или изобутиленсодержащей углеводородной фракции проводят в присутствии регулятора скорости, в качестве которого используют димеры изобутилена или тримеры изобутилена, или их смесь при массовом соотношении димер:тример от 1:1 до 10:1 в количестве 1-15% мас. к изобутилену, и катализатора в виде предварительно сформированного комплекса (BF3)×(ROH)×(R′OR″)×растворитель, включающего катализатор Фриделя-Крафтса на основе BF3, соинициаторы, выбранные из группы соединений под общими формулами ROH и R′OR″, где R - н-бутил -, втор-бутил -, трет-бутил -, фенил - радикал, R′ - метил -, этил -, изобутил -, н-бутил - радикал, R″ - изобутил -, бутил - радикал и растворитель - толуол, гексан, при мольном соотношении (BF3):(ROH):(R′OR″):растворитель равном 1:(0,01÷3):(0,001÷0,1):(10÷100). Процесс проводят при температуре от минус 15 до плюс 15°C и дозировке каталитического комплекса по BF3 0,02-0,4% мас. к изобутилену.
Как вариант, при полимеризации в изобутилен или изобутиленсодержащую углеводородную фракцию вводят предварительно сформированный каталитический комплекс, выдерживают от 2 до 4 секунд, затем вводят регулятор скорости полимеризации.
Проведение полимеризации при подаче изобутилена или изобутиленсодержащей углеводородной фракции и предварительно сформированного каталитического комплекса способствует образованию однородного по молекулярной массе полиизобутилена за счет инициирования механизма катионной полимеризации через формирование активных центров в виде ионной пары, что обеспечивает строгую направленность процесса и соотношение кинетических констант способствует увеличению образования активных центров. Полимеризация протекает с равномерной скоростью по всему объему за счет равномерного распределения каталитического комплекса, а порядок ввода реагентов - в начале каталитического комплекса, затем через 2÷4 секунды регулятора скорости - исключает индукционный период начала процесса. Это позволяет обеспечить равномерный съем реакционного тепла, что является существенным для получения полимера с заданными характеристиками.
Все описанные приемы способствуют повышению содержания концевых винилиденовых связей выше 85%, а также стабилизируют молекулярную массу полимера на протяжении всего цикла полимеризации и снижают выход низкомолекулярных олигоизобутиленов в заданном температурном интервале. Выбранные условия полимеризации обеспечивают получение полимера с молекулярной массой в пределах 800÷1500 ед. и узким молекулярно-массовым распределением (коэффициент полидисперсности Mw/Mn в интервале 1,5÷2,0).
Дозировка регулятора скорости димеров, тримеров изобутилена или их смеси менее 1% мас. к изобутилену не обеспечивает стабилизацию скорости полимеризации и полученный полиизобутилен характеризуется реактивностью ниже 80%, коэффициент полидисперсности Mw/Mn более 3,0. Увеличение дозировки более 15% мас. не приводит к увеличению реактивности более 90% и снижению показателя полидисперсности Mw/Mn менее 1,5.
Интервал мольного соотношения компонентов в каталитическом комплексе при предварительном формировании катализатора обеспечивает проведение полимеризации изобутилена при минимальных дозировках катализатора. Дозировка соинициаторов ROH ниже мольного соотношения 0,01 и R′OR″ ниже 0,001 снижает активность каталитического комплекса и приводит к перерасходу BF3. Дозировка соинициаторов ROH выше мольного соотношения 3,0 и R′OR″ выше 0,1 приводит к снижению молекулярной массы полиизобутилена, образованию изомеров олигоизобутилена. Соотношение компонентов соинициаторов в указанном интервале обеспечивает оптимальную активность сформированного каталитического комплекса. Нижняя граница дозировки каталитического комплекса по BF3 определяется концентрацией возможных примесей, содержащихся в мономере, которые дезактивируют катализатор, верхняя - достаточностью концентрации для проведения полимеризации до достижения конверсии изобутилена выше 95%.
