RU2476314C2 - Способ получения гранул сложного полиэфира с низкой степенью гидролиза из высоковязких расплавов сложного полиэфира и устройство для получения гранул сложного полиэфира - Google Patents

Способ получения гранул сложного полиэфира с низкой степенью гидролиза из высоковязких расплавов сложного полиэфира и устройство для получения гранул сложного полиэфира Download PDF

Info

Publication number
RU2476314C2
RU2476314C2 RU2010109353/05A RU2010109353A RU2476314C2 RU 2476314 C2 RU2476314 C2 RU 2476314C2 RU 2010109353/05 A RU2010109353/05 A RU 2010109353/05A RU 2010109353 A RU2010109353 A RU 2010109353A RU 2476314 C2 RU2476314 C2 RU 2476314C2
Authority
RU
Russia
Prior art keywords
drying
degree
granules
preliminary
water
Prior art date
Application number
RU2010109353/05A
Other languages
English (en)
Other versions
RU2010109353A (ru
Inventor
ЭНДЕРТ Эйке ШУЛЬЦ-ВАН
Курт ХАНИМАНН
Теодор Антон БРУКМАНН
Original Assignee
Уде Инвента-Фишер ГмбХ
БКГ Брукманн унд Крейенборг Гранулиертекник ГмбХ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40243622&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2476314(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Уде Инвента-Фишер ГмбХ, БКГ Брукманн унд Крейенборг Гранулиертекник ГмбХ filed Critical Уде Инвента-Фишер ГмбХ
Publication of RU2010109353A publication Critical patent/RU2010109353A/ru
Application granted granted Critical
Publication of RU2476314C2 publication Critical patent/RU2476314C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/0066Stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/20Stationary reactors having moving elements inside in the form of helices, e.g. screw reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/08Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
    • B01J8/12Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles moved by gravity in a downward flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B13/00Conditioning or physical treatment of the material to be shaped
    • B29B13/06Conditioning or physical treatment of the material to be shaped by drying
    • B29B13/065Conditioning or physical treatment of the material to be shaped by drying of powder or pellets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • B29B9/065Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion under-water, e.g. underwater pelletizers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/16Auxiliary treatment of granules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/88Post-polymerisation treatment
    • C08G63/90Purification; Drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00176Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles outside the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00212Plates; Jackets; Cylinders
    • B01J2208/00221Plates; Jackets; Cylinders comprising baffles for guiding the flow of the heat exchange medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00761Details of the reactor
    • B01J2219/00763Baffles
    • B01J2219/00779Baffles attached to the stirring means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/18Details relating to the spatial orientation of the reactor
    • B01J2219/185Details relating to the spatial orientation of the reactor vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/19Details relating to the geometry of the reactor
    • B01J2219/194Details relating to the geometry of the reactor round
    • B01J2219/1941Details relating to the geometry of the reactor round circular or disk-shaped
    • B01J2219/1946Details relating to the geometry of the reactor round circular or disk-shaped conical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/16Auxiliary treatment of granules
    • B29B2009/165Crystallizing granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/16Auxiliary treatment of granules
    • B29B2009/168Removing undesirable residual components, e.g. solvents, unreacted monomers; Degassing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material

Abstract

Изобретение относится к способу прямого получения гранулята полиэтилентерефталата с низкой степенью гидролиза из высоковязкого расплава полиэтилентерефталата и устройство для прямого получения гранулята полиэтилентерефталата с низкой степенью гидролиза. Способ прямого получения гранулята полиэтилентерефталата со степенью полимеризации СП от 132 до 165, при котором расплав после осуществления способа разрезания в горячем состоянии подвергают предварительной сушке и сушке/дегазации. Стадию разрезания в способе разрезания в горячем состоянии осуществляют при температурах воды от 70 до 95°С и при поддержании соотношения жидкости к твердому веществу - соотношения воды к гранулам/грануляту от 8:1 до 12:1, причем жидкость полностью удерживают до поступления в предварительную сушилку, а циркулирующую воду в предварительной сушилке отделяют в течение менее 10 с. Кроме того, изобретение относится к грануляту полиэтилентерефталата, полученному указанным способом, который имеет степень поликонденсации самое большее на 2% ниже, чем степень поликонденсации высоковязкого расплава, расплав имеет степень полимеризации СП от 132 до 165. Степень кристаллизации гранулята полиэтилентерефталата составляет менее 38% (способ измерения плотности). Также изобретение относится к устройству для получения данных гранул. Технический результат - создание способа, в котором по возможности исключается снижение степени поликонденсации ввиду гидролитического расщепления непосредственно полученных гранул полиэтилентерефталата, которые имеют низкое содержание ацетальдегида. 3 н. и 16 з.п. ф-лы, 2 ил., 3 пр.

