RU2471538C2 - Обработка хвостовых газов установки клауса с использованием оптимизированной последовательности катализаторов - Google Patents

Обработка хвостовых газов установки клауса с использованием оптимизированной последовательности катализаторов Download PDF

Info

Publication number
RU2471538C2
RU2471538C2 RU2010121782/05A RU2010121782A RU2471538C2 RU 2471538 C2 RU2471538 C2 RU 2471538C2 RU 2010121782/05 A RU2010121782/05 A RU 2010121782/05A RU 2010121782 A RU2010121782 A RU 2010121782A RU 2471538 C2 RU2471538 C2 RU 2471538C2
Authority
RU
Russia
Prior art keywords
catalyst
cobalt
molybdenum
oxides
stage
Prior art date
Application number
RU2010121782/05A
Other languages
English (en)
Other versions
RU2010121782A (ru
Inventor
Кристоф НЕДЕЗ
Эрик РУАЗЭН
Original Assignee
Ифп
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ифп filed Critical Ифп
Publication of RU2010121782A publication Critical patent/RU2010121782A/ru
Application granted granted Critical
Publication of RU2471538C2 publication Critical patent/RU2471538C2/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8603Removing sulfur compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8872Alkali or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/16Hydrogen sulfides
    • C01B17/164Preparation by reduction of oxidic sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/16Hydrogen sulfides
    • C01B17/165Preparation from sulfides, oxysulfides or polysulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/16Hydrogen sulfides
    • C01B17/167Separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20715Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20746Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20769Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/882Molybdenum and cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Catalysts (AREA)

Abstract

Изобретение относится к способу конверсии в H2S серосодержащих соединений, присутствующих в газе, содержащем H2S и серосодержащие соединения. Данный способ включает стадию приведения в контакт упомянутого газа с газом-восстановителем в присутствии катализатора гидрирования, содержащего по меньшей мере кобальт и молибден и в качестве носителя оксид алюминия, причем сумма содержаний кобальта и молибдена в пересчете на оксиды находится в интервале от 3 до 25 мас.%, а поверхность оксида алюминия составляет больше 140 м2/г. Способ далее включает стадию В приведения в контакт, по меньшей мере, одной фракции газа, выходящего со стадии А, с катализатором, содержащим, по меньшей мере, один щелочноземельный металл, по меньшей мере, одну легирующую добавку, выбранную из группы, состоящей из железа, кобальта и молибдена, и по меньшей мере одно соединение, выбранное из группы, состоящей из оксида титана и оксида циркония, причем катализатор стадии В) находится в виде либо сплошного, состоящего из оксидов материала, содержащего только упомянутые оксиды, либо находится в виде нанесенного оксида. Изобретение позволяет без необходимости повышения температуры реакции конверсировать серосодержащие соединения в H2S. 9 з.п. ф-лы, 2 табл.