После проведения процесса полимеризации полученный продукт обрабатывают небольшим количеством этанола для стопперирования полимеризации, удаляют остатки катализатора выдерживанием реакционной смеси над твердой щелочью (нейтрализация), фильтруют и отгоняют из реакционной массы остатки изобутилена, изобутана, соинициаторов, растворителя и олигомеров изобутилена.
Полиизобутилен анализируют по молекулярной массе Mn (криоскопический метод), по коэффициенту полидисперсности Mw/Mn молекулярно-массового распределения (метод гельпроникающей хроматографии), по реактивности, которая определяется по содержанию концевых винилиденовых связей (методом ИК- и/или ЯМР-спектроскопии).
Изобретение иллюстрируется нижеприведенными примерами и таблицей.
Пример 1 (по прототипу).
Полимеризацию изобутилена проводят в металлическом реакторе, снабженном мешалкой, рубашкой для подачи хладагента, термометром для контроля за температурой внутри реакционной зоны и обратным холодильником, предназначенным для конденсации паров легкокипящих компонентов реакционной смеси. Объем аппарата 3 л.
В охлажденный до минус 10°C реактор загружают в жидком состоянии 375 г изобутиленсодержащей углеводородной фракции следующего состава, г: изобутилен - 150, изобутан - 220, бутилены - 5.
В качестве катализатора во фракцию подают предварительно сформированный комплекс, содержащий 0,3 г (0,0044 моль) BF3, 0,33 г (0,0044 моль) н-бутанола, 30 г (0,22 моль) децена-1, 4,1 г (0,044 моль) толуола, дозировка по BF3 составляет 0,2% мас. к изобутилену, мольное соотношение BF3:(н-бутанол):(децен-1):толуол=1:1:50:10.
Полимеризацию проводят при температуре минус 10°C в течение 60 мин, при этом конверсия изобутилена составляет 98% мас.
Реакционную массу выгружают в стакан, куда вводят для стопперирования полимеризации 5 мл этанола, для нейтрализации - 10 г щелочи. Через 2÷3 часа реакционную массу отфильтровывают и отгоняют в вакууме остатки изобутилена, изобутан, спирты, димеры и тримеры изобутилена.
Полученный полиизобутилен характеризуется молекулярной массой Mn=1000, реактивностью 85% мол., коэффициентом полидисперсности Mw/Mn=2,0.
Пример 2 (по настоящему техническому решению)
Полимеризацию изобутилена проводят в металлическом реакторе по примеру 1. В охлажденный до минус 15°C реактор загружают в жидком состоянии 375 г изобутиленсодержащей углеводородной фракции следующего состава, г: изобутилен - 150, изобутан - 225. Вводят 3,0 г тримеров изобутилена, что составляет 2% мас. к изобутилену и предварительно сформированный каталитический комплекс, содержащий 0,30 г (0,0044 моль) BF3, 0,33 г (0,0044 моль) н-бутанола, 0,02 г (0,00022 моль) метил-трет-бутилового эфира (МТБЭ) в 40,6 г толуола. Дозировка по BF3 составляет 0,2% мас. к изобутилену, мольное соотношение BF3:н-бутанол:МТБЭ:толуол равно 1:1:0,05:100.
Полимеризацию проводят при температуре минус 15°C в течение 60 мин, при этом конверсия изобутилена составляет 98% мас.
Реакционную массу выгружают в стакан, для стопперирования полимеризации вводят 5 мл этанола, затем 10 г щелочи для нейтрализации каталитического комплекса. Через 2÷3 часа реакционную массу отфильтровывают и отгоняют в вакууме остатки изобутилена, изобутан, н-бутанол, МТБЭ, толуол, димеры, тримеры и тетрамеры изобутилена.
Полученный полиизобутилен характеризуется молекулярной массой Mn=1300, реактивностью 87% мол., коэффициентом полидисперсности Mw/Mn=1,8.
Пример 3
Полимеризацию проводят по примеру 2. Отличие состоит в том, что в реактор подают в жидком состоянии смесь из 500 г изобутилена и 5 г димеров изобутилена, что составляет 1% мас. к изобутилену.