Description

Настоящее изобретение относится к способу непрерывного получения гранул сложного полиэфира с низкой степенью гидролиза из высоковязких расплавов сложного полиэфира; данный способ характеризуется тем, что снижение степени поликонденсации при переходе от расплава сложного полиэфира к грануляту сложного полиэфира составляет менее 2%. Кроме того, изобретение относится к грануляту сложного полиэфира, который получают с применением данного способа, а также к устройству для получения гранулята.
Для получения гранул сложного полиэфира, в частности полиэтилентерефталата (ПЭТ), был разработан ряд способов, в которых расплавленный полимер выдавливают из фильеры, а затем охлаждают полученные "нити" в водяной бане таким образом, чтобы они затвердели, далее разрезают их с помощью режущего устройства с получением цилиндрических отрезков, после чего их дополнительно охлаждают до 50-60°С и затем обрабатывают после количественного удаления транспортной воды в центробежной сушилке или в другом сушильном устройстве до тех пор, пока их поверхность не станет сухой. Затем данные обрезки готовы для последующей обработки в устройстве для повышения вязкости; обычно данное устройство включает множество ступеней, например кристаллизаторы и один или более реакторов, и его эксплуатируют в атмосфере инертного газа при температуре до 220°С.
Другой способ, который все более и более успешно применяют также для ПЭТ, называют разрезанием "у лицевой поверхности фильеры" или разрезанием в горячем состоянии. Он отличается тем, что фильера, из которой выдавливают полимер, находится в непосредственном контакте с камерой резки и водяной камерой, поток циркулирующей воды постоянно уносит "гранулы" круглой или овальной формы, которые получают с помощью простого циркулярного ножа, пробегающего мимо отверстий фильеры, при этом тепло отводится от расплава и происходит переохлаждение "гранул". Смесь отрезков и воды разделяют, а поверхностную воду удаляют в перемешивающей центрифуге таким образом, что в итоге получают предварительно высушенный гранулят, пригодный для транспортировки.
Данный способ был улучшен в отношении использования внутреннего тепла полимера для кристаллизации сложного полиэфира в том, что охлаждение расплава ниже температуры плавления прерывают при температурах, составляющих от 100°С до 190°С. В данном интервале начинается кристаллизация, и путем последовательного присоединения горизонтального кристаллизатора достигают степеней кристаллизации, составляющих >38%, что является достаточным для исключения слипания отрезков (агломерации) при более высоких температурах обработки, например, в сушилке или в устройстве для дополнительной конденсации. С другой стороны, все еще горячие "гранулы" можно дополнительно подвергнуть кондиционированию при постоянной температуре для дополнительной сушки и дегазации побочных продуктов реакции распада сложных полиэфиров в контейнере для хранения в течение нескольких часов с легким потоком газа-носителя, например воздуха или инертного газа. В результате можно получить уже пригодный для продажи полимерный продукт. Применение таких устройств доказало их ценность для дальнейшего традиционного производства ПЭТ.
Кроме того, соответствующий способ получения высокомолекулярного сложного полиэфира известен из WO 03/042278 А1. Данные ПЭТ-продукты ввиду большой длины цепи обладают особой чувствительностью к гидролитическому расщеплению при особых граничных условиях, таких как высокая температура при одновременном присутствии воды или водяного пара, или же при длительном хранении при воздействии влаги. Таким образом было показано, что при интенсивном контакте расплава с горячей водой и при образовании водяного пара следует ожидать интенсивного гидролиза, который снижает степень поликонденсации в течение нескольких минут на 20%.
Для новой технологии, с помощью которой исходя из высоковязкого расплава без применения энергии и интенсивной сложной дополнительной конденсации получают непосредственно конечный продукт, который сравнительно и качественно лучше, чем гранулят/гранулы сложного полиэфира, полученные традиционным способом, очевидны недостатки, которые затрудняют ее промышленное применение. В частности, можно наблюдать следующие недостатки:
1. быстрый гидролиз в атмосфере водяного пара уже в предварительной сушилке,
2. недостаточное регулирование кристаллизации,
3. большие потери воды в результате испарения,
4. регулируемость последующей изотермической сушки.
Исходя из этого задачей настоящего изобретения является создание улучшенного способа, в котором по возможности исключается снижение степени поликонденсации ввиду гидролитического расщепления непосредственно полученных гранул сложного полиэфира. Кроме того, предполагается, что содержание ацетальдегида (содержание АА) в грануляте является низким.
Кроме того, задачей настоящего изобретения является получение соответствующего гранулята и создание устройства для осуществления такого способа.
Указанную задачу по отношению к способу решают посредством отличительных признаков п.1 формулы изобретения, по отношению к грануляту - посредством отличительных признаков п.12 формулы изобретения, по отношению к устройству - посредством отличительных признаков п.15 формулы изобретения. В зависимых пунктах формулы изобретения описаны предпочтительные варианты данного изобретения.
Согласно данному изобретению предложено в соответствии с п.1 формулы изобретения оптимизировать способ таким образом, что разрезание в горячем состоянии осуществляют при температурах воды, составляющих от 70°С до 95°С, и при соотношении жидкости к твердому веществу, составляющем от 8:1 до 12:1. Таким образом, существенным является то, что жидкость удерживают до ее поступления в предварительную сушилку, и то, что циркулирующую воду в предварительной сушилке отделяют в течение <10 с. Теперь показано, что при поддержании данных условий способа можно получить гранулят или гранулы сложного полиэфира, степень поликонденсации которого менее чем на 2% ниже степени поликонденсации высоковязкого расплава. Поскольку теперь с применением способа согласно данному изобретению можно получить гранулят или гранулы сложного полиэфира с высокой степенью поликонденсации, как указано выше, их можно применять далее непосредственно для получения бутылок и пленки без промежуточно присоединенных устройств для повышения вязкости, с которыми связаны охлаждение гранулята/гранул, промежуточное хранение, повторный нагрев и длительное кондиционирование при высокой температуре, а также сложные системы циркуляции инертного газа и повторное охлаждение.