Description

Существует множество способов превращения H2S в серу, среди которых наиболее распространенным является модифицированный процесс Клауса.
После отделения аминов газ, называемый "кислым" и содержащий H2S, направляют в печь, работающую, как правило, при 1100°C.
Добавка воздуха позволяет частично окислять присутствующий H2S до SO2 и таким образом получать после данной стадии термической обработки молярное соотношение H2S и SO2, равное 2.
После данной стадии приблизительно 70% серосодержащих соединений превращаются в элементарную серу, извлекаемую конденсацией.
После выхода с данной стадии газы после подогрева подают в последовательно расположенные каталитические реакторы (чаще всего в два или три реактора), предназначенные для обеспечения проведения реакции Клауса (1), а также реакций гидролиза COS (2) и CS2 (3), т.е. примесей, образовавшихся ранее.
2H2S + SO2 → 2H2O + 3/xSx (1)
COS + H2O → CO2 + H2S (2)
CS2 + 2H2O → CO2 + 2H2S (3)
Любая неполнота конверсии ведет к уменьшению степени извлечения серы и, следовательно, к повышению выбросов в атмосферу в конце технологической цепочки.
До сих пор в случае традиционного модифицированного процесса Клауса газы, выходящие со стадии катализа, затем сжигают с образованием SO2, который при этом выбрасывается в атмосферу.
В течение последних сорока лет для уменьшения вредных выбросов в атмосферу были разработаны способы конечной обработки, называемые обработкой хвостовых газов. В большинстве способов на выходе со стадии каталитического процесса Клауса требуется восстановление всех серосодержащих газов до H2S как перед осуществлением прямого окисления H2S до серы (4) (при температуре ниже или выше точки росы паров серы), так и перед рециркуляцией образовавшегося H2S в печь, находящуюся в начале технологической цепочки. При этом степень извлечения серы оказывается значительно улучшенной, а выбросы серосодержащих соединений в атмосферу уменьшенными.
H2S + 1/2O2 → H2O + 1/xSx (4)
Гидрирование серосодержащих соединений традиционно осуществляют с гетерогенным катализатором, работающим в большинстве случаев при температуре в интервале от 200 (для лучших катализаторов) до 300°C (для менее активных катализаторов). Более точно, катализатор обеспечивает протекание реакций гидрирования и/или гидролиза совокупности присутствующих серосодержащих соединений (в том числе следов паров серы) с получением H2S. Потерю катализатором активности на практике компенсируют за счет повышения температуры в реакторе. Однако такое повышение температуры ускоряет старение катализатора.
Используемые катализаторы, как правило, представляют собой нанесенные катализаторы CoMo.
Газ, выходящий после процесса Клауса, нагревают в потоке посредством горелки до температуры реакции.
Газы-восстановители (H2, CO), необходимые для осуществления реакций, также содержатся в потоке.
Ослабление активности катализатора гидрирования означает потерю эффективности использования газов-восстановителей, снижение степени конверсии CO и повышенное образование COS.
COS может образовываться в процессе Клауса, но также может образовываться на входе в реактор за счет взаимодействия CO и H2S по реакции (5).
H2S + CO → H2 + COS (5)
Так, например, концентрация COS может увеличиваться с момента входа в реактор гидрирования до уровня, соответствующего уровню, при котором может происходить сдвиг направления конверсии H2S и даже могут происходить другие нежелательные реакции.
Происходящие при этом реакции могут представлять собой реакции собственно гидрирования:
SO2 + 3H2 → 2H2O + H2S;
Sx + H2 → H2S;
CS2 + 2H2 → CH4 + H2S;
COS + 3H2 → CH3SH + H2O;
CH3SH + H2 → CH4 + H2S;
реакции гидролиза:
COS + H2O → CO2 + H2S;
CS2 + 2H2O → CO2 + 2H2S;
реакции конверсии монооксида углерода с водой или H2S:
H2O + CO → H2 + CO2;
H2S + CO → H2 + COS.
Такие реакции сдвига направления конверсии являются ключевыми для работы катализатора гидрирования. Понижение активности выражается в меньшей степени трансформации CO с образованием H2 и, следовательно, в увеличении концентрации CO и повышении содержания COS (в силу увеличения степени конверсии CO с H2S). Таким образом, потеря активности вызывает увеличение содержания COS.
ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ
В WO 98/07502 описана последовательность катализаторов. Катализатор гидрирования нанесен на алюмосиликат и легирован металлами из VI и/или VIII группы. Катализатор гидролиза содержит оксид алюминия или оксид титана, легированный при необходимости оксидом церия, циркония, оксидами или гидроксидами щелочных металлов, оксидами или гидроксидами редкоземельных элементов.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Изобретение относится к способу конверсии в H2S серосодержащих соединений, присутствующих в газе, содержащем H2S и серосодержащие соединения. Данный способ включает стадию A приведения в контакт упомянутого газа с газом-восстановителем в присутствии катализатора гидрирования, содержащего по меньшей мере кобальт и молибден и в качестве носителя оксид алюминия, причем сумма содержаний кобальта и молибдена в пересчете на оксиды находится в интервале от 3 до 25 мас.%, а поверхность оксида алюминия составляет больше 140 м2/г. Способ далее включает стадию B приведения в контакт по меньшей мере одной фракции газа, выходящего со стадии A, с катализатором, содержащим по меньшей мере одно соединение, выбранное из группы, состоящей из оксида титана и оксида циркония, и по меньшей мере одного щелочноземельного металла, причем содержание оксидов титана и/или циркония составляет больше 5% от массы катализатора, а катализатор стадии B) находится в виде либо сплошного, состоящего из оксидов материала, содержащего только упомянутые оксиды, либо находится в виде нанесенного оксида, при этом общее массовое содержание щелочноземельных металлов находится в интервале от 0,5 до 60 мас.%.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
В приведенном далее тексте группы химических элементов указаны согласно классификации CAS, описанной в "CRC Handbook of Chemistry and Physics", издательство CRC press, под редакцией D.R. Lide, 81-е издание, 2000-2001 гг.
Настоящее изобретение относится к способу конверсии в H2S серосодержащих соединений, присутствующих в газе, содержащем H2S и серосодержащие соединения, причем данный способ включает следующие стадии:
a) стадия A приведения в контакт упомянутого газа с газом-восстановителем, предпочтительно H2 и/или CO, в присутствии катализатора гидрирования, содержащего по меньшей мере кобальт, молибден и в качестве носителя оксид алюминия, причем сумма содержаний кобальта и молибдена в пересчете на оксиды находится в интервале от 3 до 25 мас.% и предпочтительно в интервале от 6 до 20 мас.%, а поверхность оксида алюминия составляет больше 140 м2/г и предпочтительно больше 180 м2/г и наиболее предпочтительно находится в интервале от 190 до 340 м2/г;
b) стадия B приведения в контакт по меньшей мере одной фракции газа, выходящего со стадии A, с катализатором, содержащим по меньшей мере одно соединение, выбранное из группы, состоящей из оксида титана и оксида циркония, и по меньшей мере одного щелочноземельного металла, предпочтительно кальция, причем содержание оксидов титана и/или циркония составляет больше 5% от массы катализатора, а катализатор стадии B) находится в виде либо сплошного, состоящего из оксидов материала, содержащего только упомянутые оксиды, либо находится в виде нанесенного оксида, при этом общее массовое содержание щелочноземельных металлов находится в интервале от 0,5 до 60 мас.%, предпочтительно в интервале от 1 до 50 мас.% и более предпочтительно в интервале от 2 до 35 мас.%.
Газ, содержащий H2S и серосодержащие соединения, подают на стадию A) в общем случае с содержанием H2S меньше 3 мол.%, содержанием SO2 меньше 2 мол.% и суммой содержаний всех других серосодержащих соединений меньше 1 мол.%. Содержание упомянутых компонентов предпочтительно составляет меньше 2, 1,5 и 1 мол.% соответственно. Более предпочтительно содержание упомянутых компонентов составляет меньше 1,5, 1 и 0,7 мол.% соответственно.
Фракцию газа, выходящего со стадии A), подают на стадию B) в общем случае с молярным соотношением H2S/SO2 меньше 5.
Оксиды титана и/или циркония могут быть при необходимости нанесены на оксид алюминия.
Катализатор стадии B) может содержать по меньшей мере оксид титана и по меньшей мере один щелочноземельный металл.
Кроме того, он может содержать по меньшей мере одну легирующую добавку, выбранную из группы, состоящей из групп VIIIB и VIB, причем общее массовое содержание легирующих добавок находится в интервале от 0,5 до 50%, предпочтительно в интервале от 1 до 30% и более предпочтительно в интервале от 1 до 15%. Легирующую добавку в общем случае выбирают из группы, состоящей из железа, кобальта и молибдена, и предпочтительно из группы, состоящей из кобальта и молибдена.
Настоящее изобретение относится к последовательности катализаторов, обеспечивающей в постоянных экспериментальных условиях улучшенный выход по превращению H2S.
