RU2476379C2 - Удаление кремния из рассола - Google Patents

Удаление кремния из рассола Download PDF

Info

Publication number
RU2476379C2
RU2476379C2 RU2010131611/05A RU2010131611A RU2476379C2 RU 2476379 C2 RU2476379 C2 RU 2476379C2 RU 2010131611/05 A RU2010131611/05 A RU 2010131611/05A RU 2010131611 A RU2010131611 A RU 2010131611A RU 2476379 C2 RU2476379 C2 RU 2476379C2
Authority
RU
Russia
Prior art keywords
brine
buffer tank
dissolution reactor
iron
reactor
Prior art date
Application number
RU2010131611/05A
Other languages
English (en)
Other versions
RU2010131611A (ru
Inventor
Вернер ПОЛЬ
Кристоф ШТЕГЕМАНН
Томас ШТАЙНМЕТЦ
Зами ПЕЛЬКОНЕН
Original Assignee
Уде Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Уде Гмбх filed Critical Уде Гмбх
Publication of RU2010131611A publication Critical patent/RU2010131611A/ru
Application granted granted Critical
Publication of RU2476379C2 publication Critical patent/RU2476379C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D3/00Halides of sodium, potassium or alkali metals in general
    • C01D3/14Purification
    • C01D3/16Purification by precipitation or adsorption
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Silicon Compounds (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

Изобретение может быть использовано в химической промышленности. Для удаления соединений кремния из водных рассолов NaCl сначала в слабом рассоле соляной кислотой устанавливают рН ниже 3. В подкисленный рассол добавляют хлорид железа (III) или другие соединения трехвалентного железа. Подготовленный рассол непрерывно вводят в перемешиваемый реактор растворения, в котором кроме рассола находится также нерастворенная соль. В реактор порциями и периодически добавляют свежую соль. Образованный концентрированный рассол вводят в перемешиваемый буферный бак. Значение рН в буферном баке удерживают от 5 до 8. Из буферного бака непрерывно отбирают поток концентрированного рассола и фильтруют, фильтрат выгружают. Устройство для удаления соединений кремния из рассола содержит реактор растворения соли, перемешивающее устройство в нем, загрузочное устройство для подачи соли в реактор, точку питания для подачи слабого рассола в реактор, точки питания для подачи соляной кислоты и хлорида железа (III) в линию подачи слабого рассола, буферный бак для концентрированного рассола, перемешивающее устройство в буферном баке, гидродинамическое соединение между реактором растворения и буферным баком, фильтр и разгрузочное устройство для фильтровального осадка, выпускной канал и транспортный механизм для доставки концентрированного рассола из буферного бака в фильтр. Изобретение позволяет повысить скорость и упростить процесс очистки рассола, предназначенного для электролиза. 2 н. и 13 з.п. ф-лы, 2 ил.

