RU2474712C2 - Способ управления расходом топлива в газотурбинный двигатель - Google Patents

Способ управления расходом топлива в газотурбинный двигатель Download PDF

Info

Publication number
RU2474712C2
RU2474712C2 RU2010154325/06A RU2010154325A RU2474712C2 RU 2474712 C2 RU2474712 C2 RU 2474712C2 RU 2010154325/06 A RU2010154325/06 A RU 2010154325/06A RU 2010154325 A RU2010154325 A RU 2010154325A RU 2474712 C2 RU2474712 C2 RU 2474712C2
Authority
RU
Russia
Prior art keywords
engine
value
power
temperature
controller
Prior art date
Application number
RU2010154325/06A
Other languages
English (en)
Other versions
RU2010154325A (ru
Inventor
Юрий Петрович Дудкин
Виктор Александрович Гладких
Геннадий Викторович Фомин
Сергей Владимирович Остапенко
Юрий Константинович Титов
Original Assignee
Открытое акционерное общество "СТАР"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "СТАР" filed Critical Открытое акционерное общество "СТАР"
Priority to RU2010154325/06A priority Critical patent/RU2474712C2/ru
Publication of RU2010154325A publication Critical patent/RU2010154325A/ru
Application granted granted Critical
Publication of RU2474712C2 publication Critical patent/RU2474712C2/ru

Links

Images

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

Изобретение относится к области авиационного двигателестроения и может быть использовано в электронных системах (САУ) автоматического управления газотурбинными двигателями (ГТД). Сущность изобретения заключается в том, что дополнительно на взлете самолета по положению РУД формируют минимально допустимое значение мощности, сравнивают минимально допустимое значение мощности двигателя и располагаемую мощность двигателя, полученное рассогласование вместо отселектированной величины подают в ПИ-регулятор, при невозможности определения величин минимально допустимой или располагаемой мощности формируют как функцию от положения РУД и давления воздуха на входе в двигатель значение минимально допустимого давления воздуха за компрессором двигателя, сравнивают минимально допустимое и измеренное значения давления воздуха за компрессором, полученное рассогласование подают в ПИ-регулятор. Технический результат изобретения заключается в повышении качества управления расходом топлива в КС двигателя, на взлете самолета обеспечивается работа двигателя на режимах с располагаемой мощностью, обеспечивающей нормальный взлет самолета. Это повышает надежность работы двигателя как элемента СУ самолета и безопасность самого самолета. 1 ил.