Идея, в данном случае касающаяся гидрирования, состоит в том, чтобы лучшим образом превращать, в частности, COS, а также и CS2 без необходимости повышения температуры реакции, вызывающего более существенный расход энергии.
Таким образом, сущность изобретения состоит в том, чтобы применять, например, последовательность по меньшей мере двух катализаторов, размещенных в одном и том же каталитическом реакторе или в нескольких расположенных последовательно каталитических реакторах, позволяющих последовательно
a) осуществлять на стадии A реакции гидрирования серосодержащих соединений;
b) улучшить на стадии B конверсию некоторых малоактивных соединений, в частности COS и CS2.
Катализатор стадии B может находиться в любой известной форме, например, в виде порошка, шариков, экструдированных элементов, сплошных или измельченных материалов, и предпочтительно в виде экструдированных элементов цилиндрической или многодольной формы или в виде шариков.
По одному из вариантов, по которому в катализаторе стадии B) содержится оксид титана, к катализатору стадии B) добавляют сульфат кальция, бария, стронция или магния и предпочтительно сульфат кальция.
В случае формования катализатора стадии B) путем смешивания и последующей экструзии длина экструдированных элементов, отрезаемых в поперечном направлении, в общем случае находится в интервале от 0,5 до 8 мм и предпочтительно в интервале от 0,8 до 5 мм.
Для получения катализатора стадии B) элементы и возможные легирующие добавки наносят любым способом, известным специалистам в данной области техники. Например, можно осуществлять пропитку готового носителя элементами, подлежащими нанесению, или предшественниками таких элементов. Может быть применено также смешивание элементов или предшественников таких элементов с носителем в ходе его формования или после него. Введение легирующих добавок в носитель может быть осуществлено также соосаждением.
В случае нанесения пропиткой данную операцию осуществляют известным образом приведением в контакт носителя с одним или несколькими растворами, одним или несколькими золями и/или одним или несколькими гелями, содержащими по меньшей мере один элемент в виде оксида или соли или их предшественников. В общем случае операцию осуществляют погружением носителя в определенный объем раствора по меньшей мере одного предшественника по меньшей мере одной легирующей добавки.
В предпочтительном варианте осуществления введение легирующих элементов осуществляют "сухой" пропиткой.
В альтернативном варианте пропитку осуществляют с избытком раствора. Затем избытку раствора дают стечь.
Стадии A и B в общем случае осуществляют при температуре в интервале от 50 до 350°C, предпочтительно в интервале от 100 до 330°C, более предпочтительно в интервале от 130 до 310°C и наиболее предпочтительно в интервале от 170 до 300°C.
VVH (объемная скорость подачи) в общем случае находится в интервале от 300 до 5000 ч-1, предпочтительно в интервале от 500 до 4000 ч-1 и более предпочтительно в интервале от 1000 до 3500 ч-1. Давление в общем случае составляет меньше 0,5 МПа и предпочтительно меньше 0,2 МПа.
ПРИМЕРЫ
Катализатор A: CoMo
Катализатор A соответствует катализатору TG 107, реализуемому компанией Axens. Данный катализатор представляет собой свежий катализатор на основе кобальта и молибдена, нанесенных на оксид алюминия.
Его удельная поверхность равна 223 м2/г, а общий объем пор равен 46,2 мл/100 г.
Катализатор B: CoMo
Катализатор B соответствует катализатору TG 107, бывшему в промышленном использовании в реакторе в течение года. Его удельная поверхность равна 147 м2/г, а общий объем пор равен 42,1 мл/100 г.
Катализатор загрязнен 0,7% углерода и 9% серы.
Катализатор C: TiO 2 Ca
К суспензии оксида титана, полученного гидролизом и фильтрованием по способу традиционного сернокислотного разложения ильменита, добавляют суспензию оксида кальция для нейтрализации совокупности содержащихся сульфатов.
После этого суспензию сушат при 150°C в течение часа. Затем порошок перемешивают с добавлением воды и азотной кислоты. Полученную пасту экструдируют через фильеру с получением экструдированных элементов, имеющих цилиндрическую форму.
После высушивания при 120°C и прокаливания при 450°C экструдированные элементы имеют диаметр 3,5 мм, удельную поверхность 116 м2/г при общем объеме пор 36 мл/100 г.
Содержание TiO2 равно 88% при содержании CaSO4 11%, остальное составляют потери при прокаливании, дополняющие баланс до 100%.
Катализатор D: TiO 2 CaFe
Катализатор D получают "сухой" пропиткой кислым водным раствором сульфата железа катализатора C с последующим высушиванием при 120°C и прокаливанием при 350°C.
Массовая доля железа (в пересчете на Fe2O3) равна 2,5%.
Катализатор E: TiO 2 CaCoMo
Катализатор E получают "сухой" пропиткой раствором нитрата кобальта и гептамолибдата аммония катализатора C с последующим высушиванием при 120°C и прокаливанием при 450°C.
Массовое содержание кобальта и молибдена (в пересчете на CoO и MoO3) составляет 3,1 и 13,9% соответственно.
Катализатор F: TiO 2 , введенный пропиткой
Катализатор F получают "сухой" пропиткой оксида алюминия Claus CR-3S, реализуемого компанией Axens, оксихлоридом титана, получая таким образом после прокаливания при 500°C содержание TiO2 5% и удельную поверхность 267 м2/г.
Катализатор G: TiO 2 , введенный совместным гранулированием
Катализатор G получают ускоренным совместным гранулированием оксида алюминия и геля титана с получением после прокаливания при 450°C шариков с гранулометрическим составом в интервале от 3,15 до 6,3 мм, содержанием TiO2 27% и удельной поверхностью 281 м2/г.
Катализатор H: ZrO 2 , введенный пропиткой
Катализатор H получают "сухой" пропиткой оксида алюминия Claus CR-3S, реализуемого компанией Axens, ацетатом циркония, получая таким образом после прокаливания при 500°C содержание ZrO2 3% и удельную поверхность 287 м2/г.
Катализатор I: TiO 2 K
Катализатор I соответствует катализатору из чистого TiO2, модифицированного введением калия "сухой" пропиткой, так чтобы его конечное содержание соответствовало 1,7% K2O.
Катализатор J: NiMo
Экструдированные элементы диаметром 1,6 мм из аморфного алюмосиликата, содержащего 50% оксида алюминия, обрабатывают "сухой" пропиткой раствором нитрата никеля и гептамолибдата аммония. Далее осуществляют высушивание при 120°C и прокаливание при 450°C. Массовое содержание никеля и молибдена (в пересчете на NiO и MoO3) составляет 4,0 и 15% соответственно, при удельной поверхности 238 м2/г и общем объеме пор 62 мл/100 г.
Катализатор K: CoMo
Экструдированные элементы диаметром 1,6 мм из аморфного алюмосиликата, содержащего 50% оксида алюминия, обрабатывают "сухой" пропиткой раствором нитрата кобальта и гептамолибдата аммония. Далее осуществляют высушивание при 120°C и прокаливание при 450°C. Массовое содержание кобальта и молибдена (в пересчете на CoO и MoO3) составляет 3,0 и 14,1% соответственно, при удельной поверхности 251 м2/г и общем объеме пор 68 мл/100 г.
Результаты катализа
Сравнительные испытания катализа были проведены в следующих условиях: катализаторы A, B, J или K приводили в контакт с газовым потоком, содержавшим по объему 18% CO2, 0,6% H2S, 500 ч/млн COS, 0,3% SO2, 1,2% CO, 1,5% H2, 200 ч/млн CS2, 22% H2O, 800 ч/млн S8 и при необходимости 520 ч/млн CH3SH, при VVH 2000 ч-1 и температуре 220 или 240°C.
В том же самом реакторе после катализатора A, B, J или K размещали один из катализаторов от C до I, так чтобы объем второго катализатора соответствовал одной трети объема катализатора A, B, J или K.
Эксплуатационные характеристики катализа, достигнутые в условиях равновесия, приведены в таблицах I и II.
Таблица I
Конверсия, достигнутая в условиях равновесия, в отсутствие метилмеркаптана
Катализатор(ы) Температура (°C) Конверсия, %
SO2 COS CS2
A 220 83 70 40
A 240 100 74 83
B 220 67 -470 10
B 240 92 -410 33
B и C 220 85 -100 40
B и C 240 95 -35 55
B и D 240 95 5 40
B и E 220 98 41 71
B и I 220 67 -450 17
A и C 220 85 86 67
A и E 240 100 91 88
A и F 240 89 75 51
A и G 240 87 76 49
A и H 240 91 79 56
A и I 220 83 61 45
J и C 220 77 -110 37
K и C 220 79 -24 49
Отрицательное значение конверсии означает, что соответствующее соединение на выходе содержится в большем количестве, чем на входе в реактор.
Результаты испытаний катализа показывают, что последовательность J и C обеспечивает менее хорошую конверсию, чем последовательность K и C. К тому же последовательность K и C обеспечивает менее хорошую конверсию, чем последовательность A и C.
Таблица II
Конверсия, достигнутая в условиях равновесия, в присутствии метилмеркаптана
Катализатор(ы) Температура (°C) Конверсия, %
SO2 COS CS2 CH3SH
B 240 97 -295 -45 87
B и C 220 91 -45 -41 92
B и C 240 97 10 5 95
B и E 220 100 62 72 100
Отрицательное значение конверсии означает, что соответствующее соединение на выходе содержится в большем количестве, чем на входе в реактор.
Данные результаты испытаний катализа показывают, что последовательность B и E обеспечивает более хорошую конверсию, чем последовательность B и C. Также виден эффект влияния легирующей добавки CoMo на катализатор стадии B.

Claims (11)

1. Способ конверсии в H2S серосодержащих соединений, присутствующих в газе, содержащем H2S и серосодержащие соединения, причем данный способ включает следующие стадии:
a) стадия А приведения в контакт упомянутого газа с газом-восстановителем в присутствии катализатора гидрирования, содержащего по меньшей мере кобальт и молибден и в качестве носителя оксид алюминия, причем сумма содержаний кобальта и молибдена в пересчете на оксиды находится в интервале от 3 до 25 мас.%, а площадь поверхности оксида алюминия составляет больше 140 м2/г;
b) стадия В приведения в контакт по меньшей мере одной фракции газа, выходящего со стадии А, с катализатором, содержащим по меньшей мере один щелочноземельный металл, по меньшей мере одну легирующую добавку, выбранную из группы, состоящей из железа, кобальта и молибдена, и по меньшей мере одно соединение, выбранное из группы, состоящей из оксида титана и оксида циркония, причем содержание оксидов титана и/или циркония составляет больше 5% от массы катализатора, общее массовое содержание легирующих добавок находится в интервале от 0,5 до 50%, а общее массовое содержание щелочноземельных металлов находится в интервале от 0,5 до 60 мас.%, при этом катализатор стадии В) находится в виде либо сплошного, состоящего из оксидов материала, содержащего только упомянутые оксиды, либо находится в виде оксида на носителе.
2. Способ конверсии по п.1, в котором сумма содержаний кобальта и молибдена в пересчете на оксиды в катализаторе стадии А) находится в интервале от 6 до 20 мас.%.
3. Способ конверсии по п.1, в котором площадь поверхности оксида алюминия, являющегося носителем катализатора стадии А), превышает 180 м2/г.
4. Способ конверсии по п.1, в котором катализатор стадии В) содержит по меньшей мере оксид титана.
5. Способ конверсии по п.1, в котором катализатор стадии В) содержит только один щелочноземельный металл.
6. Способ конверсии по п.5, в котором щелочноземельный металл представляет собой кальций.
7. Способ конверсии по п.1, в котором одна или несколько легирующих добавок выбраны из группы, состоящей из кобальта и молибдена.
8. Способ конверсии по п.1, в котором общее массовое содержание легирующих добавок находится в интервале от 1 до 30%.
9. Способ конверсии по п.1, в котором упомянутые оксиды титана и/или циркония нанесены на оксид алюминия.
10. Способ конверсии по п.1, в котором катализатор этапа А содержит по меньшей мере кобальт и молибден на носителе из оксида алюминия, причем сумма содержаний кобальта и молибдена в пересчете на оксиды находится в интервале от 6 до 20 мас.%, и площадь поверхности носителя из оксида алюминия составляет больше 180 м2/г, а катализатор этапа В содержит кальций, по меньшей мере одну легирующую добавку, выбранную из группы, состоящей из кобальта и молибдена, где общее массовое содержание легирующих добавок находится в интервале от 1 до 30%, по меньшей мере оксид титана и/или циркония, указанные оксиды титана и/или циркония нанесены на оксид алюминия.
11. Способ конверсии по любому из пп.1-10, в котором газ, содержащий H2S и серосодержащие соединения, подают на стадию А) с содержанием H2S меньше 3 мол.%, содержанием SO2 меньше 2 мол.% и суммой содержаний всех других серосодержащих соединений меньше 1 мол.%.
RU2010121782/05A 2007-10-31 2008-10-29 Обработка хвостовых газов установки клауса с использованием оптимизированной последовательности катализаторов RU2471538C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0707705A FR2922783B1 (fr) 2007-10-31 2007-10-31 Traitements de gaz de queue d'une unite claus sur un enchainement optimise de catalyseurs
FR0707705 2007-10-31
PCT/FR2008/001524 WO2009095548A1 (fr) 2007-10-31 2008-10-29 Traitements de gaz de queue d'une unite claus sur un enchainement optimise de catalyseurs