Description

Изобретение относится к способу, а также к подходящему для него устройству для удаления соединений кремния из рассола, который предназначен для электролиза. Кремний может извлекаться как сопутствующий элемент вместе с каменной солью или хлоридом натрия, какой находится в соляных месторождениях, или из морской соли, обычно в виде кремниевой кислоты. В соляном растворе она находится в мономерной или аморфной форме или в виде поликремниевой кислоты, а также в виде агломератов и мешает процессу электролиза.
Согласно традиционному уровню техники, как он описан, например, в документе US 4274929 A, кремний удаляют тем, что добавляют хлорид магния и повышают значение pH. Посредством требующего очень много времени способа с мешалкой-сепаратором можно отделить осажденный кремний и удалить из рассола.
В документе US 4946565 A также рассматривается способ удаления соединений кремния из рассола. Здесь используются Fe (II) или Fe (III), которые образуют комплекс с содержащимися в рассоле примесями кремния, осаждаемый в отстойном резервуаре. Здесь также работают при щелочных значениях pH.
Похоже обстоит дело в DE 2816772 A1. Там испрашивается защита на то, чтобы химический реагент, которым может быть гидроксид натрия, карбонат натрия, гидроксид кальция, хлорид кальция, хлорид бария, карбонат бария и/или хлорид железа (II), добавлять для осаждения и отделения примесей от раствора и одновременно вводить в раствор взвесь примесей, которые присутствуют вместе с реагентом, таким образом, диоксид кремния осаждается вместе с примесями. На время осаждения оксида диоксида кремния с примесями устанавливают pH от 8 до 11.
Недостатком указанного выше способа является то, что он требует много затрат, и осаждение соответствующих силикатов должно осуществляться при щелочном значении pH, а не в кислой среде, как может вводиться в последующем процессе электролиза.
Поэтому задача настоящего изобретения состоит в том, чтобы разработать быстродействующий процесс, который представляет собой упрощенный и улучшенный способ действия, базирующийся на обычном уровне техники. Следующей задачей изобретения является создать устройство, которое без больших затрат можно интегрировать в имеющиеся установки хлорного электролиза.
Изобретение решает эту задачу способом удаления соединений кремния из водных рассолов NaCl, в котором:
- сначала в слабом рассоле соляной кислотой устанавливают pH ниже 3,
- в этот подкисленный слабый рассол добавляют хлорид железа (III) или другие трехвалентные ионы железа,
- подготовленный так слабый рассол непрерывно вводят в перемешиваемый реактор растворения, в котором кроме рассола находится также нерастворенная соль,
- в реактор растворения порциями и периодически добавляется свежая соль,
- образованный концентрированный рассол вводится в перемешиваемый буферный бак,
- этот буферный бак удерживается при значении pH от 5 до 8,
- из этого буферного бака непрерывно отбирается поток концентрированного рассола и фильтруется, и
- фильтровальный осадок, который содержит добавленное железо и кремний, выгружается.
В одном варианте осуществления способа смешанный с хлоридом железа (III) слабый рассол при значении pH от 1 до 2 вводится в реактор растворения. Кроме того, реактор растворения может содержать также дополнительную точку питания для подачи хлорида железа (III) или других трехвалентных ионов железа. Например, можно сначала ввести 0,3 ч./млн ионов железа в слабый рассол, а затем дополнительно добавить еще 1 ч./млн ионов железа в реактор растворения.
В следующих воплощениях способа можно предусмотреть, чтобы реактор растворения, или буферный бак, или оба были выполнены с воздушными реактивными форсунками для перемешивания.
В следующем варианте осуществления способа можно предусмотреть, чтобы выгруженный фильтровальный осадок, который содержит добавленное железо и кремний, освобождать от рассола в фильтр-прессе, причем рассол возвращают в процесс.
Изобретение решает следующую задачу устройством для осуществления описанного способа, содержащим:
- реактор растворения для соли,
- перемешивающее устройство в реакторе растворения,
- загрузочное устройство для периодической подачи соли в реактор растворения,
- точку питания для ввода слабого рассола в реактор растворения,
- точки питания для ввода соляной кислоты и хлорида железа (III) или других трехвалентных ионов железа в линию подачи слабого рассола,
- буферный бак для концентрированного рассола,
- перемешивающее устройство в буферном баке,
- гидродинамическое соединение между реактором растворения и буферным баком,
- фильтр с выпуском для концентрированного рассола и разгрузочное устройство для фильтровального осадка,
- выпускной канал и транспортный механизм для проведения концентрированного рассола из буферного бака в фильтр.
В воплощениях способа предусматривается, чтобы реактор растворения и буферный бак образовывали единую конструкцию, которая разделяется через перепускное устройство. Эта единая конструкция реактора растворения и буферного бака предпочтительно выполнена как ванна. Подача слабого рассола в реактор растворения целесообразно вводится через линии, расположенные внизу реактора растворения, которые имеют направленные вверх отверстия в виде каналов или насадок. Благодаря этому ускоряется растворяющая способность устройства. Кроме того, воздушная реактивная форсунка или форсунка для рассола должны быть расположены и ориентированы в реакторе растворения таким образом, чтобы можно было обеспечить циркуляционный поток вокруг вертикальной оси.
Далее способ действия согласно изобретению подробнее поясняется на примерах. Фиг.1 показывает блок-схему способа с реактором растворения и буферным баком, загрузочными устройствами, а также с последующей фильтрацией концентрированного рассола.