Способ согласно данному изобретению начинают с расплава сложного полиэфира, предпочтительно расплава ПЭТ, полученного с использованием установки непрерывной поликонденсации, имеющего степень поликонденсации от 132 до 165, предпочтительно до 162. Способы данного типа для получения высоковязкого сложного полиэфира сами по себе известны в технике. В этом отношении смотри указанную выше публикацию WO 03/042278 А1.
Теперь неожиданно установлено, что при использовании способа согласно данному изобретению снижение степени поликонденсации происходит только до значений, которые менее чем на 2%, предпочтительно до значений, которые менее чем на 1,5%, ниже степени поликонденсации высоковязкого расплава. В способе согласно данному изобретению отмечают, в частности, тот факт, что обычное предварительное отделение транспортной воды, поступающей из подводящего трубопровода и идущей из режущего устройства в предварительную сушилку, для того чтобы снизить нагрузку на предварительную сушилку, не приводит к ожидаемому снижению гидролиза, то есть образование водяного пара оказывает значительно большее воздействие на горячую поверхность гранул/гранулята, чем слой охлаждающей воды. Таким образом, для того чтобы достичь нужного эффекта, важно регулировать соотношение жидкости к твердому веществу, то есть соотношение воды к гранулам/грануляту, таким образом, чтобы оно составляло от 8:1 до 12:1 и чтобы температура воды во время разрезания в горячем состоянии находилась в интервале от 80°С до 90°С. При этом получали лишь малые различия в эффекте гидролиза, которые можно приписать интервалу разброса значений при анализе. В связи с этим в способе согласно данному изобретению предварительная сушка имеет решающее значение. Показано, что при поддержании условий п.1 формулы изобретения после предварительной сушки получают промежуточный гранулят сложного полиэфира с остаточной влажностью, составляющей <200 ppm (частей на миллион) и >100 ppm (частей на миллион).
Предпочтительно, в способе согласно данному изобретению получают ПЭТ (полиэтилентерефталат).
Следующие технические характеристики имеют решающее значение для минимального гидролиза:
1) отсутствие предварительного увлажнения перед сушилкой,
2) быстрый выпуск транспортной воды в сушилке в течение <10 с,
3) быстрое удаление поверхностной воды в течение от 30 с до 2 мин,
4) незначительное испарение остаточной воды, которая продиффундировала в структуру полимера, при постепенной сушке и ее эффективный выпуск с помощью сухого предварительно нагретого воздуха, идущего противотоком из последовательно присоединенного накопительного бункера,
5) конденсация смеси водяного пара и воздуха в последовательно присоединенном струйном конденсаторе, в котором воду удаляют из системы циркуляции транспортной воды, охлаждают и возвращают обратно в основную циркуляцию после фильтрования,
6) регулирование количества продувочного воздуха и его влажности по точке росы, которую следует поддерживать между -10°С и -40°С, при основной сушке для дополнительного удаления из сложного полиэфира воды и других летучих побочных продуктов.
Изобретение также относится к грануляту, полученному согласно описанному выше способу, предпочтительно из ПЭТ. Гранулят согласно данному изобретению, полученный с использованием описанного выше способа, характеризуется, в частности, тем, что его степень поликонденсации менее чем на 2%, предпочтительно менее чем на 1,5%, ниже степени поликонденсации высоковязкого полиэфирного полимера.
Дополнительными существенными признаками, которые характеризуют гранулят согласно данному изобретению, являются степень кристаллизации, составляющая менее 38% (способ измерения плотности), содержание низкокипящего компонента (например, АА, МДО и т.д.) менее 1 ppm (частей на миллион), предпочтительно от 0,5 до 0,9 ppm (частей на миллион), а также превосходный цвет, который согласно техническим условиям имеет параметр желтого цвета b* (CIELAB), составляющий от -1 до -3. Кроме того, гранулят согласно данному изобретению отличается тем, что содержание воды в нем составляет менее 100 ppm (частей на миллион), и тем, что масса частицы гранулята составляет менее 25 г, предпочтительно <15 г. Кроме того, неожиданно оказалось, что содержание ацетальдегида (содержание АА) в полученном грануляте является очень низким и составляет <0,8 ppm (частей на миллион). Дополнительным преимуществом гранулята согласно данному изобретению является то, что его удельная поверхность составляет >1,4 м2/кг, предпочтительно от 1,6 до 1,8 м2/кг. Следовательно, гранулят согласно данному изобретению очень хорошо подходит ко всем видам применения в упаковочной промышленности и ввиду его низкой кристалличности обеспечивает дополнительные преимущества при производстве бутылок, которые позволяют, в частности, применять низкую температуру повторного нагрева и, следовательно, снижают повторное образование низкокипящих продуктов разложения сложного полиэфира и повышают скорость производства заготовок. Также не образуются "тугоплавкие участки" в заготовках, которые можно получать традиционными способами во время конденсации твердой фазы, так как в новом способе не происходит увеличение вязкости или происходит только незначительное увеличение вязкости из-за описанной низкотемпературной обработки.
Кроме того, изобретение также относится к устройству для получения гранулята сложного полиэфира, предпочтительно ПЭТ-гранулята, из высоковязкого расплава сложного полиэфира со степенью поликонденсации от 132 до 165. Данное устройство характеризуется, в частности, тем, что предварительная сушилка выполнена в виде перемешивающей центрифуги. Решающее значение имеет конструкция перемешивающей центрифуги в форме конуса; корпус центрифуги расширяется вверх от основания конически или ступенчато. Помимо конструкции предварительной сушилки в виде перемешивающей центрифуги, кроме того, основным элементом в данном устройстве является то, что в дальнейшем ходе процесса применяют особым образом выполненное устройство для сушки/дегазации. Устройство для сушки/дегазации согласно данному изобретению характеризуется, в частности, тем, что оно выполнено в форме вертикального цилиндрического контейнера, и тем, что данный контейнер разделен на зону равной температуры и зону охлаждения.