Description

Изобретение относится к области авиационного двигателестроения и может быть использовано в электронных системах (САУ) автоматического управления газотурбинными двигателями (ГТД).
Известен способ управления ГТД, реализованный в электронно-гидромеханической САУ супервизорного типа, Кеба И.В. Летная эксплуатация вертолетных ГТД. М.: Транспорт, 1976 г., с.123-125.
Способ заключается в том, что с целью повышения точности управления управляющее воздействие гидромеханического регулятора корректируется в ограниченном диапазоне электронным корректором.
Недостатком известного способа является его низкая эффективность.
Наиболее близким к данному изобретению по технической сущности является способ управления расходом топлива в ГТД, заключающийся в том, что измеряют положение рычага (РУД) управления двигателем, частоту вращения турбокомпрессора, давление и температуру воздуха на входе в двигатель, температуру газов за турбиной газогенератора, формируют заданное значение частоты вращения турбокомпрессора как функцию от положения РУД, давления и температуры воздуха на входе в двигатель, задают предельное для данного двигателя значение температуры газов за турбиной газогенератора, сравнивают заданное значение частоты вращения турбокомпрессора и измеренное, сравнивают предельное для данного двигателя значение температуры газов за турбиной газогенератора (являющееся константой для всех двигателей данного типа с возможностью регулировки в ограниченном диапазоне при приемо-сдаточных испытаниях двигателя и в эксплуатации - при переходах зима-лето) и измеренное, полученные рассогласования селектируют по минимуму с сигналом автомата приемистости (АП), отселектированную величину подают в пропорционально-интегральный (ПИ) регулятор, где формируют управляющее воздействие на дозатор расхода топлива, отличающийся тем, что дополнительно предельное ограничение по температуре газов за турбиной газогенератора корректируют по положению РУД, по положению РУД формируют заданное значение мощности двигателя, измеряют крутящий момент на выходном валу двигателя и частоту вращения свободной турбины (СТ), рассчитывают располагаемую мощность двигателя как произведение величин крутящего момента и частоты вращения СТ, сравнивают заданное значение мощности двигателя и располагаемую мощность двигателя, полученное рассогласование селектируют по минимуму с сигналом АП, патент РФ №2334889 от 27.09.2008.
Недостатком известного способа является следующее.
При выполнении летных испытаний самолета Ан-140-100, в САУ которого реализован известный способ управления, было отмечено кратковременное снижение режима работы двигателя с последующим его восстановлением из-за нестабильной работы канала измерения температуры газов за турбиной компрессора, при этом двигатель и его агрегаты были в исправном состоянии и соответствовали требованиям ТУ (технических условий).
Это снижает надежность работы двигателя и, особенно на взлете, безопасность самолета.
Целью изобретения является повышение надежности работы двигателя и безопасности самолета.
Поставленная цель достигается тем, что в способе управления расходом топлива в ГТД, заключающемся в том, что измеряют положение РУД, частоту вращения турбокомпрессора, давление и температуру воздуха на входе в двигатель, температуру газов за турбиной газогенератора, формируют заданное значение частоты вращения турбокомпрессора как функцию от положения РУД, давления и температуры воздуха на входе в двигатель, задают предельное для данного двигателя значение температуры газов за турбиной газогенератора, сравнивают заданное значение частоты вращения турбокомпрессора и измеренное, сравнивают предельное для данного двигателя значение температуры газов за турбиной газогенератора (являющееся константой для всех двигателей данного типа с возможностью регулировки в ограниченном диапазоне при приемо-сдаточных испытаниях двигателя и в эксплуатации - при переходах зима-лето) и измеренное, полученные рассогласования селектируют по минимуму с сигналом АП, отселектированную величину подают в ПИ-регулятор, где формируют управляющее воздействие на дозатор расхода топлива, предельное ограничение по температуре газов за турбиной газогенератора корректируют по положению РУД, по положению РУД формируют заданное значение мощности двигателя, измеряют крутящий момент на выходном валу двигателя и частоту вращения СТ, рассчитывают располагаемую мощность двигателя как произведение величин крутящего момента и частоты вращения СТ, сравнивают заданное значение мощности двигателя и располагаемую мощность двигателя, полученное рассогласование селектируют по минимуму с сигналом АП, дополнительно на взлете самолета по положению РУД формируют минимально допустимое значение мощности, сравнивают минимально допустимое значение мощности двигателя и располагаемую мощность двигателя, полученное рассогласование вместо отселектированной величины подают в ПИ-регулятор, при невозможности определения величин минимально допустимой или располагаемой мощности формируют как функцию от положения РУД и давления воздуха на входе в двигатель значение минимально допустимого давления воздуха за компрессором двигателя, сравнивают минимально допустимое и измеренное значения давления воздуха за компрессором, полученное рассогласование подают в ПИ-регулятор.
На чертеже представлена схема устройства, реализующая заявляемый способ.