Publications (2)

Publication Number Publication Date
RU2010121782A RU2010121782A (ru) 2011-12-10
RU2471538C2 true RU2471538C2 (ru) 2013-01-10

Family

ID=39358064

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010121782/05A RU2471538C2 (ru) 2007-10-31 2008-10-29 Обработка хвостовых газов установки клауса с использованием оптимизированной последовательности катализаторов

Country Status (6)

Country Link
US (1) US7988943B2 (ru)
EP (1) EP2212011B1 (ru)
CN (1) CN101842149B (ru)
FR (1) FR2922783B1 (ru)
RU (1) RU2471538C2 (ru)
WO (1) WO2009095548A1 (ru)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102380311B (zh) * 2010-09-01 2013-12-25 中国石油化工股份有限公司 汽油吸附脱硫再生烟气处理方法及其尾气加氢催化剂制法
US9677018B2 (en) * 2013-01-09 2017-06-13 Thyssenkrupp Industrial Solutions Ag Process for the production of synthesis gas from hard coal
CN110548517B (zh) * 2018-05-30 2022-02-01 中国石油天然气股份有限公司 二氧化硫选择性加氢制硫催化剂及其制备方法
CN109354149A (zh) * 2018-11-12 2019-02-19 昆明理工大学 一种含重金属污酸废水的处理方法
JP2023534281A (ja) * 2020-07-17 2023-08-08 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー ガス流に含まれる硫黄の触媒還元に使用するための触媒並びにそのような触媒の製造方法及び使用方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2105755A5 (ru) * 1970-09-21 1972-04-28 Shell Int Research
SU1314949A3 (ru) * 1980-04-23 1987-05-30 Сосьете Насьональ Елф Акитэн (Продюксьон) (Фирма) Способ очистки газов от сернистых соединений
RU1798298C (ru) * 1989-11-14 1993-02-28 Тбилисский Государственный Университет Им.И.А.Джавахишвили Способ получени серы
RU2177361C2 (ru) * 1996-08-22 2001-12-27 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Способ снижения общего содержания серы в газах, включающих сероводород и другие содержащие серу компоненты
EP1442781A1 (en) * 2003-01-31 2004-08-04 Jacobs Nederland B.V. Process for the removal of SO2 in a gas stream

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2501532B1 (fr) * 1981-03-13 1985-12-13 Rhone Poulenc Spec Chim Catalyseur et procede pour le traitement des gaz residuaires industriels contenant des composes du soufre
FR2625113B1 (fr) * 1987-12-23 1993-10-22 Rhone Poulenc Chimie Catalyseurs pour traitement des effluents gazeux et procede de traitement de ces effluents
JPH08503651A (ja) 1992-11-18 1996-04-23 アクゾ ノーベル ナムローゼ フェンノートシャップ 二酸化硫黄含有ガス流から二酸化硫黄を除去する方法
CN1047958C (zh) * 1994-10-19 2000-01-05 中国石油化工总公司 一种加氢脱硫催化剂
FR2830466B1 (fr) * 2001-10-09 2004-02-06 Axens Utilisation d'une composition a base de ti02 comme catalyseur pour realiser l'hydrolyse des cos et/ou d'hcn dans un melange gazeux
EA013217B1 (ru) * 2004-04-22 2010-04-30 Флуор Текнолоджиз Корпорейшн Установка для обработки отходящего газа и метод обработки отходящего газа
EP1948560A1 (en) * 2005-11-04 2008-07-30 Shell Internationale Research Maatschappij B.V. Process for producing a purified gas stream