Затем вводят предварительно сформированный каталитический комплекс, содержащий 0,10 г (0,0015 моль) BF3, 0,22 г (0,0029 моль) н-бутанола, 0,02 г (0,00015 моль) н-бутил-трет-бутилового эфира (н-БТБЭ) в толуоле. Дозировка по BF3 составляет 0,02% мас. к изобутилену, мольное соотношение BF3:н-бутанол:н-БТБЭ:толуол равно 1:2:0,1:10.
Полимеризацию проводят при температуре минус 10°C в течение 90 мин, при этом конверсия изобутилена составляет 96% мас.
Реакционную массу стопперируют, фильтруют и подвергают вакуумной разгонке по примеру 2.
Полученный полиизобутилен характеризуется молекулярной массой Mn=1050, реактивностью 86% мол., коэффициентом полидисперсности Mw/Mn=1,6.
Пример 4
Полимеризацию проводят по примеру 2. Отличие состоит в том, что в реактор подают изобутиленсодержащую углеводородную фракцию и вводят предварительно сформированный каталитический комплекс, содержащий 0,38 г (0,0056 моль) BF3, 0,21 г (0,0028 моль) втор-бутанола, 0,03 г (0,0003 моль) этил-трет-бутилового эфира (ЭТБЭ) в 24 г гексана. Дозировка по BF3 составляет 0,25% мас. к изобутилену, мольное соотношение BF3:втор-бутанол:ЭТБЭ:гексан равно 1:0,5:0,05:50.
Затем через 2 секунды вводят 7,5 г димеров изобутилена, что составляет 5% мас. к изобутилену.
Полимеризацию проводят при температуре 0°C в течение 90 мин, при этом конверсия изобутилена составляет 98% мас.
Реакционную массу стопперируют, фильтруют и подвергают вакуумной разгонке по примеру 2.
Полученный полиизобутилен характеризуется молекулярной массой Mn=1000, реактивностью 90% мол., коэффициентом полидисперсности Mw/Mn=1,5.
Пример 5
Полимеризацию проводят по примеру 2. Отличие состоит в том, что в реактор подают изобутиленсодержащую углеводородную фракцию и 15 г смеси димеров и тримеров изобутилена при массовом соотношении димер:тример равном 1:1, что составляет 10% мас. к изобутилену.
Затем вводят предварительно сформированный каталитический комплекс, содержащий 0,45 г (0,0066 моль) BF3, 1,87 г (0,02 моль) фенола, 0,0006 г (0,000007 моль) метил-трет-бутилового эфира (МТБЭ) в 10,8 г гексана. Дозировка по BF3 составляет 0,3% мас. к изобутилену, мольное соотношение BF3:фенол:МТБЭ:гексан равно 1:3:0,001:15.
Полимеризацию проводят при температуре 15°C в течение 120 мин, при этом конверсия изобутилена составляет 96% мас.
Реакционную массу стопперируют, фильтруют и подвергают вакуумной разгонке по примеру 2.
Полученный полиизобутилен характеризуется молекулярной массой Mn=800, реактивностью 89% мол., коэффициентом полидисперсности Mw/Mn=1,7.
Пример 6
Полимеризацию проводят по примеру 2. Отличие состоит в том, что в реактор подают в жидком состоянии смесь из 500 г изобутилена и вводят предварительно сформированный каталитический комплекс, содержащий 0,50 г (0,0074 моль) BF3, 0,005 г (0,000074 моль) трет-бутанола, 0,05 г (0,0004 моль) изо-бутил-трет-бутилового эфира (изо-БТБЭ) в толуоле. Дозировка по BF3 составляет 0,1% мас. к изобутилену, мольное соотношение BF3:трет-бутанол:изо-БТБЭ:толуол равно 1:0,01:0,05:20.
Затем через 4 секунды вводят 75 г димеров изобутилена, что составляет 15% мас. к изобутилену.
Полимеризацию проводят при температуре минус 15°C в течение 90 мин, при этом конверсия изобутилена составляет 98% мас.
Реакционную массу стопперируют, фильтруют и подвергают вакуумной разгонке по примеру 2.
Полученный полиизобутилен характеризуется молекулярной массой Mn=1500, реактивностью 92% мол., коэффициентом полидисперсности Mw/Mn=1,8.
Пример 7
Полимеризацию проводят по примеру 2. Отличие состоит в том, что в реактор подают изобутиленсодержащую углеводородную фракцию и вводят предварительно сформированный каталитический комплекс, содержащий 0,38 г (0,0056 моль) BF3, 0,47 г (0,005 моль) фенола, 0,003 г (0,00003 моль) этил-трет-бутилового эфира (ЭТБЭ) в толуоле. Дозировка по BF3 составляет 0,25% мас. к изобутилену, мольное соотношение BF3:фенол:ЭТБЭ:толуол равно 1:0,9:0,005:15.