Устройство содержит последовательно соединенные блок 1 датчиков (БД), электронный регулятор 2 двигателя (РЭД), электрогидропреобразователь 3 (ЭГП), дозатор 4 топлива.
РЭД 2 представляет собой бортовую цифровую вычислительную машину (БЦВМ), содержащую постоянное запоминающее устройство (ПЗУ), в котором содержится программное обеспечение (ПО), реализующее алгоритмы управления двигателем. Дополнительно БЦВМ оснащена устройствами ввода/вывода (УВВ) физических сигналов (из БД 1 и в ЭГП 3), оперативным запоминающим устройством (ОЗУ), необходимым для обработки процессором БЦВМ поступающей из УВВ информации, репрограммируемым запоминающим устройством (РПЗУ), необходимым для хранения информации, относящейся к индивидуальным характеристикам двигателя (эксплуатационные регулировки, наработки, остаток ресурса). БЦВМ, ПЗУ, ПО, УВВ, ОЗУ, процессор, РПЗУ на чертеже не показаны.
Устройство работает следующим образом.
В РЭД 2 с помощью БД 1 измеряют положение РУД, частоту вращения турбокомпрессора, давление и температуру воздуха на входе в двигатель, температуру газов за турбиной газогенератора. По хранящимся в ПЗУ наперед заданным зависимостям формируют заданное значение частоты вращения турбокомпрессора как функцию от положения РУД, давления и температуры воздуха на входе в двигатель, задают предельное для данного двигателя значение температуры газов за турбиной газогенератора, сравнивают заданное значение частоты вращения турбокомпрессора и измеренное, сравнивают предельное для данного двигателя значение температуры газов за турбиной газогенератора (являющееся константой для всех двигателей данного типа с возможностью регулировки в ограниченном диапазоне при приемо-сдаточных испытаниях двигателя и в эксплуатации - при переходах зима-лето) и измеренное,
Полученные рассогласования селектируют по минимуму с сигналом АП (на чертеже не показан), работающего, например, по программе
Figure 00000001
где αРУД - положение РУД,
T*ВХ - температура воздуха на входе в двигатель,
P*ВХ - давление воздуха на входе в двигатель,
Pк - давление воздуха за компрессором двигателя,
nк - заданная частота вращения компрессора двигателя.
Отселектированную величину подают в ПИ-регулятор (на чертеже не показан), где формируют управляющее воздействие на дозатор расхода топлива, подаваемое через ЭГП 3 на дозатор 4, с помощью которого и осуществляется управление расходом топлива в камеру сгорания (КС) двигателя.
Одновременно с этим в РЭД 2:
- предельное ограничение по температуре газов за турбиной газогенератора корректируют по положению РУД (по известной зависимости, заданной, например, в Техническом задании на разработку системы управления, контроля и диагностирования двигательной установки самолета Ан-140 с двигателями ТВД ТВ3-117ВМА-СБМ1 и воздушным винтом АВ-140», ЗМКБ «Прогресс», г.Запорожье, 1998 г., приложение 20);
- по положению РУД формируют заданное значение мощности двигателя по наперед заданной характеристике, хранящейся в ПЗУ:
Figure 00000002
где Neзад - заданное значение мощности двигателя,
αРУД - положение РУД.
Для двигателя ТВ3-117ВМА-СБМ1, входящего в состав силовой установки самолета Ан-140, зависимость (2) приведена в таблице 1.
Таблица 1
αруд, градус 50 86 94 100
Neзад, л.с. 160 1750 2100 2500
- измеряют крутящий момент на выходном валу двигателя и частоту вращения СТ,
- рассчитывают располагаемую мощность двигателя как произведение величин крутящего момента и частоты вращения СТ,
- сравнивают заданное значение мощности двигателя и располагаемую мощность двигателя,
- полученное рассогласование селектируют по минимуму с сигналом АП.
Дополнительно в РЭД 2 по информации из БД 1 определяется режим взлета самолета. Например, в САУ СУ самолета Ан-140, в СУ которого входят два двигателя ТВ3-117ВМА-СБМ1 производства ОАО «Мотор сич» г.Запорожье, Украина, признак «Взлетный режим» формируется при одновременном выполнении следующих условий:
- αруд≥94° (положение РУД),
и
- отсутствие сигнала «Шасси обжато»,
и
- Vполета≥150 км/ч (скорость самолета),
и
- Neрасп≥2000 л.с. (располагаемая мощность двигателя).
В РЭД 2 на взлете самолета по положению РУД формируют минимально допустимое значение мощности (для двигателя ТВ3-117ВМА-СБМ1 это значение равно 2100 л.с.), сравнивают минимально допустимое значение мощности двигателя и располагаемую мощность двигателя, полученное рассогласование вместо отселектированной величины подают в ПИ-регулятор (на чертеже не показан).
При невозможности определения величин минимально допустимой или располагаемой мощности (например, при отказе одного из каналов измерений, обеспечивающих замер параметра, используемого в расчете заданной или располагаемой мощности) в РЭД 2 формируют как функцию от положения РУД и давления воздуха на входе в двигатель значение минимально допустимого давления воздуха за компрессором двигателя (для двигателя ТВ3-117 ВМА-СБМ1 это значение равно 15,5 кгс/см2), сравнивают минимально допустимое и измеренное значения давления воздуха за компрессором, полученное рассогласование подают в ПИ-регулятор (на чертеже не показан).
Т.о., за счет повышения качества управления расходом топлива в КС двигателя на взлете самолета обеспечивается работа двигателя на режимах с располагаемой мощностью, обеспечивающей нормальный взлет самолета. Это повышает надежность работы двигателя как элемента СУ самолета и безопасность самого самолета.