Далее изобретение описано более подробно с помощью фиг.1 и 2.
Так, на фиг.1 изображена технологическая схема процесса в целом,
на фиг.2 изображено устройство для сушки/дегазации.
Процесс в целом представлен на фиг.1. Последовательность операций относится к получению ПЭТ.
Высоковязкий расплав выдавливают с помощью дозирующего насоса 2, который может создавать давление от >8 МПа до 20 МПа (от >80 бар до 200 бар), через нагретую фильерную плиту 3. (Подводное гранулирование проводят при избыточном давлении ниже по меньшей мере 0,1 МПа (1 бар) и при температуре воды на входе, составляющей по меньшей мере 70°С, предпочтительно 80-95°С). Отсекающий циркулярный нож, движущийся близко к фильерной плите, снимает тонкий слой расплава с каждого отверстия в этой плите, в результате чего образуются круглые или овальные частицы (гранулы), которые аморфно затвердевают на поверхности вследствие интенсивного потока воды вокруг них. Водяная камера находится под незначительно избыточным давлением, а соотношение жидкости к твердому веществу составляет от 8:1 до 12:1. Смесь гранулы/вода перемещают через короткий трубопровод по касательной в предварительную сушилку 5, которая выполнена в виде перемешивающей центрифуги; в нижней области происходит отделение воды, а гранулы всплывают в верхнюю область.
Здесь было показано, что в отличие от традиционного способа важно сдвинуть соотношение жидкости к твердому веществу к "нулю" в течение нескольких секунд времени пребывания в предварительной сушилке 5, т.е. удалить воду в нижней пятой части последней по возможности более полно, для того чтобы, с одной стороны, минимизировать дополнительный отвод тепла от гранул с помощью воды, а с другой стороны, минимизировать поверхностную пленку воды на гранулах таким образом, чтобы в результате испарения воды не происходили ни гидролиз, ни переохлаждение гранул ниже рабочего диапазона от 120°С до 180°С. В то же время было обнаружено, что соотношение гранул к испаряемой воде, выраженное в кг/кг, может лежать только в узких пределах от 100:1 до 20:1 во избежание описанных неблагоприятных эффектов.
Данные исходные условия составили основу конструкции новой сушилки. В частности, область входа жидкости выполнена таким образом, что перемешивающие/транспортирующие спирали, которые выполнены в форме открытого винта (шнека), имеют дополнительные проводящие элементы в виде лопастной или турбинной мешалки.
В результате текущая масса жидкости перемещается к периферии мешалки и таким образом ее можно выпустить там без усилия и крайне быстро с помощью цилиндрического перфорированного корпуса центрифуги, размер и количество отверстий в котором необходимо рассчитать. Кроме того, осуществляют уменьшение толщины слоя для отделения поверхностной воды таким образом, что корпус центрифуги, который до сих пор был цилиндрическим, выполнен в виде расширяющегося кверху конуса или цилиндрических ступеней, в результате чего центробежные силы непрерывно возрастают и, соответственно, толщина слоя воды на гранулах уменьшается. Центробежную/транспортирующую мешалку постоянно подгоняют к увеличению диаметра, для того чтобы толщина слоя (осадка) уменьшалась с увеличением диаметра. Таким образом, расстояние между перемешивающими/транспортирующими лопастями и сетчатым корпусом играет значительную роль в максимальном отделении воды. Таким образом, как воду, так и образующийся пар можно легко выпустить наружу через коническое сито. Дополнительным преимуществом конуса является увеличенная доступная поверхность сита, что облегчает прохождение воды и пара. В испытаниях было показано, что отношение входного диаметра (в нижней части) к выходному диаметру (в верхней части), составляющее от 0,75 до 0,6, приводит к наилучшему эффекту отделения воды при одновременной минимизации образования пара.
Также было неожиданно обнаружено, что первая кристаллизация до величин <10% происходит уже в предварительной сушилке 5 при температурах выше температуры стеклования (70-80°С). Повторные испытания показали, что агломерация, которая при других обстоятельствах является обычной для ПЭТ, в таком случае больше не могла происходить. Следовательно, больше не существует необходимости в дополнительной кристаллизации, например, на качающемся лотке. Простое изолированное сортировочное сито 6 является достаточным для отделения отрезков избыточной длины, для того чтобы воздействовать на дальнейшее протекание диффузии и сушки низкокипящих компонентов ПЭТ.
В качестве дополнительного основного элемента можно упомянуть инжекционный конденсатор 9, который оптимизирует использование воды при циркуляции технической воды, для того чтобы уменьшить потери осадка и потери воды, приготовление которой с помощью обратного осмоса обходится дорого.
Инжекционный конденсатор 9 присоединен сразу после предварительной сушилки 5, для того чтобы понизить количество водяного пара, неизбежно возникающего в сушилке, более чем в 10 раз. Из материально-энергетического баланса следует, что, например, при объеме выпуска гранул, составляющем 12000 кг/ч, количество образующегося пара составляет 600 кг/ч. Теперь 530 кг/ч пара можно направить на повторное использование. Следовательно, поскольку инжекционный конденсатор расположен в боковом потоке основной циркуляции технической воды, в то же самое время можно производить регулирование температуры последней, чему придается большое значение во время "разрезания у лицевой поверхности фильеры".