Слабый рассол 1 с концентрацией соли 220 кг/м3 соляной кислотой 2 устанавливается на значение pH 2. Затем, в зависимости от концентрации кремния в свежей соли, в подкисленный слабый рассол добавляют в несколько ч./млн хлорида железа (III) 3. При этом важно, чтобы значение pH было достаточно низким, так как хлорид железа (III) является стабильным лишь при pH ниже 4. Если поставляемый слабый рассол уже имеет pH ниже 4, то дальнейшее подкисление можно осуществлять также добавлением хлорида железа (III).
Подкисленный и снабженный хлоридом железа (III) слабый рассол вводится в реактор растворения 4, в котором обычно всегда находится осадок нерастворенной соли. Через промежутки примерно 20 минут в реактор растворения 4 устройством подачи 5, которое может представлять собой ковшовый погрузчик, засыпают порцию свежей соли. При этом важно, чтобы эта подача происходила в течение короткого времени, то есть, например, однократно полный ковш.
В этой свежей соли наряду с хлоридом натрия как главной составляющей находятся также типичные примеси, например уже упомянутый кремний, а также соединения магния и карбонат натрия, а также гидроксид натрия, который действует как сильное основание. Вследствие этого в пределах нескольких минут времени после добавления свежей соли значение pH слабого рассола в реакторе растворения 4 быстро изменяется в процессе растворения с 2 до 11, после чего за несколько следующих минут оно снова опускается до первоначального значения pH 2.
Как только будет достигнуто значение pH 4, хлорид железа (III) начнет разлагаться и будет реагировать с образованием гидроксида железа, который выпадает из раствора. Чисто визуально это изменение растворенного, зеленоватого и прозрачного хлорида железа (III) в гидроксид железа дает себя знать тем, что рассол слегка окрашивается в коричневый цвет. Выпавший в осадок гидроксид железа связывает на себе кремниевую кислоту и прочие соединения кремния. При этом предполагается, что это может быть процесс адсорбции, однако изобретение не связывает себя верностью этого предположения.
Из-за реакции осаждения гидроксида железа важно, чтобы добавление соли происходило быстро, так как смешанный с хлоридом железа (III) слабый рассол имеет мало времени, чтобы равномерно распределиться в реакторе растворения 4, и только если равномерное распределение было достигнуто, можно принять имеющийся кремний во всем объеме реактора растворения 4. По этой причине может также иметь смысл облегчить быстрое распределение поступающего слабого рассола эффективной смесительной системой.
Из реактора растворения 4 концентрированный рассол течет при содержании соли примерно 300 кг/м3 через перепускное устройство 6 в буферный бак 7, размеры которого рассчитаны так, чтобы с надежностью избежать значений pH, при которых гидроксид железа снова мог бы прореагировать до хлорида железа (III). На практике оправдала себя область pH от 5 до 8, выше значения pH 9 наблюдалось, что осажденный совместно кремний снова переходит в раствор. Буферный бак 7 также должен перемешиваться, так как в некоторые периоды времени процесса растворения концентрированный рассол перетекает из реактора растворения 4 в буферный бак 7 при значении pH ниже 4. На этих временных интервалах в буферном баке 7 имеет место реакция осаждения железа и одновременное связывание кремния, и равновесное распределение по объему должно обеспечиваться также и в буферном баке 7.
Из буферного бака 7 концентрированный рассол 9 отбирается с помощью насоса 8 для рассола и фильтруется на фильтре 10. Фильтровальный осадок 11 состоит преимущественно из гидроксида железа и кремниевой кислоты. Этот фильтровальный осадок 11 можно отжать в фильтр-прессе (не показан) и регенерированный там концентрированный рассол можно вернуть в буферный бак. Очищенный концентрированный рассол 12 по существу не содержит соединений железа и кремния и может, при необходимости после дополнительных этапов обработки, использоваться для хлорного (NaCl) электролиза.
Далее конструкция устройства согласно изобретению поясняется посредством фиг. 2, которая показывает реактор растворения и буферный бак с оснащением. Реактор растворения 4 и буферный бак 7 объединены в одной ванне, которая разделяет оба резервуара перепускным устройством 6. Ванна открыта сверху.
Для слабого рассола 1 предусматривается подводящая линия, к которой также присоединены подачи для соляной кислоты 2 и хлорида железа (III), которые ведут в находящийся прямо на дне реактора растворения или сразу над ним распределитель 15 слабого рассола. Распределитель 15 слабого рассола состоит из закрытой на одном конце трубы, в которой сделаны отверстия 16. Отверстия 16 идут вертикально вверх, но могут быть ориентированы и так, чтобы они поддерживали циркуляционное течение в реакторе растворения 4. Реактор растворения 4 в качестве перемешивающего устройства содержит воздушную реактивную струю или струю с рассолом 13, которая соединена с воздуходувкой или другим устройством повышения давления и располагает насадкой, из которой воздух может выходить с высокой скоростью ниже поверхности жидкости. Буферный бак 7 также имеет в распоряжении такую воздушную струю или струю рассола 14. Кроме того, он содержит отвод 17 для концентрированного рассола, который соединен с насосом 8 для рассола, подающим концентрированный рассол 9 к фильтру 10, который содержит выпуск для очищенного концентрированного рассола 12 и выпуск для фильтровального осадка 11.
Список позиций для ссылок
1 слабый рассол
2 соляная кислота
3 хлорид железа (III)
4 реактор растворения
5 устройство подачи
6 перепускное устройство
7 буферный бак
8 насос для рассола
9 концентрированный рассол
10 фильтр
11 фильтровальный осадок
12 очищенный концентрированный рассол
13 струйное перемешивающее устройство реактора растворения
14 струйное перемешивающее устройство буферного бака
15 распределитель слабого рассола
16 отверстия
17 отвод концентрированного рассола