Затем через 3 секунды вводят 7,5 г смеси димеров и тримеров изобутилена при массовом соотношении димер:тример равном 10:1, что составляет 5% мас. к изобутилену.
Полимеризацию проводят при температуре минус 10°C в течение 60 мин, при этом конверсия изобутилена составляет 97% мас.
Реакционную массу стопперируют, фильтруют и подвергают вакуумной разгонке по примеру 2.
Полученный полиизобутилен характеризуется молекулярной массой Mn=1500, реактивностью 87% мол., коэффициентом полидисперсности Mw/Mn=1,9.
Пример 8
Полимеризацию проводят по примеру 2. Отличие состоит в том, что в реактор подают изобутиленсодержащую углеводородную фракцию и вводят предварительно сформированный каталитический комплекс, содержащий 0,6 г (0,0088 моль) BF3, 0,033 г (0,00044 моль) втор-бутанола, 0,12 г (0,00088 моль) дибутилового эфира (ДБЭ) в толуоле. Дозировка по BF3 составляет 0,4% мас. к изобутилену, мольное соотношение BF3:втор-бутанол:ДБЭ:толуол равно 1:0,05:0,1:20.
Затем через 2 секунды вводят 4,5 г тримеров изобутилена, что составляет 3% мас. к изобутилену.
Полимеризацию проводят при температуре 5°C в течение 90 мин, при этом конверсия изобутилена составляет 98% мас.
Реакционную массу стопперируют, фильтруют и подвергают вакуумной разгонке по примеру 2.
Полученный полиизобутилен характеризуется молекулярной массой Mn=950, реактивностью 86% мол., коэффициентом полидисперсности Mw/Mn=2,0.
Пример 9
Полимеризацию проводят по примеру 2. Отличие состоит в том, что в реактор подают изобутиленсодержащую углеводородную фракцию и вводят предварительно сформированный каталитический комплекс, содержащий 0,3 г (0,0044 моль) BF3, 0,03 г (0,00044 моль) н-бутанола, 0,005 г (0,00004 моль) н-бутил-трет-бутилового эфира (н-БТБЭ) в гексане. Дозировка по BF3 составляет 0,2% мас. к изобутилену, мольное соотношение BF3:н-бутанол:н-БТБЭ:гексан равно 1:0,1:0,008:15.
Затем через 4 секунды вводят 7,5 г смеси димеров и тримеров изобутилена при массовом соотношении димер:тример равном 5:1, что составляет 5% мас. к изобутилену.
Полимеризацию проводят при температуре минус 5°C в течение 90 мин, при этом конверсия изобутилена составляет 97% мас.
Реакционную массу стопперируют, фильтруют и подвергают вакуумной разгонке по примеру 2.
Полученный полиизобутилен характеризуется молекулярной массой Mn=1200, реактивностью 87% мол., коэффициентом полидисперсности Mw/Mn=1,8.
Таблица 1
Условия проведения полимеризации изобутилена и свойства полученного ПИБ
Условия полимеризации, наименование показателей Номера примеров
1 (по прототипу) 2 3 4 5 6 7 8 9
Условия проведения полимеризации:
- в массе изобутилена - - + - - + - - -
- в изобутиленсодержащей
углеводородной фракции + + - + + - + + +
Введение регулятора скорости в реакционную массу, % мас. к изобутилену;
- децен-1 - - - - - - - - -
- димеры изобутилена - - 1 5 - 15 - - -
- тримеры изобутилена - 2 - - - - - 3 -
- димерно-тримерная фракция - - - - 10 - 5 - 5
Дозировка BF3, % мас. к изобутилену 0,20 0,20 0,02 0,25 0,30 0,10 0,25 0,40 0,20
Мольное соотношение компонентов в катализаторе:
-BF3 1 1 1 1 1 1 1 1 1
-ROH 1 1 2 0.5 3 0,01 0,9 0,05 0,1
-R′OR″ - 0,05 0,1 0,05 0,001 0,05 0,005 0,1 0,008
- децен-1 50 - - - - - - - -
- растворитель 10 100 10 50 15 20 15 20 15
Соинициатор:
-ROH н-бутанол н-бута-нол н-бута-нол втор-бутанол фенол трет-бута-нол фенол втор-бутанол н-бута-нол
- R′OR″ - МТБЭ н-БТБЭ ЭТБЭ МТБЭ изо-БТБЭ ЭТБЭ ДБЭ н-БТБЭ
Температура полимеризации, °C -10 -15 -10 0 +15 -15 -10 +5 -5
Время полимеризации, мин 60 60 90 90 120 90 60 90 90
Конверсия изобутилена, % 98 98 96 98 96 98 97 98 97
Свойства ПИБ:
Молекулярная масса 1000 1300 1050 1000 800 1500 1500 950 1200
Коэффициент полидисперсности, Mw/Mn 2,0 1,8 1,6 1,5 1,7 1,8 1,9 2,0 1,8
Реактивность, % мол. 85 87 86 90 89 92 87 86 87

Claims (2)

1. Способ получения высокореактивного низкомолекулярного полиизобутилена путем полимеризации изобутилена или изобутиленсодержащей углеводородной фракции в присутствии катализатора Фриделя-Крафтса и регулятора скорости, заключающийся в том, что процесс полимеризации проводят путем подачи в изобутилен или изобутиленсодержащую углеводородную фракцию регулятора скорости, в качестве которого используют димеры изобутилена, или тримеры изобутилена, или их смесь при массовом соотношении димер:тример от 1:1 до 10:1 в количестве 1-15 мас.% к изобутилену и катализатора, в качестве которого используют предварительно сформированный комплекс (BF3)×(ROH)×(R'OR'')×растворитель, содержащий соинициаторы, выбранные из группы соединений под общими формулами ROH и R'OR'', где R - н-бутил-, втор-бутил-, трет-бутил-, фенил-радикал, R' - метил-, этил-, изобутил-, н-бутил-радикал, R'' - изобутил-, бутил-радикал и растворитель - толуол, гексан, при мольном соотношении (BF3):(ROH):(R'OR'') растворитель, равном 1:(0,01÷3):(0,001÷0,1):(10÷100), процесс проводят при температуре от минус 15 до плюс 15°C и дозировке каталитического комплекса по BF3 0,02÷0,4 мас.% к изобутилену.
2. Способ по п.1, отличающийся тем, что при полимеризации в изобутилен или изобутиленсодержащую углеводородную фракцию вводят предварительно сформированный каталитический комплекс, выдерживают от 2 до 4 с, затем вводят регулятор скорости полимеризации.
RU2012113319/04A 2012-04-05 2012-04-05 Способ получения высокореактивного низкомолекулярного полиизобутилена RU2485139C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012113319/04A RU2485139C1 (ru) 2012-04-05 2012-04-05 Способ получения высокореактивного низкомолекулярного полиизобутилена

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012113319/04A RU2485139C1 (ru) 2012-04-05 2012-04-05 Способ получения высокореактивного низкомолекулярного полиизобутилена

Publications (1)

Publication Number Publication Date
RU2485139C1 true RU2485139C1 (ru) 2013-06-20

Family

ID=48786276

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012113319/04A RU2485139C1 (ru) 2012-04-05 2012-04-05 Способ получения высокореактивного низкомолекулярного полиизобутилена

Country Status (1)

Country Link
RU (1) RU2485139C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999031151A1 (de) * 1997-12-12 1999-06-24 Basf Aktiengesellschaft Verfahren zur herstellung von niedermolekularem, hochreaktivem polyisobutylen
CN1415634A (zh) * 2002-11-25 2003-05-07 吉化集团公司 合成低分子量高活性聚异丁烯所用的三氟化硼络合物催化剂及其制备方法
RU2203910C2 (ru) * 2001-08-08 2003-05-10 Открытое акционерное общество "Ефремовский завод синтетического каучука" Способ получения низкомолекулярного высокореактивного полиизобутилена
RU2229480C1 (ru) * 2003-07-07 2004-05-27 Открытое акционерное общество "Уралоргсинтез" Способ получения высокореактивного низкомолекулярного полиизобутилена
US7217773B2 (en) * 2003-01-24 2007-05-15 Basf Aktiengesellschaft Method for producing polyisobutene

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999031151A1 (de) * 1997-12-12 1999-06-24 Basf Aktiengesellschaft Verfahren zur herstellung von niedermolekularem, hochreaktivem polyisobutylen
RU2203910C2 (ru) * 2001-08-08 2003-05-10 Открытое акционерное общество "Ефремовский завод синтетического каучука" Способ получения низкомолекулярного высокореактивного полиизобутилена
CN1415634A (zh) * 2002-11-25 2003-05-07 吉化集团公司 合成低分子量高活性聚异丁烯所用的三氟化硼络合物催化剂及其制备方法
US7217773B2 (en) * 2003-01-24 2007-05-15 Basf Aktiengesellschaft Method for producing polyisobutene
RU2229480C1 (ru) * 2003-07-07 2004-05-27 Открытое акционерное общество "Уралоргсинтез" Способ получения высокореактивного низкомолекулярного полиизобутилена

Similar Documents

Publication Publication Date Title
CA2217848C (en) Preparation of low molecular weight, highly reactive polyisobutene
JP4124788B2 (ja) ポリイソブテンの製造方法
JP3119452B2 (ja) イソブチレン重合のためのbf▲下3▼・第三エーテレート錯体
US20080249268A1 (en) Method For Producing a Polyisobutene
KR0173461B1 (ko) 음이온 중합을 위한 알킬 메타크릴레이트 단량체의 제조방법
Shiman et al. Cationic Polymerization of Isobutylene and C 4 Mixed Feed Using Complexes of Lewis Acids with Ethers: A Comparative Study
KR102013132B1 (ko) 삼불화붕소 촉매 복합체 및 고반응성 이소부텐 단독중합체의 제조 방법
US9856335B2 (en) Production of highly reactive low molecular weight PIB oligomers
KR102291980B1 (ko) 중합 개시 시스템 및 고도로 반응성인 올레핀 작용성 중합체의 제조 방법
US11214637B2 (en) Processes for making polyisobutylene compositions
MXPA05002389A (es) Preparacion de poliisobuteno.
RU2485139C1 (ru) Способ получения высокореактивного низкомолекулярного полиизобутилена
JP2019007003A (ja) 高反応性オレフィン機能性ポリマーを作製するための重合開始系および方法
US20230365726A1 (en) Process for preparing high-reactivity isobutene homo- or copolymers
Denisova et al. Cross-Metathesis and Hydrogenation in Polynorbornene–Poly (5-hydroxyoctenamer) Mixture in the Presence of Grubbs’ Catalysts
RU2229480C1 (ru) Способ получения высокореактивного низкомолекулярного полиизобутилена
RU2790160C1 (ru) Способ получения низкомолекулярного высокореакционного полиизобутилена
EP3950736A1 (en) Process for preparing high-reactivity isobutene homo- or copolymers
RU2203910C2 (ru) Способ получения низкомолекулярного высокореактивного полиизобутилена
US7956156B2 (en) Method for the removal of isobutene oligomers from an isobutene polymer
JP2000063436A (ja) ブテンポリマーの製造方法
SU398555A1 (ru) Способ получения полиолефинов
US8853336B2 (en) Boron trifluoride-catalyst complex and process for preparing high-reactivity isobutene homopolymers

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170406