Неожиданно установлено, что для надежного исключения повышенного гидролиза с целью получения равномерно кристаллизующегося и предварительно высушенного продукта, соответствующего предъявляемым требованиям качества, необходима продувка сухого воздуха, предварительно нагретого до 140-180°С (нагреватель 10), через последующий сборный сосуд 7 путем пропускания данного воздушного потока в направлении, противоположном потоку гранул, через сортировочное сито 6 и предварительную сушилку 5, причем влажность потока воздуха регулируют таким образом, чтобы точка росы составляла приблизительно +10°С. Для этой цели количество воздуха, текущего в сборный сосуд 7, регулируют в зависимости от точки росы на входе воздуха в сушилку 5 таким образом, чтобы получить на выходе остаточную влажность гранул, составляющую <200 ppm (частей на миллион), предпочтительно >100 ppm (частей на миллион). Перемещение горячих отрезков в бункер 8 для выдержки затем осуществляют с помощью того же самого предварительно нагретого сухого воздуха, причем предпочтительной является транспортировка с "высокой плотностью", при которой сферический гранулят осторожно перемещают в бункер.
Неожиданно было показано, что дополнительная сушка в данный момент времени препятствует дальнейшей дегазации низкокипящих компонентов из гранул. Было обнаружено, что малые количества воды, присутствующие в структуре сложного полиэфира, могут увлекать с собой низкокипящие компоненты: ацетальдегид, метилдиоксолан и другие продукты разложения ПЭТ, содержание которых ниже на порядок, и следовательно, можно регулировать ускоренное испарение данных веществ с помощью остаточной воды. Было обнаружено сокращение времени процесса газовыделения приблизительно на 30-40% по сравнению с традиционными способами.
Дегазационную часть бункера 8 подвергают воздействию потока холодного воздуха, влажность которого регулируют таким образом, чтобы точка росы составляла от -10°С до -40°С. Таким образом, количество воздуха регулируют с помощью регулятора 15 так, чтобы выходили побочные продукты, которые диффундируют из гранул и при указанных температурных условиях являются газообразными. Соотношение количества гранул к количеству воздуха поддерживают в оптимальном интервале от 5 до 25. Подачу воздуха осуществляют при температуре, которая, например, равна комнатной температуре, но ниже допустимой технологической температуры для гранул, составляющей 50°С, причем распределитель воздуха расположен ниже трубчатого теплообменника для смеси отрезки/вода, который объединен с бункером для охлаждения отрезков до температуры упаковки. Само по себе входное отверстие для воздуха выполнено с помощью двойного конуса. Охладитель отрезков обеспечивает дополнительное улучшение распределения малого количества воздуха, который барботируют противотоком через колонну для гранул. По причине малого количества воздуха, теплосодержание которого мало по сравнению с массой гранул, в бункере 8 устанавливается равновесная температура, которая не препятствует процессу кондиционирования. Даже на несколько дециметров выше охладителя отрезков температура колонны для отрезков находится в равновесии с профилем температуры, обеспеченным для дегазации.
Предпочтительно, продувочный/транспортирующий воздух получают с помощью системы Конти для осушения воздуха. В качестве энергосберегающего варианта отработанный воздух из бункера также можно применять для продувки накопительного контейнера и предварительной сушилки, а также в качестве транспортирующего воздуха и для регенерации системы осушения воздуха.
На фиг.2 изображена, в увеличенном разрезе, конструкция бункера 8 для выдержки/дегазации. Так, бункер 8 для выдержки/дегазации выполнен в форме вертикального цилиндрического корпуса. При этом бункер 8 разделен на две зоны - фактически на зону 9 равной температуры и зону 10 охлаждения. Теплообменник в зоне охлаждения выполнен в виде пучка труб 15 с обработкой без мертвых зон на его верхней стороне. При этом существенным в бункере 8 для выдержки/дегазации является то, что отношение площади свободной поверхности труб теплообменника к площади поверхности контейнера составляет от 1:4 до 1:6, а отношение L/D для теплообменника составляет по меньшей мере 1,2:1. Введение сухого воздуха ниже пучка труб теплообменника осуществляют через кольцевой зазор, который образован с помощью двойного конуса. На верхней стороне контейнера предусмотрено выпускное отверстие 16 для горячего газа. Для наблюдения за профилем температуры бункер 8 для выдержки/дегазации может включать по меньшей мере 3 точки измерения по всей высоте цилиндра, которые могут предпочтительно располагаться по центру вблизи центральной линии контейнера (не показано). Дополнительной характеристикой бункера 8 для выдержки/дегазации является то, что цилиндрическая часть контейнера оборудована активной изоляцией, например электрическим обогревом, змеевиками из трубы, имеющей U-образное поперечное сечение, и т.д.
Пример 1
В установке получения ПЭТ, использующей типичную систему подводного резания, не подготовленную для продукции с низкой степенью гидролиза, были получены следующие степени поликонденсации при средней температуре 180°С и 15 часовом удержании:
а b с d
ηвх расплава 0,760 0,765 0,845 0,815
СП расплава 136 138 159 151
ηвх продукта 0,710 0,715 0,810 0,780
СП продукта 123 125 150 142
ΔСП -13 -13 -9 -9
% ΔСП -9,6 -9,4 -5,7 -6,0
Начальная влажность гранулята, ppm 400 350 175 225
Конечная влажность гранулята, ppm 100 90 60 80
Степень кристаллизации, % 49 48 45 47
Цвет b* +1,5 +1,3 +0,6 +0,8
Низкокипящие соединения, ppm 1,9 1,7 1,6 1,5
Пример 2
На той же установке использовали оптимизированные параметры и установки процесса для улучшения качества продукта и были получены следующие результаты:
е f
ηвх расплава 0,825 0,822
СП расплава 154 153
ηвх продукта 0,810 0,816
СП продукта 150 151
ΔСП -4 -2
% ΔСП -2,6 -1,3
Начальная влажность гранулята, ppm 160 140
Конечная влажность гранулята, ppm 50 45
Степень кристаллизации, % 44 44
Цвет b* +0,4 +0,2
Низкокипящие соединения, ppm 1,4 1,2
Пример 3
Ту же установку модифицировали согласно способу и оборудованию по настоящему документу и были получены следующие показатели качества:
g h i
ηвх расплава 0,782 0,798 0,770
СП расплава 142 146 139
ηвх продукта 0,806 0,803 0,820
СП продукта 149 148 152
ΔСП +7 +2 +13
% ΔСП +4,9 +1,4 +9,4
Начальная влажность гранулята, ppm <100 120 <80
Конечная влажность гранулята, ppm <35 <40 <30
Степень кристаллизации, % 38 39 36
Цвет b* -0,2 0 -0,4
Низкокипящие соединения, ppm <1,0 0,8 0,6

Claims (19)

1. Способ прямого получения гранулята полиэтилентерефталата с низкой степенью гидролиза из высоковязкого расплава полиэтилентерефталата со степенью полимеризации СП от 132 до 165, при котором расплав после осуществления способа разрезания в горячем состоянии подвергают предварительной сушке и сушке/дегазации, отличающийся тем, что стадию разрезания в способе разрезания в горячем состоянии осуществляют при температурах воды от 70 до 95°С и при поддержании соотношения жидкости к твердому веществу - соотношения воды к гранулам/грануляту от 8:1 до 12:1, причем жидкость полностью удерживают до поступления в предварительную сушилку, а циркулирующую воду в предварительной сушилке отделяют в течение менее 10 с.
2. Способ по п.1, отличающийся тем, что 99% циркулирующей воды отделяют в предварительной сушилке, при этом в качестве предварительной сушилки предпочтительно применяют перемешивающую центрифугу, корпус которой выполнен в виде расширяющегося от основания вверх конуса или цилиндрических ступеней, а также тем, что циркулирующую воду удаляют в нижней пятой части предварительной сушилки.
3. Способ по п.1, отличающийся тем, что при предварительной сушке работу осуществляют в интервале температур от 120°С до 180°С, при этом во время предварительной сушки в предварительной сушилке предпочтительно устанавливают точку росы в интервале от 8 до 12°С с помощью количества продувочного воздуха из последовательно присоединенного накопительного контейнера.
4. Способ по п.1, отличающийся тем, что предварительную сушку регулируют таким образом, чтобы достичь степени кристаллизации по меньшей мере 5% с целью предотвращения агломерации гранул, или предварительную сушку регулируют таким образом, чтобы достичь влажности гранул/гранулята на выходе из предварительной сушилки менее 200 млн-1 (ррm).
5. Способ по п.1, отличающийся тем, что время пребывания в воде от разрезания в горячем состоянии до поступления в предварительную сушилку поддерживают менее 1 с.
6. Способ по п.1, отличающийся тем, что между предварительной сушкой и сушкой/дегазацией осуществляют сортировку на сортировочном сите, при этом время пребывания на сортировочном сите, в частности, составляет самое большее 30 с.
7. Способ по п.6, отличающийся тем, что гранулят после сортировки перед сушкой/дегазацией продувают в накопительном контейнере с применением кондиционированного сухого воздуха, при этом максимальное время пребывания в накопительном контейнере поддерживают, в частности, равным 8 мин, причем влажность в предварительной сушилке регулируют с помощью количества кондиционированного/высушенного воздуха.
8. Способ по п.1, отличающийся тем, что гранулят доставляют из накопительного контейнера для сушки в бункер кондиционирования/охлаждения с помощью транспортировки горячим воздухом, при этом, в частности, сушку осуществляют в активно изолированном бункере кондиционирования/охлаждения, причем сушку и охлаждение осуществляют в сочетании, при этом сушку, в частности, осуществляют от 6 до 12 ч при температуре от 150 до 180°С, предпочтительно от 160 до 175°С, а охлаждение, в частности, осуществляют до 50°С в течение от 0,5 до 1,5 ч.
9. Способ по п.1, отличающийся тем, что пары из предварительной сушилки конденсируют в смешивающем конденсаторе, охлаждающую среду для которого отделяют из частичного потока основной циркуляции воды и смешанный конденсат из которого применяют для регулирования температуры основной циркуляции воды, при этом, в частности, частичный поток и основной поток смешивают в соотношении от 1:4 до 1:6.
10. Способ по п.8, отличающийся тем, что обработку сухого воздуха осуществляют таким образом, чтобы точки росы составляли от -10°С до -40°С.
11. Способ по п.8, отличающийся тем, что воздух, введенный в бункер кондиционирования/охлаждения при максимальной температуре 40°С и при соотношении от 1:5 до 1:10, квазиламинарно распределяется через охладитель.
12. Гранулят полиэтилентерефталата, полученный способом согласно по меньшей мере одному из пп.1-11, отличающийся тем, что его степень поликонденсации самое большее на 2% ниже, чем степень поликонденсации высоковязкого расплава, имеющего степень полимеризации СП от 132 до 165, а его степень кристаллизации составляет менее 38% (способ измерения плотности).
13. Гранулят полиэтилентерефталата по п.12, отличающийся тем, что его степень поликонденсации самое большее на 1,5% ниже, чем для высоковязкого расплава.
14. Гранулят полиэтилентерефталата по п.12, отличающийся тем, что содержание воды в нем составляет менее 100 ppm, предпочтительно менее 50 ppm.
15. Устройство для прямого получения гранулята полиэтилентерефталата с низкой степенью гидролиза из высоковязкого расплава полиэтилентерефталата со степенью полимеризации СП от 132 до 165, включающее устройства для разрезания в горячем состоянии, для предварительной сушки, а также для сушки/дегазации, отличающееся тем, что предварительная сушилка выполнена в виде перемешивающей центрифуги, корпус которой расширяется от основания вверх в виде конуса или цилиндрических ступеней.
16. Устройство по п.15, отличающееся тем, что перемешивающая центрифуга включает впускной канал для жидкости, направленный тангенциально.
17. Устройство по меньшей мере по одному из пп.15 или 16, отличающееся тем, что после предварительной сушилки присоединено сортирующее устройство, при этом, в частности, между сортирующим устройством и устройством для сушки/дегазации расположен накопительный контейнер с впускным отверстием для воздуха, идущего в противоток грануляту.
18. Устройство по п.15, отличающееся тем, что устройство для сушки/дегазации выполнено в форме вертикального цилиндрического контейнера с зоной кондиционирования и зоной охлаждения.
19. Устройство по п.18, отличающееся тем, что зона охлаждения включает теплообменник, в котором пучок труб выполнен с полностью свободной поверхностной обработкой на его верхней стороне, при этом предпочтительно теплообменник выполнен с возможностью продувки кондиционированным воздухом в противоток к грануляту.
RU2010109353/05A 2007-08-24 2008-08-22 Способ получения гранул сложного полиэфира с низкой степенью гидролиза из высоковязких расплавов сложного полиэфира и устройство для получения гранул сложного полиэфира RU2476314C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102007040135.5 2007-08-24
DE102007040135A DE102007040135A1 (de) 2007-08-24 2007-08-24 Verfahren zur Herstellung von Polyester-Granulaten aus hochviskosen Polyester-Schmelzen sowie Vorrichtung zur Herstellung der Polyester-Granulate
PCT/EP2008/006934 WO2009027064A2 (de) 2007-08-24 2008-08-22 Verfahren zur herstellung von hydrolysearmen polyester-granulaten aus hochviskosen polyester-schmelzen sowie vorrichtung zur herstellung der polyester-granulate

Publications (2)

Publication Number Publication Date
RU2010109353A RU2010109353A (ru) 2011-09-27
RU2476314C2 true RU2476314C2 (ru) 2013-02-27

Family

ID=40243622

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010109353/05A RU2476314C2 (ru) 2007-08-24 2008-08-22 Способ получения гранул сложного полиэфира с низкой степенью гидролиза из высоковязких расплавов сложного полиэфира и устройство для получения гранул сложного полиэфира

Country Status (12)

Country Link
US (3) US7993557B2 (ru)
EP (1) EP2180987B2 (ru)
JP (1) JP5591111B2 (ru)
KR (1) KR101475549B1 (ru)
CN (1) CN101842208B (ru)
BR (1) BRPI0816119B1 (ru)
DE (1) DE102007040135A1 (ru)
ES (1) ES2433384T5 (ru)
MX (1) MX2010002090A (ru)
PL (1) PL2180987T5 (ru)
RU (1) RU2476314C2 (ru)
WO (1) WO2009027064A2 (ru)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2544317T3 (es) 2003-09-09 2015-08-28 Insight Equity A.P.X., Lp Laminado de poliuretano fotocrómico
AT508252B1 (de) * 2009-12-28 2010-12-15 Erema Verfahren und vorrichtung zur herstellung von teilkristallinem polymermaterial
ES2620134T3 (es) * 2010-09-28 2017-06-27 Uhde Inventa-Fischer Gmbh Procedimiento para incrementar el peso molecular usando el calor residual de poliéster granulado
DE102011018403A1 (de) * 2011-04-21 2012-10-25 Automatik Plastics Machinery Gmbh Verfahren zur Herstellung von pharmazeutischen Erzeugnissen aus einem Schmelzematerial
TR201809138T4 (tr) * 2011-09-19 2018-07-23 Uhde Inventa Fischer Gmbh Kurutma-/gaz giderme tertibatı ile polyester eriyiğinden kalıplanmış nesnelerin doğrudan üretilmesi için tertibat ve yöntem.
DE102012003890A1 (de) * 2012-02-28 2013-08-29 Automatik Plastics Machinery Gmbh Verfahren und Vorrichtung zum Betrieb einer Granulationsvorrichtung
DE102012011641A1 (de) 2012-06-12 2013-12-12 Automatik Plastics Machinery Gmbh Verfahren und Vorrichtung zurn Trocknen und Kristallisieren von Granulat
US9081130B1 (en) 2013-01-09 2015-07-14 Insight Equity A.P.X., Lp Photochromic polyurethane laminate
US9440419B2 (en) 2013-03-15 2016-09-13 Vision Ease, Lp Photochromic polyurethane laminate
DE102013109003A1 (de) * 2013-08-20 2015-02-26 Automatik Plastics Machinery Gmbh Vorrichtung und Verfahren zum Trocknen von Kunststoffgranulatkörnern
DE102013015190A1 (de) * 2013-09-11 2015-03-12 Automatik Plastics Machinery Gmbh Verfahren zur Herstellung von oberflächig kristallinen sphärischen Granulaten mittelsTrockenheißabschlag und Vorrichtung zur Durchführung des Verfahrens
CN103496155A (zh) * 2013-10-11 2014-01-08 昆山市华浦塑业有限公司 一种塑料材料的制备方法
TW201534636A (zh) * 2014-02-12 2015-09-16 Invista Tech Sarl 製備聚對苯二甲酸乙二酯之高固有黏度塔型反應器
WO2015199798A2 (en) 2014-04-22 2015-12-30 Plastipak Packaging, Inc. Pellet and precursor with recycled content
DE102014110337A1 (de) * 2014-07-22 2016-01-28 Technip Zimmer Gmbh Verfahren und Anlage zur Herstellung von PET-Granulat
DE102015119787A1 (de) * 2015-11-16 2017-05-18 Maag Automatik Gmbh Verfahren zur Herstellung eines Kunststoffgranulats
RU2685299C1 (ru) 2016-06-21 2019-04-17 Юоп Ллк Способ и устройство для кристаллизации и повышения молекулярной массы полимерных частиц
US11298853B2 (en) 2016-06-21 2022-04-12 Uop Llc Processes and apparatuses for conditioning polymer particles for an SSP reactor
DE202016006420U1 (de) 2016-10-17 2016-11-07 Maag Automatik Gmbh Vorrichtung zur Trocknung von Granulatkörnern
DE202016006421U1 (de) 2016-10-17 2016-11-07 Maag Automatik Gmbh Vorrichtung zur Trocknung von Granulatkörnern
WO2019007523A1 (en) 2017-07-06 2019-01-10 Technip Zimmer Gmbh METHOD AND APPARATUS FOR PREPARING BIODEGRADABLE POLYESTERS
EP3566843A1 (en) * 2018-05-11 2019-11-13 Basell Polyolefine GmbH Process and device for preparing polymer pellets having differing compositions
EP3650186B1 (de) 2018-11-08 2023-07-19 Polymetrix AG Verfahren und vorrichtung zur direktkristallisation von polykondensaten
EP3708936B1 (de) * 2019-03-15 2024-04-17 Polymetrix AG Verfahren zum recycling von polyolefinen
DE102020203563A1 (de) 2020-03-19 2021-09-23 Thyssenkrupp Ag Verfahren zur Herstellung eines (Co-)Polyesters, (Co-)Polyester und Verwendungen hiervon
CN113769665A (zh) * 2020-06-10 2021-12-10 中国石油化工股份有限公司 一种低温脱除小分子的反应器及方法
CN113769666A (zh) * 2020-06-10 2021-12-10 中国石油化工股份有限公司 一种生产低小分子含量聚酯的反应器及方法
CN113773482A (zh) * 2020-06-10 2021-12-10 中国石油化工股份有限公司 一种生产低小分子含量聚酯的高效反应器及方法
CN112277186A (zh) * 2020-10-09 2021-01-29 长兴材料工业(广东)有限公司 一种低tg结晶共聚酯高效造粒系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2880519A (en) * 1955-10-03 1959-04-07 Phillips Petroleum Co Pelleting process and apparatus
DE3120792A1 (de) * 1981-05-25 1982-12-09 Alu Plast Aluminium-Plastik Recycling GmbH, 5440 Mayen "granulat trockner"
RU2005130773A (ru) * 2003-10-17 2006-02-10 Бкг Брукманн Унд Крейенборг Гранулиртехник Гмбх (De) Способ термической обработки гранул сложного полиэфира
RU2004129634A (ru) * 2003-10-10 2006-03-20 Истман Кемикал Компани (US) Термическая кристаллизация расплавленного сложнополиэфирного полимера в жидкости
RU2006112829A (ru) * 2003-09-18 2006-08-27 Истман Кемикал Компани (US) Термическая кристаллизация сложнополиэфирных гранул в жидкости
DE102005010706A1 (de) * 2005-03-09 2006-09-14 Bkg Bruckmann & Kreyenborg Granuliertechnik Gmbh Verfahren zur thermischen Behandlung von Polyesterpellets
DE102006027176A1 (de) * 2005-08-26 2007-03-01 Zimmer Ag Verfahren und Vorrichtung zur Verringerung des Acetaldehydgehaltes von Polyestergranulat

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1299477A (fr) * 1960-09-13 1962-07-20 Procédé pour séparer ou fractionner une suspension dans un liquide au moyen d'un hydrocyclone et appareil pour la mise en oeuvre de ce procédé
US3544525A (en) * 1968-03-26 1970-12-01 Allied Chem Process for crystallization,drying and solid-state polymerization of polyesters
DE2347013A1 (de) * 1973-09-14 1975-03-27 Fischer Apparate Rohr Verfahren zum herstellen von trockenem polyester- oder copolyester-granulat
DE4216960C2 (de) * 1992-02-01 1995-05-24 Uhde Gmbh Verfahren zur Behandlung von Kunststoffgranulat sowie Silo zur Lagerung und Homogenisierung von Kunststoffgranulat
DE4314162C1 (de) * 1993-04-29 1994-04-28 Rieter Automatik Gmbh Verfahren zur gleichzeitigen Trocknung und Kristallisation von kristallisationsfähigem thermoplastischem Kunststoff
AT410942B (de) 2001-10-29 2003-08-25 Fellinger Markus Verfahren und vorrichtung zur erhöhung der grenzviskosität von polyester
DE10155419B4 (de) 2001-11-12 2005-06-16 Inventa-Fischer Gmbh & Co. Kg Verfahren zur kontinuierlichen Herstellung von hochmolekularem Polyester sowie Vorrichtung zur Durchführung des Verfahrens
US6740733B2 (en) * 2001-11-30 2004-05-25 Shell Oil Company Process and apparatus for crystallization of polytrimethylene terephthalate (PTT)
JP2003200420A (ja) * 2002-01-09 2003-07-15 Toppan Printing Co Ltd 飽和ポリエステル樹脂の造粒方法およびその造粒装置
US7157032B2 (en) * 2003-11-21 2007-01-02 Gala Industries, Inc. Method and apparatus for making crystalline PET pellets
JP4473856B2 (ja) * 2004-03-31 2010-06-02 長春石油化學股▲分▼有限公司 エチレン−ビニルアルコール共重合体ペレットの製造方法
JP2005349811A (ja) * 2004-06-14 2005-12-22 Mitsubishi Chemicals Corp ポリエステル粒子の製造方法
US7553440B2 (en) 2005-05-12 2009-06-30 Leonard William K Method and apparatus for electric treatment of substrates
CH711770B1 (de) * 2006-03-13 2017-05-15 Uhde Inventa-Fischer Ag Verfahren zur Herstellung eines nicht klebenden Granulats aus einem Polyestermaterial und zur Weiterverarbeitung eines so hergestellten Granulats.
US9656418B2 (en) 2006-04-21 2017-05-23 Dak Americas Llc Co-polyester packaging resins prepared without solid-state polymerization, a method for processing the co-polyester resins with reduced viscosity change and containers and other articles prepared by the process

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2880519A (en) * 1955-10-03 1959-04-07 Phillips Petroleum Co Pelleting process and apparatus
DE3120792A1 (de) * 1981-05-25 1982-12-09 Alu Plast Aluminium-Plastik Recycling GmbH, 5440 Mayen "granulat trockner"
RU2006112829A (ru) * 2003-09-18 2006-08-27 Истман Кемикал Компани (US) Термическая кристаллизация сложнополиэфирных гранул в жидкости
RU2004129634A (ru) * 2003-10-10 2006-03-20 Истман Кемикал Компани (US) Термическая кристаллизация расплавленного сложнополиэфирного полимера в жидкости
RU2005130773A (ru) * 2003-10-17 2006-02-10 Бкг Брукманн Унд Крейенборг Гранулиртехник Гмбх (De) Способ термической обработки гранул сложного полиэфира
DE102005010706A1 (de) * 2005-03-09 2006-09-14 Bkg Bruckmann & Kreyenborg Granuliertechnik Gmbh Verfahren zur thermischen Behandlung von Polyesterpellets
DE102006027176A1 (de) * 2005-08-26 2007-03-01 Zimmer Ag Verfahren und Vorrichtung zur Verringerung des Acetaldehydgehaltes von Polyestergranulat

Also Published As

Publication number Publication date
RU2010109353A (ru) 2011-09-27
KR20100090757A (ko) 2010-08-17
US20090072423A1 (en) 2009-03-19
ES2433384T5 (es) 2021-11-18
US8556610B2 (en) 2013-10-15
EP2180987B1 (de) 2013-08-14
PL2180987T5 (pl) 2021-08-23
EP2180987A2 (de) 2010-05-05
PL2180987T3 (pl) 2014-01-31
US7993557B2 (en) 2011-08-09
DE102007040135A1 (de) 2009-02-26
BRPI0816119B1 (pt) 2024-01-09
JP5591111B2 (ja) 2014-09-17
US20160023377A9 (en) 2016-01-28
MX2010002090A (es) 2010-06-02
CN101842208A (zh) 2010-09-22
KR101475549B1 (ko) 2014-12-22
CN101842208B (zh) 2016-07-06
WO2009027064A2 (de) 2009-03-05
BRPI0816119A2 (pt) 2015-08-25
ES2433384T3 (es) 2013-12-10
US20130127079A1 (en) 2013-05-23
US20110293762A1 (en) 2011-12-01
JP2010537014A (ja) 2010-12-02
US9346191B2 (en) 2016-05-24
WO2009027064A3 (de) 2009-04-30
EP2180987B2 (de) 2021-04-28

Similar Documents

Publication Publication Date Title
RU2476314C2 (ru) Способ получения гранул сложного полиэфира с низкой степенью гидролиза из высоковязких расплавов сложного полиэфира и устройство для получения гранул сложного полиэфира
US9943817B2 (en) Process and apparatus for direct crystallization of polymers under inert gas
AT410942B (de) Verfahren und vorrichtung zur erhöhung der grenzviskosität von polyester
JP2009538369A (ja) 結晶化用コンベヤー
RU2437758C2 (ru) Способ получения неслипающегося гранулята, включающего полиэфирный материал, и дальнейшей обработки полученного гранулята
DE102006027176A1 (de) Verfahren und Vorrichtung zur Verringerung des Acetaldehydgehaltes von Polyestergranulat
EP1113848A1 (de) Verfahren zum eindampfen von polymerlösungen thermoplastischer polymere
US11447604B2 (en) Method for the separation of volatile compounds from viscous products by means of a thin-film evaporator, and polylactide resin
US11286365B2 (en) Process for recycling polyolefins
EA005785B1 (ru) Способ и устройство для непрерывной поликонденсации полиэфирного материала в твердой фазе
RU2686464C2 (ru) Способ, относящийся к зоне твердофазной полимеризации
EP3650186B1 (de) Verfahren und vorrichtung zur direktkristallisation von polykondensaten
US20230035805A1 (en) Production System and Method for Insoluble Sulfur
EP4065330B1 (en) Method and device for the production of polyamide 6 pellets
US20240131751A1 (en) Method and device for the production of polyamide 6 pellets