Claims (15)

1. Способ удаления соединений кремния из водных рассолов NaCl, в котором
- сначала в слабом рассоле соляной кислотой устанавливают рН ниже 3,
- в этот подкисленный слабый рассол добавляют хлорид железа(III) или другие трехвалентные ионы железа,
- подготовленный таким образом слабый рассол непрерывно вводят в перемешиваемый реактор растворения, в котором кроме рассола находится также нерастворенная соль,
- в реактор растворения порциями и периодически добавляют свежую соль,
- образованный концентрированный рассол вводят в перемешиваемый буферный бак,
- этот буферный бак удерживают при значении рН от 5 до 8,
- из этого буферного бака непрерывно отбирают поток концентрированного рассола и фильтруют и
- фильтровальный осадок, который содержит добавленное железо и кремний, выгружают.
2. Способ по п.1, отличающийся тем, что смешанный с хлоридом железа(III) или другими трехвалентными ионами железа слабый рассол при значении рН от 1 до 2 вводят в реактор растворения.
3. Способ по п.1 или 2, отличающийся тем, что в реактор растворения добавляют также хлорид железа(III) или другие трехвалентные ионы железа.
4. Способ по п.1 или 2, отличающийся тем, что в реакторе растворения перемешивание осуществляют реактивной струей.
5. Способ по п.3, отличающийся тем, что в реакторе растворения перемешивание осуществляют реактивной струей.
6. Способ по одному из пп.1, 2 или 5, отличающийся тем, что в буферном баке перемешивание осуществляют реактивной струей.
7. Способ по п.3, отличающийся тем, что в буферном баке перемешивание осуществляют реактивной струей.
8. Способ по одному из пп.1, 2, 5 или 7, отличающийся тем, что выгруженный фильтровальный осадок, который содержит добавленное железо и кремний, освобождают от рассола в фильтр-прессе.
9. Способ по п.3, отличающийся тем, что выгруженный фильтровальный осадок, который содержит добавленное железо и кремний, освобождают от рассола в фильтр-прессе.
10. Устройство для осуществления способа по п.1, включающее
- реактор растворения для соли,
- струйное перемешивающее устройство в реакторе растворения,
- загрузочное устройство для периодической подачи соли в реактор растворения,
- точку питания для ввода слабого рассола в реактор растворения,
- точки питания для ввода соляной кислоты и хлорида железа(III) или других трехвалентных ионов железа в линию подачи слабого рассола,
- буферный бак для концентрированного рассола,
- струйное перемешивающее устройство в буферном баке,
- гидродинамическое соединение между реактором растворения и буферным баком,
- фильтр с выпускным отверстием для концентрированного рассола и разгрузочное устройство для фильтровального осадка,
- выпускной канал и транспортный механизм для проведения концентрированного рассола из буферного бака в фильтр.
11. Устройство по п.10, отличающееся тем, что реактор растворения и буферный бак образуют единую конструкцию, которая разделяется перепускным устройством.
12. Устройство по п.11, отличающееся тем, что единая конструкция реактора растворения и буферного бака выполнена как ванна.
13. Устройство по одному из пп.10-12, отличающееся тем, что подача слабого рассола в реактор растворения вводится через находящиеся внизу реактора растворения линии, которые имеют направленные вверх отверстия в виде каналов или насадок.
14. Устройство по одному из пп.10-12, отличающееся тем, что в реакторе растворения струйное перемешивающее устройство расположено так и выполнено так, чтобы можно было получить циркуляционный поток вокруг вертикальной оси.
15. Устройство по п.13, отличающееся тем, что в реакторе растворения струйное перемешивающее устройство расположено так и выполнено так, чтобы можно было получить циркуляционный поток вокруг вертикальной оси.
RU2010131611/05A 2007-12-28 2008-12-23 Удаление кремния из рассола RU2476379C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102007063346A DE102007063346A1 (de) 2007-12-28 2007-12-28 Siliziumentfernung aus Salzsole
DE102007063346.9 2007-12-28
PCT/EP2008/011079 WO2009083234A1 (de) 2007-12-28 2008-12-23 Siliziumentfernung aus salzsole

Publications (2)

Publication Number Publication Date
RU2010131611A RU2010131611A (ru) 2012-02-10
RU2476379C2 true RU2476379C2 (ru) 2013-02-27

Family

ID=40637172

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010131611/05A RU2476379C2 (ru) 2007-12-28 2008-12-23 Удаление кремния из рассола

Country Status (9)

Country Link
US (1) US8753519B2 (ru)
EP (1) EP2227436A1 (ru)
JP (1) JP5323090B2 (ru)
CN (1) CN101925535B (ru)
BR (1) BRPI0821812A2 (ru)
CA (1) CA2710667A1 (ru)
DE (1) DE102007063346A1 (ru)
RU (1) RU2476379C2 (ru)
WO (1) WO2009083234A1 (ru)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2495825C1 (ru) * 2012-05-02 2013-10-20 Министерство Образования И Науки Российской Федерации Федеральное Государственное Унитарное Предприятие "Государственный Ордена Трудового Красного Знамени Научно-Исследовательский Институт Химических Реактивов И Особо Чистых Химических Веществ" Способ очистки натрия хлорида
KR101889681B1 (ko) * 2018-02-13 2018-08-17 고려아연 주식회사 오토클레이브 및 오토클레이브의 염 제거방법
CN108862696A (zh) * 2018-06-12 2018-11-23 德蓝水技术股份有限公司 一种用于煤制化工中的高效除硅剂及其制备方法
CN110342548B (zh) * 2019-07-30 2024-01-26 南京纳亿工程技术有限公司 一种离子膜烧碱一次精制盐水除硅铝深度精制的方法
CN110408956B (zh) * 2019-08-08 2021-09-24 青岛沃赛海水淡化科技有限公司 一种氯碱工艺中去除溶液中硅离子的方法
CN113800540B (zh) * 2021-09-30 2023-06-02 浙江镇洋发展股份有限公司 一种离子膜烧碱盐水一次精制除去硅铝的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2816772A1 (de) * 1977-04-20 1978-10-26 Asahi Chemical Ind Verfahren zur reinigung von waessriger natriumchloridloesung
SU1098909A1 (ru) * 1982-06-23 1984-06-23 Sverguzova Svetlana V Способ очистки растворов хлорида натри
SU1225813A1 (ru) * 1983-07-21 1986-04-23 Ленинградский Государственный Научно-Исследовательский И Проектный Институт Основной Химической Промышленности Способ очистки раствора хлористого натри
US4946565A (en) * 1987-10-21 1990-08-07 Eka Nobel Ab Process for the production of alkali metal chlorate
DE19546135C1 (de) * 1995-12-11 1997-06-19 Bca Bitterfelder Chlor Alkali Verfahren zur Aufbereitung von kieselsäurehaltigen Alkalisalzlösungen, insbesondere für die Chlor-Alkali-Elektrolyse

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO124158B (ru) * 1970-04-16 1972-03-13 Norsk Hydro As
US3846289A (en) * 1972-06-19 1974-11-05 Ecolotrol Waste treatment process
US4034063A (en) * 1974-03-22 1977-07-05 Industrial Resources, Inc. Process for control of SOx emissions from copper smelter operations
US4274929A (en) 1980-06-23 1981-06-23 Diamond Shamrock Corporation Chemical removal of silicon from waste brine stream for chlor-alkali cell
US4454044A (en) * 1981-07-13 1984-06-12 Max Klein Water treatment process
WO1984003692A1 (en) * 1983-03-21 1984-09-27 Union Oil Co Method for removing heavy metals from aqueous solutions by coprecipitation
US5045214A (en) * 1983-03-21 1991-09-03 Union Oil Company Of California Methods for removing substances from aqueous solutions
US4818415A (en) * 1988-03-03 1989-04-04 Kramer Timothy A Method and apparatus for removing liquid from permeable material
CN1021963C (zh) * 1989-12-30 1993-09-01 中南工业大学 氯化钠溶液精制除镁的方法
WO2005007579A1 (en) * 2003-07-22 2005-01-27 Dct Double-Cone Technology Ag Integrated water decontamination plant and well pump arrangement
JP4706827B2 (ja) * 2005-02-25 2011-06-22 三菱マテリアル株式会社 有機ハロゲン化物含有水の処理方法および処理装置
CA2692961C (en) * 2007-07-03 2015-12-22 Aquatech International Corporation Method for treatment of high ph/silica brines

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2816772A1 (de) * 1977-04-20 1978-10-26 Asahi Chemical Ind Verfahren zur reinigung von waessriger natriumchloridloesung
SU1098909A1 (ru) * 1982-06-23 1984-06-23 Sverguzova Svetlana V Способ очистки растворов хлорида натри
SU1225813A1 (ru) * 1983-07-21 1986-04-23 Ленинградский Государственный Научно-Исследовательский И Проектный Институт Основной Химической Промышленности Способ очистки раствора хлористого натри
US4946565A (en) * 1987-10-21 1990-08-07 Eka Nobel Ab Process for the production of alkali metal chlorate
DE19546135C1 (de) * 1995-12-11 1997-06-19 Bca Bitterfelder Chlor Alkali Verfahren zur Aufbereitung von kieselsäurehaltigen Alkalisalzlösungen, insbesondere für die Chlor-Alkali-Elektrolyse

Also Published As

Publication number Publication date
BRPI0821812A2 (pt) 2015-06-16
CA2710667A1 (en) 2009-07-09
WO2009083234A8 (de) 2009-08-27
US20110089117A1 (en) 2011-04-21
JP5323090B2 (ja) 2013-10-23
CN101925535B (zh) 2012-11-28
JP2011508717A (ja) 2011-03-17
DE102007063346A1 (de) 2009-07-02
EP2227436A1 (de) 2010-09-15
CN101925535A (zh) 2010-12-22
RU2010131611A (ru) 2012-02-10
US8753519B2 (en) 2014-06-17
WO2009083234A1 (de) 2009-07-09

Similar Documents

Publication Publication Date Title
RU2476379C2 (ru) Удаление кремния из рассола
US20130048562A1 (en) Treatment of gas well production wastewaters
CN102459096A (zh) 从镀敷清洗废水中回收水和金属的方法
CN106396169A (zh) 一种钢铁厂高硬度高碱度浓盐水处理工艺和装置
CN111889489A (zh) 一种铝电解大修渣的处理方法和处理系统
CN103880042B (zh) 芒硝精制盐水以及防结疤的方法
CN106186437A (zh) 一种生产粘胶纤维中制造除盐水产生的废水的处理工艺
US7273558B2 (en) Method and device for reducing scale formation and/or corrosion in systems which conduct liquids
CN105347592A (zh) 一种脱硫废水的资源化零排放处理工艺
CN106517578A (zh) 一种颗粒污泥与陶瓷膜破除络合物的重金属废水处理方法
JPH01123087A (ja) 隔膜セル内で塩化アルカリ水溶液を電気分解することにより水酸化アルカリと塩素と水素とを製造する方法
US5575922A (en) Method for treating mine water using caustic soda
US4448682A (en) Production of purified brine
KR101393322B1 (ko) 반류수의 부하 저감을 위한 인 회수 시스템
CN205500983U (zh) 脱硫废水零排放与资源综合处理回用设备
JP2685755B2 (ja) 金の精製用装置
JP5927216B2 (ja) リン含有水のリン回収装置
CN206359382U (zh) 一种钢铁厂高硬度高碱度浓盐水处理装置
CN211367185U (zh) 一种煤气化炉灰水的处理系统
US2495937A (en) Water-treating process and apparatus
PL189699B1 (pl) Sposób i urządzenie do usuwania rtęci z gazów
JP2003039081A (ja) リン回収装置
JP3992910B2 (ja) リンの除去方法及び装置
JPH09117774A (ja) 造粒脱リン装置
JP2016135931A (ja) 回収ボイラ捕集灰の処理方法及び処理装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20151224