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2105755A5 (ru) * 1970-09-21 1972-04-28 Shell Int Research
SU1314949A3 (ru) * 1980-04-23 1987-05-30 Сосьете Насьональ Елф Акитэн (Продюксьон) (Фирма) Способ очистки газов от сернистых соединений
RU1798298C (ru) * 1989-11-14 1993-02-28 Тбилисский Государственный Университет Им.И.А.Джавахишвили Способ получени серы
RU2177361C2 (ru) * 1996-08-22 2001-12-27 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Способ снижения общего содержания серы в газах, включающих сероводород и другие содержащие серу компоненты
EP1442781A1 (en) * 2003-01-31 2004-08-04 Jacobs Nederland B.V. Process for the removal of SO2 in a gas stream

Also Published As

Publication number Publication date
EP2212011A1 (fr) 2010-08-04
WO2009095548A1 (fr) 2009-08-06
EP2212011B1 (fr) 2013-04-24
CN101842149B (zh) 2014-03-26
RU2010121782A (ru) 2011-12-10
US20100284879A1 (en) 2010-11-11
CN101842149A (zh) 2010-09-22
US7988943B2 (en) 2011-08-02
FR2922783A1 (fr) 2009-05-01
FR2922783B1 (fr) 2010-11-19

Similar Documents

Publication Publication Date Title
Centi et al. Catalytic decomposition of N2O over noble and transition metal containing oxides and zeolites. Role of some variables on reactivity
CA1167828A (fr) Catalyseurs et procede d'oxydation de l'hydrogene sulfure et/ou des composes organiques du soufre en anhydride sulfureux
CN102357364B (zh) 用于烟气选择性还原脱硫的活性炭基催化剂的制备
EP0115449B1 (fr) Catalyseur d'oxydation de l'hydrogène sulfuré
RU2471538C2 (ru) Обработка хвостовых газов установки клауса с использованием оптимизированной последовательности катализаторов
FR2481254A1 (fr) Procede pour l'incineration catalytique de gaz residuaires renfermant en faible concentration au moins un compose du soufre choisi parmi cos, cs2, et les mercaptans et eventuellement au moins un membre du groupe forme par h2s, so2, soufre vapeur et/ou vesiculaire
CN104837555B (zh) 用于同时制造氢的硫回收方法的催化剂、其制造方法以及使用该催化剂的同时制造氢的硫回收方法
EP0272979A1 (fr) Procédé pour le traitement de gaz industriels contenant des composés du soufre
CN1212668A (zh) 选择性氧化硫化合物成为元素硫的催化剂及其制备方法和选择性氧化硫化合物成为元素硫的方法
US5653953A (en) Process for recovering elemental sulfur by selective oxidation of hydrogen sulfide
CA3103962C (en) Catalyst for catalytic oxidative cracking of hydrogen sulphide with concurrent hydrogen production
GB2027683A (en) Process for purifying a hydrogen sulphide containing gas
US5597546A (en) Selective oxidation of hydrogen sulfide in the presence of bismuth-based catalysts
CN1197766C (zh) 通过催化法和在气相中将气体中的低浓度h2s直接氧化为硫的方法
FR2632874A1 (fr) Nouveau catalyseur pouvant etre employe dans un procede de reduction selective des oxydes d'azote
RU2288888C1 (ru) Катализатор для селективного окисления сероводорода, способ его получения и способ селективного окисления сероводорода до элементарной серы
RU2735774C2 (ru) Катализатор гидролиза с высоким содержанием металлов для каталитического восстановления серы в газовом потоке
RU2369436C1 (ru) Катализатор, способ его приготовления и способ очистки газовых выбросов от диоксида серы
UA123236C2 (uk) Спосіб видалення органічних сполук сірки з багатих на водень газів
US4244937A (en) Sulfur dioxide oxidation catalyst and process
CN1118710A (zh) 处理含硫化合物气体的催化剂,含硫化合物气体的处理方法及其用途
RU2405738C2 (ru) Способ получения серы и способ приготовления катализатора для получения серы
JP2020127935A (ja) 二酸化炭素を主成分とするガス中の硫黄酸化物の除去方法
RU2644767C2 (ru) Способ получения акролеина из глицерина
RU2533140C2 (ru) Способ получения серы каталитическим окислением сероводорода