Claims (1)

  1. Способ управления расходом топлива в ГТД, заключающийся в том, что измеряют положение рычага управления двигателем (РУД), частоту вращения турбокомпрессора, давление и температуру воздуха на входе в двигатель, температуру газов за турбиной газогенератора, формируют заданное значение частоты вращения турбокомпрессора как функцию от положения РУД, давления и температуры воздуха на входе в двигатель, задают предельное для данного двигателя значение температуры газов за турбиной газогенератора, сравнивают заданное значение частоты вращения турбокомпрессора и измеренное, сравнивают предельное для данного двигателя значение температуры газов за турбиной газогенератора (являющееся константой для всех двигателей данного типа с возможностью регулировки в ограниченном диапазоне при приемосдаточных испытаниях двигателя и в эксплуатации - при переходах зима-лето) и измеренное, полученные рассогласования селектируют по минимуму с сигналом автомата приемистости (АП), отселектированную величину подают в пропорционально-интегральный (ПИ) регулятор, где формируют управляющее воздействие на дозатор расхода топлива, предельное ограничение по температуре газов за турбиной газогенератора корректируют по положению РУД, по положению РУД формируют заданное значение мощности двигателя, измеряют крутящий момент на выходном валу двигателя и частоту вращения свободной турбины (СТ), рассчитывают располагаемую мощность двигателя как произведение величин крутящего момента и частоты вращения СТ, сравнивают заданное значение мощности двигателя и располагаемую мощность двигателя, полученное рассогласование селектируют по минимуму с сигналом АП, отличающийся тем, что дополнительно на взлете самолета по положению РУД формируют минимально допустимое значение мощности, сравнивают минимально допустимое значение мощности двигателя и располагаемую мощность двигателя, полученное рассогласование вместо отселектированной величины подают в ПИ-регулятор, при невозможности определения величин минимально допустимой или располагаемой мощности формируют как функцию от положения РУД и давления воздуха на входе в двигатель значение минимально допустимого давления воздуха за компрессором двигателя, сравнивают минимально допустимое и измеренное значения давления воздуха за компрессором, полученное рассогласование подают в ПИ-регулятор.
RU2010154325/06A 2010-12-29 2010-12-29 Способ управления расходом топлива в газотурбинный двигатель RU2474712C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010154325/06A RU2474712C2 (ru) 2010-12-29 2010-12-29 Способ управления расходом топлива в газотурбинный двигатель

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010154325/06A RU2474712C2 (ru) 2010-12-29 2010-12-29 Способ управления расходом топлива в газотурбинный двигатель

Publications (2)

Publication Number Publication Date
RU2010154325A RU2010154325A (ru) 2012-07-10
RU2474712C2 true RU2474712C2 (ru) 2013-02-10

Family

ID=46848204

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010154325/06A RU2474712C2 (ru) 2010-12-29 2010-12-29 Способ управления расходом топлива в газотурбинный двигатель

Country Status (1)

Country Link
RU (1) RU2474712C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105715384A (zh) * 2014-12-05 2016-06-29 中国航空工业集团公司航空动力控制系统研究所 改善航空发动机加速性能的增量式pi控制器参数调整方法
RU2703581C1 (ru) * 2019-04-11 2019-10-21 Публичное Акционерное Общество "Одк-Сатурн" Способ останова двигателя при обрыве ротора турбины

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3095196B1 (fr) * 2019-04-17 2021-12-03 Airbus Helicopters Procédé et dispositif pour estimer la santé d’une installation motrice d’un aéronef pourvu d’au moins un moteur et d’un filtre colmatable filtrant de l’air en amont du moteur

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2228977B (en) * 1985-08-02 1990-11-21 Lucas Ind Plc Running control for a gas turbine engine
RU2282737C2 (ru) * 2004-09-20 2006-08-27 Открытое акционерное общество "СТАР" Способ регулирования газотурбинного двигателя со свободной турбиной
US20060213200A1 (en) * 2005-03-25 2006-09-28 Honeywell International, Inc. System and method for turbine engine adaptive control for mitigation of instabilities
RU2334889C2 (ru) * 2006-07-27 2008-09-27 Открытое акционерное общество "СТАР" Способ управления расходом топлива в турбовинтовую силовую установку
RU2334890C2 (ru) * 2006-10-05 2008-09-27 Открытое акционерное общество "СТАР" Устройство для управления газотурбинным двигателем
RU2337250C2 (ru) * 2006-12-08 2008-10-27 Открытое акционерное общество "Авиадвигатель" Способ управления газотурбинным двигателем на динамических режимах разгона и дросселирования

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2228977B (en) * 1985-08-02 1990-11-21 Lucas Ind Plc Running control for a gas turbine engine
RU2282737C2 (ru) * 2004-09-20 2006-08-27 Открытое акционерное общество "СТАР" Способ регулирования газотурбинного двигателя со свободной турбиной
US20060213200A1 (en) * 2005-03-25 2006-09-28 Honeywell International, Inc. System and method for turbine engine adaptive control for mitigation of instabilities
RU2334889C2 (ru) * 2006-07-27 2008-09-27 Открытое акционерное общество "СТАР" Способ управления расходом топлива в турбовинтовую силовую установку
RU2334890C2 (ru) * 2006-10-05 2008-09-27 Открытое акционерное общество "СТАР" Устройство для управления газотурбинным двигателем
RU2337250C2 (ru) * 2006-12-08 2008-10-27 Открытое акционерное общество "Авиадвигатель" Способ управления газотурбинным двигателем на динамических режимах разгона и дросселирования

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105715384A (zh) * 2014-12-05 2016-06-29 中国航空工业集团公司航空动力控制系统研究所 改善航空发动机加速性能的增量式pi控制器参数调整方法
RU2703581C1 (ru) * 2019-04-11 2019-10-21 Публичное Акционерное Общество "Одк-Сатурн" Способ останова двигателя при обрыве ротора турбины

Also Published As

Publication number Publication date
RU2010154325A (ru) 2012-07-10

Similar Documents

Publication Publication Date Title
US4622808A (en) Surge/stall cessation detection system
EP1256726B1 (en) Method and apparatus for continuous prediction, monitoring and control of compressor health via detection of precursors to rotating stall and surge
US5051918A (en) Gas turbine stall/surge identification and recovery
US8762025B2 (en) Method and system for controlling a gas turbine and a gas turbine including such a system
US20090113896A1 (en) Control apparatus and method for gas-turbine engine
US20020166322A1 (en) Process for control of boost pressure limitation of a turbocharger in an internal combustion engine as a function of the density of ambient air
US8880320B2 (en) Method for controlling the speed of an internal combustion engine supercharged by means of a turbocharger
CN103080505A (zh) 水或冰雹被吸入涡轮发动机的检测
US6506010B1 (en) Method and apparatus for compressor control and operation in industrial gas turbines using stall precursors
RU2474712C2 (ru) Способ управления расходом топлива в газотурбинный двигатель
US8794920B2 (en) Controlling blade pitch angle
RU2334889C2 (ru) Способ управления расходом топлива в турбовинтовую силовую установку
US11667392B2 (en) Method and system for operating a rotorcraft engine
US20150361869A1 (en) Multi-stage supercharging system and device and method for controlling the same
CN105143611A (zh) 燃气轮机和用于操作燃气轮机的方法
EP1323927B1 (en) Method for controlling a compressor of a turbocharger
US20220290612A1 (en) Fuel supply system and fuel supply method
RU2319025C1 (ru) Способ управления газотурбинным двигателем
JP2013160154A (ja) ガスタービン制御装置及び方法並びにプログラム、それを用いた発電プラント
RU2431051C1 (ru) Способ управления газотурбинной установкой
RU2489592C1 (ru) Способ управления расходом топлива в газотурбинный двигатель
RU2351807C2 (ru) Способ защиты газотурбинного двигателя от помпажа
RU2491527C2 (ru) Способ управления газотурбинным двигателем при его испытаниях на стенде
RU2310100C2 (ru) Способ защиты газотурбинного двигателя от возникновения неустойчивой работы компрессора
RU2468229C2 (ru) Способ контроля системы управления газотурбинным двигателем

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner