RU2454560C2 - Микродвигатель, применяемый прежде всего в качестве двигателя управления положением, двигатель малой тяги, содержащий такие микродвигатели, и способ изготовления микродвигателя - Google Patents

Микродвигатель, применяемый прежде всего в качестве двигателя управления положением, двигатель малой тяги, содержащий такие микродвигатели, и способ изготовления микродвигателя Download PDF

Info

Publication number
RU2454560C2
RU2454560C2 RU2008103481/06A RU2008103481A RU2454560C2 RU 2454560 C2 RU2454560 C2 RU 2454560C2 RU 2008103481/06 A RU2008103481/06 A RU 2008103481/06A RU 2008103481 A RU2008103481 A RU 2008103481A RU 2454560 C2 RU2454560 C2 RU 2454560C2
Authority
RU
Russia
Prior art keywords
sections
substrate
micromotor
substrate material
combustion chamber
Prior art date
Application number
RU2008103481/06A
Other languages
English (en)
Other versions
RU2008103481A (ru
Inventor
Алоис ФРИДБЕРГЕР (DE)
Алоис ФРИДБЕРГЕР
Георг ШУЛЬТЕ (DE)
Георг Шульте
Герхард МЮЛЛЕР (DE)
Герхард Мюллер
Димитрий ТЕЛИЧКИН (DE)
Димитрий ТЕЛИЧКИН
Штефан ЦИГЕНХАГЕН (DE)
Штефан ЦИГЕНХАГЕН
Original Assignee
Астриум Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Астриум Гмбх filed Critical Астриум Гмбх
Publication of RU2008103481A publication Critical patent/RU2008103481A/ru
Application granted granted Critical
Publication of RU2454560C2 publication Critical patent/RU2454560C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/42Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof using liquid or gaseous propellants
    • F02K9/60Constructional parts; Details not otherwise provided for
    • F02K9/62Combustion or thrust chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/80Size or power range of the machines
    • F05D2250/82Micromachines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49346Rocket or jet device making

Abstract

Изобретение относится к микродвигателям (1), применяемым в качестве двигателя управления положением спутника. Микродвигатель содержит камеру (2) сгорания из подложки (3), выполненной, прежде всего, из электропроводящего материала, имеющую топливоподводящее отверстие и отверстие для выпуска газа в примыкающее к камере (2) сгорания реактивное сопло. Кроме того, микродвигатель содержит первый резистивный нагреватель, расположенный в камере (2) сгорания. Микродвигатель отличается тем, что первый резистивный нагреватель (8) придан катализатору (7), предназначенному для разложения топлива, вводимого в камеру (2) сгорания, с возможностью нагрева первым резистивным нагревателем (8) первых участков (9) материала подложки, необязательно выполненных из материала подложки и образующих катализатор (7), до заданной температуры или заданного диапазона температур. Изобретение обеспечивает повышение эффективности работы уменьшение энергопотребления микуродвигателя. 3 н. и 32 з.п. ф-лы, 14 ил.

Description

Область техники, к которой относится изобретение
Изобретение относится к микродвигателю, применяемому прежде всего в качестве двигателя управления положением, содержащему камеру сгорания из подложки, выполненной, прежде всего, из электропроводящего материала, имеющую топливоподводящее отверстие и отверстие для выпуска газа в примыкающее к камере сгорания реактивное сопло. Кроме того, микродвигатель содержит первый резистивный нагреватель, расположенный в камере сгорания. Изобретение относится также к двигателю малой тяги. Наконец, изобретение относится также к способу изготовления микродвигателя, содержащего камеру сгорания, имеющую топливоподводящее отверстие и отверстие для выпуска газа в примыкающее к камере сгорания реактивное сопло, и содержащую первый резистивный нагреватель, расположенный в камере сгорания и приданный катализатору.
Уровень техники
Микродвигатели, используемые в качестве двигателей управления положением спутников, представляют собой, например, однокомпонентные двигатели на гидразине. Обычно такие микродвигатели снабжены нагревателем, выполненным, например, в виде резистивного нагревателя. Нагреватель, как правило, монтируется снаружи на камере сгорания или разложения. Нагреватель нагревает камеру сгорания до определенной пусковой температуры за счет передачи тепла через стенки камеры. Недостатком нагревателя, расположенного вне камеры сгорания, является неравномерное распределение температуры внутри камеры сгорания. Кроме того, инертность процесса теплопередачи обусловливает сравнительно высокие затраты времени, а следовательно, и пропорциональный им расход электроэнергии. Поскольку располагаемое количество электроэнергии на спутнике ограничено, необходимо стремиться к ее максимально экономному расходованию.
Поэтому известны решения, предусматривающие размещение нагревателя внутри камеры сгорания. Такое решение описано, например, в статье "Systems Design and Performance of Hot and Cold Supersonic Microjets", Robert L. Bayt, Kenneth S. Breuer, AIAA-2001-0721, 39th AIAA Aerospace Finances Meeting and Exhibit, 8-10 января 2001, г.Рино, штат Невада.
Раскрытие изобретения
Задача настоящего изобретения состоит в том, чтобы предложить микродвигатель, прежде всего работающий на гидразине однокомпонентный двигатель для управления положением спутника, в котором с малыми затратами можно дополнительно повысить эффективность и уменьшить энергопотребление. Другая задача изобретения заключается в разработке способа изготовления такого микродвигателя.
Решение этих задач охарактеризовано признаками независимых пунктов формулы изобретения. Частные варианты осуществления изобретения охарактеризованы в зависимых пунктах формулы изобретения.
Вышеупомянутый микродвигатель отличается тем, что первый резистивный нагреватель, расположенный в камере сгорания, придан катализатору для разложения топлива, вводимого в камеру сгорания, с возможностью нагрева первым резистивным нагревателем первых участков материала подложки, необязательно выполненных из материала подложки и образующих катализатор, до заданной температуры или заданного диапазона температур. Этим достигается равномерное распределение температуры в катализаторе при малой инертности теплопередачи. Это позволяет нагревать катализатор до требуемой температуры или требуемого диапазона температур за сравнительно короткое время. Расход необходимой для этого электроэнергии незначителен.
Первый резистивный нагреватель может быть образован первыми участками подложки самого катализатора. В качестве материала для подложки и участков материала подложки можно рассматривать, прежде всего, кремний или карбид кремния (SiC). В другом варианте подложка может быть выполнена из сапфира, причем участки материала подложки в этом варианте могут быть выполнены, например, из керамики.
Качество разложения топлива зависит от температуры катализатора. Слишком низкая (пусковая) температура на катализаторе ведет к его быстрой деградации (потере свойств), т.е. к механическому разрушению катализатора. Чтобы избежать этого, камеры сгорания каталитических микродвигателей оснащаются первым резистивным нагревателем. Перед каждым пуском катализатор нагревается до требуемой, минимально допустимой рабочей температуры. Путем прямого использования электрических свойств катализатора, когда сам катализатор представляет первый резистивный нагреватель, можно уменьшить потери, связанные с одновременным нагревом камеры сгорания. Это позволяет оптимизировать электроэнергетический баланс спутника. Помимо этого можно увеличить срок службы катализатора.
Целесообразно по меньшей мере частично покрывать первые участки материала подложки материалом катализатора и выполнять первый резистивный нагреватель в виде слоя катализатора. В качестве материала катализатора можно использовать, например, платину. При этом также целесообразно, чтобы между слоем катализатора и первыми участками материала подложки был расположен, по меньшей мере частично, изолирующий слой. Изолирующий слой позволяет выполнить слой катализатора как первый резистивный нагреватель.
Эффективность катализатора еще более повышается, если первые участки материала подложки в камере сгорания имеют по меньшей мере частично пористую структуру поверхности. Пористость можно получить электрохимическим методом с использованием электролита. Прохождение тока через сами первые участки материала подложки при определенных обстоятельствах затруднительно, если они настолько пористы, что образуются отдельные зерна, уже не соприкасающиеся друг с другом. Это необходимо учитывать при создании пористой структуры поверхности первых участков материала подложки. Пористость можно регулировать путем выбора концентрации электролита, и/или плотности тока, и/или удельного сопротивления материала подложки. В качестве электрохимического метода можно использовать известный процесс травления, причем первые участки материала подложки становятся пористыми полностью или на всей их поверхности.
В одном из вариантов осуществления изобретения внутри камеры сгорания между катализатором и отверстием для выпуска газа расположен второй резистивный нагреватель, предназначенный для нагрева газа, выходящего из катализатора. Это выгодно с точки зрения повышения к.п.д. двигателя. Газ, покидающий катализатор, нагревается еще в камере сгорания, т.е. перед входом в реактивное сопло. При этом дополнительный подогрев газа осуществляется не снаружи, а внутри камеры сгорания вторым резистивным нагревателем. При этом второй резистивный нагреватель может быть образован вторыми участками материала подложки, необязательно, т.е. в частном случае, выполненными из материала подложки. При этом ток проходит через вторые участки материала подложки, выполненные столбчатой формы, т.е. в виде столбиков.
Другой вариант осуществления изобретения предусматривает, что первые и/или вторые участки материала подложки выполнены механическим или химическим методом из материала подложки камеры сгорания с образованием дна камеры сгорания, из которого первые и/или вторые участки материала подложки выступают в виде столбиков внутрь объема камеры сгорания. При этом целесообразно, чтобы расстояние между первыми столбиками первых участков материала подложки отличалось от расстояния между вторыми столбиками вторых участков материала подложки, прежде всего было меньше.
Объем камеры сгорания ограничен покровным слоем камеры сгорания, который примыкает к первым и/или вторым участкам материала подложки. Покровный слой целесообразно выполнять из структурированной пластины типа "кремний на изоляторе" (КНИ-пластина), причем посредством покровного слоя обеспечен электрический контакт первого и/или второго резистивного нагревателя. Для соединения покровного слоя с материалом подложки можно использовать, например, прямое сращивание, пайку эвтектическим сплавом, стеклоприпой, клеи на основе керамики или обычную пайку. Предусмотренное электрическое подключение (электрический контакт) первого и второго резистивного нагревателя через покровный слой позволяет использовать первый и второй резистивный нагреватель независимо друг от друга.
КНИ-пластина состоит из кремниевой подложки, расположенного на ней изолирующего слоя диоксида кремния SiO2 и покрывающего его кремниевого слоя. КНИ-пластину можно структурировать известными методами микросистемной техники и соединять с основной структурой, т.е. с уже обработанной подложкой микродвигателя. При этом можно без коротких замыканий обеспечить контакт как первого, так и второго резистивного нагревателя и управлять ими независимо друг от друга. Вместе с тем, гарантируется достаточная механическая устойчивость.
Проводимость первых и/или вторых участков материала подложки можно регулировать путем введения соответствующих добавок в материал подложки. Это позволяет регулировать сопротивление. При высоких рабочих температурах возникает собственная проводимость, так что влияние введения добавок все больше отступает на задний план. Проводимость в этом случае определяется прежде всего геометрической формой, т.е. поперечным сечением, высотой и числом первых и/или вторых участков материала подложки.
В другом варианте осуществления изобретения покровный слой имеет проходящий по замкнутому контуру краевой участок, по меньшей мере частично расположенный в плоскости монтажа, в которой покровный слой соединен с подложкой, и охватываемую краевым участком функциональную зону, заглубленную (т.е. смещенную назад) относительно плоскости монтажа, причем в функциональной зоне расположена слоистая структура, состоящая из изолирующего слоя, металлизирующего слоя и пассивирующего слоя и не выступающая над плоскостью монтажа. Это обеспечивает простоту и надежность установления контакта с образованным металлизирующим слоем первым и/или вторым резистивным нагревателем. Поскольку при определенных обстоятельствах может образоваться канал, соединяющий внутреннее пространство камеры сгорания с внешней средой, этот канал целесообразно полностью заполнить материалом пассивирующего слоя, после чего зашлифовать и отполировать всю структуру, чтобы получить ровную поверхность. После этого можно выполнять соединение покровного слоя с подготовленной подложкой.
Еще в одном варианте осуществления изобретения в проходящем по замкнутому контуру краевом участке предусмотрен токоподводящий участок, являющийся частью функциональной зоны, причем промежуток между пассивирующим слоем и плоскостью монтажа заполнен пассивирующим материалом или пастой-наполнителем. При этом пасту-наполнитель можно вводить через отверстие в материале подложки. Это предпочтительно делать после соединения покровного слоя и подложки. Кроме того, камера сгорания имеет при этом замкнутый объем, причем предусмотрены только подвод топлива и выпуск газа.
В другом варианте осуществления изобретения первый и/или второй резистивный нагреватель образованы меандровой проводниковой структурой из металла, расположенной, прежде всего, на покровном слое.
Далее могут быть предусмотрены первое средство для регистрации первого сопротивления первого резистивного нагревателя и/или второе средство для регистрации второго сопротивления второго резистивного нагревателя, причем первое сопротивление и/или второе сопротивление вводятся в третье средство для определения первой температуры по первому сопротивлению и второй температуры по второму сопротивлению. Таким путем можно измерять температуру как катализатора, так и нагревателя для дополнительного подогрева газа по сопротивлению первого и, соответственно, второго резистивного нагревателя. Это делается просто путем измерения тока и напряжения. Таким образом можно снизить издержки производства, так как можно обойтись без установки датчиков температуры в камере сгорания.
За пределами камеры сгорания может быть дополнительно установлен датчик температуры, связанный с третьим средством для компенсации дрейфа первого и второго сопротивления. В любой момент, когда двигатель не работает, т.е. температура камеры сгорания равна эталонной температуре датчика, можно выполнить коррекцию смещения, так как в этом случае оба значения температуры должны быть равны.
В другом варианте осуществления изобретения предусмотрен третий нагреватель, прежде всего резистивный нагреватель, приданный реактивному соплу, что позволяет повысить мощность микродвигателя. Третий нагреватель может быть образован на покровном слое меандровой проводниковой структурой из металла или электропроводящего материала.
Как уже говорилось выше, в качестве материала подложки используется кремний или карбид кремния. Как кремнию, так и карбиду кремния можно придать пористость. В случае карбида кремния все описанные технологии соединения также применимы.
При использовании в качестве материала подложки сапфира вместо кремния или карбида кремния достигается более высокая температуростойкость. Сапфир также позволяет использовать основанные на сцеплении процессы для соединения покровного слоя с подложкой. Однако недостатком является более трудная обработка, так как грубые структуры необходимо создавать механическим путем. Для получения катализатора большой площади в камеру сгорания перед соединением пластин необходимо внести соответствующую пористую структуру, покрытую материалом катализатора, которая может быть реализована, например, пористой керамикой с платиновым покрытием.
Объектом изобретения является также двигатель малой тяги, содержащий множество микродвигателей, выполненных описанным выше образом. При этом множество микродвигателей может быть расположено в виде матрицы.
Предлагаемый в изобретении способ изготовления описанного выше микродвигателя этой категории включает в себя следующие операции: подготавливают подложку, прежде всего из кремния, карбида кремния или сапфира; в подложке механическим или химическим методом формируют первые и/или вторые участки материала подложки с образованием дна камеры сгорания, из которого в виде столбиков внутрь объема камеры сгорания выступают первые и/или вторые участки материала подложки; первые участки материала подложки по меньшей мере частично покрывают материаломкатализатора; подготавливают структурированный покровный слой, прежде всего в виде подложки типа "кремний на изоляторе", с металлической структурой; на структурированную подложку накладывают покровный слой и соединяют их, после чего объем камеры сгорания ограничен ее покровным слоем, а металлическая структура расположена вблизи первых и/или вторых участков материала подложки. Предлагаемый в изобретении способ позволяет просто и экономично изготавливать нагреватель катализатора, а также необязательно нагреватель для дополнительного нагрева газа внутри камеры сгорания микродвигателя.
Поверхности первых участков материала подложки перед нанесением покрытия из материала катализатора целесообразно по меньшей мере частично придавать пористую структуру путем обработки этой поверхности электролитом заданной концентрации или нанесением на нее пористого покрытия.
Между первыми участками материала подложки и материалом катализатора целесообразно наносить изолирующий слой, что позволяет использовать сам материал катализатора в качестве резистивного нагревателя.
С помощью металлической структуры, нанесенной на покровный слой, обеспечивают электрическое подключение первых и/или вторых участков материала подложки или материала катализатора на первых участках материала подложки. Применение технологических приемов, известных из микросистемной техники, позволяет изготавливать предлагаемый в изобретении микродвигатель просто и эффективно.
Покровный слой и подложку можно соединять прямым сращиванием, пайкой эвтектическим сплавом, стеклоприпоем, клеями на основе керамики или обычной пайкой. Прямое сращивание целесообразно использовать, если покровный слой и подложка или первые и/или вторые участки материала подложки выполнены из кремния. При применении стеклоприпоя необходимо учитывать температуростойкость. При использовании клея на основе керамики необходимо учитывать газонепроницаемость. При пайке, прежде всего активной пайке, следует, кроме того, учитывать высокий коэффициент теплового расширения металла.
Еще в одном варианте осуществления способа в покровном слое путем съема материала формируют проходящий по контуру краевой участок, по меньшей мере частично расположенный в плоскости монтажа, в которой покровный слой соединяют с подложкой, с образованием охватываемой краевым участком функциональной зоны, заглубленной относительно плоскости монтажа. Такой метод целесообразно использовать, чтобы, например, обеспечить контакт резистивного нагревателя в виде нанесенного на покровный слой металлического меандра, не затрудняя соединение покровного слоя и подложки, например, путем прямого сращивания или пайки эвтектическим сплавом, но при этом сохраняя герметичность камеры сгорания. Этот метод можно применять, чтобы применять структуры, аналогичные меандровым нагревателям, в виде датчиков температуры и использовать данные измерений температуры для контроля рабочего процесса. Для этого в процессе съема материала можно вытравить углубление глубиной несколько микрометров, причем широкая внешняя кромка, не подвергающаяся травлению, образует краевой участок, который в дальнейшем соединяется с подложкой.
В функциональной зоне целесообразно создать слоистую структуру, состоящую из изолирующего слоя, металлизирующего слоя и пассивирующего слоя, таким образом, чтобы слоистая структура не выступала над плоскостью монтажа. В процессе съема материала на проходящем по замкнутому контуру краевом участке формируют токоподводящий участок, являющийся частью функциональной зоны, причем промежуток между пассивирующим слоем и плоскостью монтажа заполняют пассивирующим материалом. После нанесения материала пассивирующего слоя покровный слой можно зашлифовать и отполировать, чтобы получить ровную поверхность и, в конечном итоге, обеспечить сцепление с подложкой.
При выполнении еще одной технологической операции токоподводящий участок после соединения покровного слоя и подложки заполняют пастой-наполнителем, причем пасту-наполнитель вводят через отверстие в покровном слое или в подложке в зоне токоподводящего участка. Этот прием позволяет сначала соединить покровный слой с подложкой и только после этого герметизировать камеру сгорания.
Далее на тыльную (обратную) сторону подложки может быть нанесен электроизолирующий пассивирующий слой, имеющий проем только в зоне первых участков материала подложки. Это ограничивает прохождение тока через тыльную сторону только этим проемом, вследствие чего во время электрохимического процесса пористость поверхности придается не всей лицевой стороне, а предпочтительно только зоне первых участков материала подложки, т.е. столбикам.
Краткое описание чертежей
Ниже изобретение более подробно поясняется на примерах его осуществления с привлечением чертежей, на которых показано:
на фиг.1 - вид микродвигателя в перспективе,
на фиг.2 - вид сбоку в разрезе участка структурированной подложки микродвигателя,
на фиг.3 - вид сверху половины микродвигателя,
на фиг.4 - вид в разрезе подложки, показанной на фиг.2, с нанесенным на нее покровным слоем,
на фиг.5 - покровный слой в виде неструктурированной пластины типа "кремний на изоляторе" (КНИ-пластины),
на фиг.6 - КНИ-пластина, показанная на фиг.5, со структурированием поверхности,
на фиг.7 - КНИ-пластина, показанная на фиг.6, на подложке, показанной на фиг.2,
на фиг.8 - вид в разрезе части микродвигателя, иллюстрирующий расположенные на покровном слое резистивные нагреватели,
на фиг.9 - вид сверху покровного слоя, структурированного и снабженного металлизирующим слоем,
на фиг.10 - вид в разрезе покровного слоя, показанного на фиг.9,
на фиг.11 - покровный слой, показанный на фиг.9 и 10 и нанесенный на подложку,
на фиг.12а - покровный слой, соответствующий показанному на фиг.9,
на фиг. 12б - подложка с выемкой,
на фиг.12в - схема микродвигателя после соединения покровного слоя, показанного на фиг.12а, и подложки, показанной на фиг.12б.
Осуществление изобретения
Типичная конструкция микродвигателя 1, используемого в двигателе управления положением спутника, показана в перспективе на фиг.1. В подложке 3 выполнена продолговатая камера 2 сгорания. Внутри камеры 2 сгорания сформированы участки материала подложки, выступающие примерно перпендикулярно из дна 13 во внутреннее пространство камеры 2 сгорания (называемое также объемом камеры сгорания) и образующие катализатор 7. На своем нижнем конце, изображенном на чертеже слева, камера 2 сгорания заканчивается отверстием 5 для выпуска газа, примыкающим к расширяющемуся реактивному соплу 6. На другом конце, противоположном отверстию 5 для выпуска газа, камера 2 сгорания имеет не обозначенное на чертеже топливоподводящее отверстие, соединенное с так называемой распределительной камерой (plenum). Для создания пространственно ограниченного объема камеры сгорания структурированная описанным способом подложка 3 снабжается покровным слоем. Подложка 3 может быть выполнена, например, из полупроводникового материала, такого как кремний или карбид кремния. В этом случае имеется возможность формировать участки материала подложки катализатора 7 из материала подложки известными микромеханическими или химическими методами. В другом варианте в качестве материала для подложки 3 можно использовать сапфир. При этом, в зависимости от вида приданного катализатору 7 резистивного нагревателя, может быть целесообразным выполнение первых участков материала подложки из другого электропроводящего материала или их покрытие материалом каталитического действия.
На фиг.2 в поперечном сечении показан разрез участка камеры 2 сгорания, образованного структурированной подложкой 3. Вблизи топливоподающего отверстия 4 из дна 13 подложки 3 в виде столбиков выдаются участки 9 материала подложки. Участки 9 материала подложки имеют по меньшей мере частично пористую структуру поверхности, причем пористость создается электромеханическим методом с использованием электролита. Благодаря этому пористость регулируется выбором концентрации электролита и/или плотности тока и/или удельного сопротивления материала подложки, причем последнее определяется введением добавок в материал подложки или в участки материала подложки. На тыльную сторону подложки 3 можно нанести электрически изолирующий пассивирующий слой, имеющий проем только в зоне первых участков 9 материала подложки. Это ограничивает прохождение тока по тыльной стороне этим проемом, поэтому при электрохимическом процессе пористая структура поверхности образуется не на всей лицевой стороне, а предпочтительно в зоне первых участков 9 материала подложки, т.е. в зоне столбиков.
Участки 9 материала подложки расположены на одинаковом расстоянии друг от друга, причем каждый промежуток между столбиками имеет условное обозначение 14. В катализаторе 7 происходит разложение вводимого через топливоподводящее отверстие 4 топлива, например гидразина N2H4. При этом качество разложения топлива зависит от температуры катализатора 7. Поскольку слишком низкая температура на катализаторе ведет к быстрой потере катализатором 7 своих свойств, ему придан резистивный нагреватель, нагревающий катализатор 7 до требуемой минимально допустимой рабочей температуры. С этой целью, как поясняется в последующем описании, можно пропускать ток через сами участки 9 материала подложки, чтобы резистивный нагреватель образовывался участками 9 материала подложки. В другом варианте осуществления изобретения резистивный нагреватель может быть образован материалом катализатора, например, платиной, наносимым в виде покрытия на участки 9 материала подложки. В этом случае, в зависимости от проводимости участков материала подложки, целесообразно предусмотреть изоляцию между участками 9 материала подложки и материалом катализатора.
В камере 2 сгорания, кроме того, выполнены участки 12 материала подложки, расположенные на одинаковом расстоянии друг от друга, причем промежуток между столбиками обозначен позицией 15. При этом расстояние 15 между участками 12 материала подложки больше, чем расстояние 14 между первыми участками 9 материала подложки. В соответствии с приведенным выше описанием через участки 12 материала подложки также пропускают ток для образования второго резистивного нагревателя. При этом получают нагреватель 10 для дополнительного нагрева газа, расположенный между катализатором 7 и не показанным на фиг.2 отверстием для выпуска газа. Это позволяет повысить к.п.д. микродвигателя 1. Дополнительный нагрев газа осуществляется перед входом газа в реактивное сопло. При этом второй резистивный нагреватель расположен внутри камеры 2 сгорания. Еще одним преимуществом является возможность повышения мощности двигателя.
Для получения замкнутого объема камеры сгорания на подложку, показанную на фиг.2, накладывают покровный слой 16, как показано, например, на фиг.4. При этом предпочтительно, чтобы в покровный слой 16 были вмонтированы элементы для электрического подключения первого 8 и второго 11 резистивных нагревателей. Кроме того, на фиг.4 показано направление подачи топлива (стрелка А) и направление выпуска газа (стрелка В).
На фиг.3 показан вид сверху половины микродвигателя. При этом в камере сгорания изображены только катализатор 7, образованный участками 9 материала подложки, и впрыскивающие элементы 39. Участки 9 материала подложки расположены относительно впрыскивающих элементов 39 под углом, составляющим, например, около 45°. Расстояние 14 между столбиками участков 9 материала подложки меньше длины боковой стороны поперечного сечения участков материала подложки. Проведенная слева направо пунктирная линия представляет собой ось зеркального отображения. Длина микродвигателя в направлении, перпендикулярном плоскости чертежа, составляет примерно 60-300 микрометров. Отверстие 5 выпуска газа образовано сужением проходного сечения. В варианте осуществления изобретения, показанном на фиг.3, реактивное сопло 6 снабжено нагревателем 29, который может представлять собой, например, металлический меандровый проводник, расположенный внутри реактивного сопла. Общая длина микродвигателя обозначена символом LThruster.
На фиг.5 и 6 показан особенно предпочтительный вариант исполнения покровного слоя 16. Покровный слой 16 в этом варианте выполнен в виде КНИ-пластины. Она состоит из кремниевого слоя 17, слоя 18 диоксида кремния SiO2 и еще одного слоя кремния 19. Структурирование КНИ-пластины осуществляется известными методами микросистемной техники, причем с наружной стороны пластины в ней делаются внешние выемки 20, 21, а с внутренней стороны - внутренние выемки 22, 23, 24. При этом внешние выемки 20, 21 пронизывают кремниевый слой 17 и слой диоксида кремния 18. Внутренние же выемки 22, 23, 24 предусмотрены только в кремниевом слое 19.
На фиг.7 показана структурированная КНИ-пластина, изображенная на фиг.6 и нанесенная на подложку, изображенную на фиг.2. Дно внешней выемки 20 снабжено электрическим контактом 25 для катализатора 7. Соответственно, в дне внешней выемки 21 имеется электрический контакт 26 нагревателя для дополнительного нагрева газа. Благодаря структурированию покровного слоя 16 обеспечиваются независимое подключение (обеспечение контакта с источником тока) резистивных нагревателей 8, 11 и управление ими.
Соединение покровного слоя 16 со структурированной подложкой 3 осуществляется принятыми в микромеханике методами, например, путем прямого сращивания кремния с кремнием. Если из-за слишком малого поперечного сечения участков 9 или 12 материала подложки прямое сращивание кремния с кремнием не обеспечивает надежного прохождения тока, можно использовать альтернативные способы соединения, например пайку эвтектическим сплавом. В качестве варианта возможно также соединение стеклоприпоем, клеями на основе керамики или обычной пайкой, например, активной пайкой.
На фиг.8 показано другое исполнение покровного слоя, на который нанесены меандровые проводниковые структуры 27, 28. Они располагаются на боковой стороне покровного слоя 16, поэтому после механического соединения покровного слоя 16 и структурированной подложки 3 они оказываются внутри камеры 2 сгорания. При этом проводниковые структуры 27 попадают на участки 9 материала подложки, а проводниковые структуры 28 - на участки 12 материала подложки. Простая возможность обеспечить контакт расположенных внутри камеры 2 сгорания проводниковых структур 27, 28, 29, не затрудняя соединение покровного слоя 16 со структурированной подложкой 3, но и не нарушая герметичность камеры 2 сгорания, показана на фиг.9-12.
На фиг.9 показан покровный слой 16 с внутренней стороны, в котором выполнено углубление глубиной несколько микрометров. Это можно выполнять, например, травлением. При этом образуется расположенный в плоскости 33 монтажа краевой участок 30, охватывающий функциональную зону 31 (вытравленное углубление). Кроме того, при этом образован относящийся к функциональной зоне 31 токоподводящий участок 32, соединяющий функциональную зону 31 с окружающими структурами. Краевой участок 30 образует так называемую рамку соединения, т.е. эта поверхность сопрягается со структурированной пластиной, с которой она соединена. В функциональной зоне 31 сначала наносят изолирующий слой 35. На него наносят металлизирующий слой 36, образующий проводниковую структуру 27 и/или 28. Наконец, на металлизирующий слой 36 или на изолирующий слой 35 наносят пассивирующий слой 37. Углубление и формирование слоистой структуры 34 более наглядно показаны в поперечном сечении на фиг.10.
Поскольку после соединения покровного слоя 16 и подложки 3 получилась бы негерметичная камера сгорания - см. промежуток или канал 38 на фиг.11, этот промежуток или канал 38 необходимо заполнить пассивирующим материалом. Это делают до соединения покровного слоя 16 с подложкой 3. После заполнения промежутка 38 (в зоне токоподводящего участка 32) пассивирующий материал зашлифовывается, а затем полируется, чтобы получить ровную плоскость монтажа 33 и тем самым обеспечить надежное соединение покровного слоя 16 и подложки 3.
Альтернативный метод заключается в том, что в подложке в зоне токоподводящего участка 32 предусматривают выемку 41, покровный слой 16 и структурированную подложку 3 соединяют друг с другом, после чего выемку 41 закрывают герметизирующим материалом 40, например стеклоприпоем или клеем на основе керамики. Это показано на фиг.12а-12в, причем описанные выше функциональные компоненты в подложке 3 не показаны.

Claims (35)

1. Микродвигатель (1), применяемый прежде всего в качестве двигателя управления положением, содержащий камеру (2) сгорания из подложки (3), выполненной прежде всего из электропроводящего материала, имеющую топливоподводящее отверстие и отверстие для выпуска газа в примыкающее к камере (2) сгорания реактивное сопло, и первый резистивный нагреватель, расположенный в камере (2) сгорания, отличающийся тем, что первый резистивный нагреватель (8) придан катализатору (7), предназначенному для разложения топлива, вводимого в камеру (2) сгорания, с возможностью нагрева первым резистивным нагревателем (8) первых участков (9) материала подложки, образующих катализатор (7), до заданной температуры или заданного диапазона температур.
2. Микродвигатель (1) по п.1, отличающийся тем, что первые участки (9) материала подложки выполненны из материала подложки.
3. Микродвигатель (1) по п.1, отличающийся тем, что первый резистивный нагреватель (8) образован первыми участками (9) материала подложки самого катализатора (7).
4. Микродвигатель (1) по п.3, отличающийся тем, что первые участки (9) материала подложки по меньшей мере частично покрыты материалом катализатора, а первый резистивный нагреватель (8) образован слоем катализатора.
5. Микродвигатель (1) по п.4, отличающийся тем, что между слоем катализатора и первыми участками (9) материала подложки расположен по меньшей мере частично изолирующий слой.
6. Микродвигатель (1) по п.1, отличающийся тем, что первые участки (9) материала подложки в камере (2) сгорания имеют по меньшей мере частично пористую структуру поверхности.
7. Микродвигатель (1) по п.1, отличающийся тем, что внутри камеры (2) сгорания между катализатором (7) и отверстием (5) для выпуска газа расположен второй резистивный нагреватель (11), предназначенный для нагрева газа, выходящего из катализатора (7).
8. Микродвигатель (1) по п.7, отличающийся тем, что второй резистивный нагреватель (11) образован вторыми участками (12) материала подложки.
9. Микродвигатель (1) по п.8, отличающийся тем, что вторые участки (12) материала подложки выполнены из материала подложки.
10. Микродвигатель (1) по п.1, отличающийся тем, что первые и/или вторые участки (9, 12) материала подложки выполнены механическим или химическим методом из материала подложки камеры (2) сгорания с образованием дна камеры (2) сгорания, из которого первые и/или вторые участки (9, 12) материала подложки выступают в виде столбиков внутрь объема камеры сгорания.
11. Микродвигатель (1) по п.10, отличающийся тем, что первое расстояние (14) между столбиками первых участков (9) материала подложки отличается от второго расстояния (15) между столбиками вторых участков (12) материала подложки, прежде всего меньше него.
12. Микродвигатель (1) по п.11, отличающийся тем, что объем камеры сгорания ограничен покровным слоем (16) камеры (2) сгорания, который примыкает к первым и/или вторым участкам (9, 12) материала подложки.
13. Микродвигатель (1) по п.12, отличающийся тем, что покровный слой (16) выполнен из структурированной пластины типа "кремний на изоляторе", причем посредством покровного слоя (16) обеспечен электрический контакт первого и/или второго резистивного нагревателя (11).
14. Микродвигатель (1) по п.13, отличающийся тем, что покровный слой (16) имеет проходящий по контуру краевой участок (30), по меньшей мере частично расположенный в плоскости (33) монтажа, в которой покровный слой (16) соединен с подложкой (3), и охватываемую краевым участком (30) функциональную зону (31), заглубленную относительно плоскости (33) монтажа, причем в функциональной зоне (31) расположена слоистая структура (34), состоящая из изолирующего слоя (35), металлизирующего слоя (36) и пассивирующего слоя (37) и не выступающая над плоскостью (33) монтажа.
15. Микродвигатель (1) по п.14, отличающийся тем, что в проходящем по замкнутому контуру краевом участке (30) предусмотрен токоподводящий участок, являющийся частью функциональной зоны (31), причем промежуток между пассивирующим слоем и плоскостью (33) монтажа заполнен пассивирующим материалом или пастой-наполнителем.
16. Микродвигатель (1) по п.1, отличающийся тем, что первый резистивный нагреватель (8) и/или второй резистивный нагреватель (11) образован меандровой проводниковой структурой (27, 28) из металла, расположенной прежде всего на покровном слое (16).
17. Микродвигатель (1) по п.1, отличающийся тем, что он содержит первое средство для регистрации первого сопротивления первого резистивного нагревателя (8) и/или второе средство для регистрации второго сопротивления второго резистивного нагревателя (11), причем первое сопротивление и/или второе сопротивление вводятся в третье средство для определения первой температуры по первому сопротивлению и второй температуры по второму сопротивлению.
18. Микродвигатель (1) по п.17, отличающийся тем, что за пределами камеры (2) сгорания дополнительно установлен датчик температуры, связанный с третьим средством для компенсации дрейфа первого и второго сопротивления.
19. Микродвигатель (1) по п.1, отличающийся тем, что он содержит третий нагреватель (29), прежде всего резистивный нагреватель, приданный реактивному соплу.
20. Микродвигатель (1) по п.19 в сочетании с одним из пп.12-15, отличающийся тем, что третий нагреватель (29) образован на покровном слое (16) меандровой проводниковой структурой из металла или электропроводящего материала.
21. Микродвигатель (1) по п.1, отличающийся тем, что подложка (3) выполнена из кремния или карбида кремния (SiC).
22. Микродвигатель (1) по п.1, отличающийся тем, что подложка (3) выполнена из сапфира.
23. Микродвигатель (1) по п.1, отличающийся тем, что он представляет собой однокомпонентный двигатель на гидразине.
24. Двигатель малой тяги, отличающийся тем, что он содержит множество микродвигателей (1), выполненных по одному из предыдущих пунктов.
25. Двигатель малой тяги по п.24, отличающийся тем, что множество микродвигателей (1) расположено в виде матрицы.
26. Способ изготовления микродвигателя (1), содержащего камеру (2) сгорания, имеющую топливоподводящее отверстие (4) и отверстие (5) для выпуска газа в примыкающее к камере (2) сгорания реактивное сопло, а также первый резистивный нагреватель, расположенный в камере (2) сгорания и приданный катализатору (7), при осуществлении которого:
подготавливают подложку (3) прежде всего из кремния, карбида кремния или сапфира,
в подложке (3) механическим, физическим или химическим методом формируют первые и/или вторые участки (12) материала подложки с образованием дна камеры (2) сгорания, из которого в виде столбиков внутрь объема камеры сгорания выступают первые и/или вторые участки (12) материала подложки,
первые участки (9) материала подложки по меньшей мере частично покрывают материалом катализатора,
подготавливают структурированный покровный слой (16) прежде всего в виде подложки (3) типа "кремний на изоляторе" с металлической структурой,
на структурированную подложку (3) накладывают покровный слой (16) и соединяют их, после чего объем камеры (2) сгорания ограничен ее покровным слоем (16), а металлическая структура расположена вблизи первых и/или вторых участков (9, 12) материала подложки.
27. Способ по п.26, отличающийся тем, что поверхности первых участков (9) материала подложки перед нанесением покрытия из материала катализатора по меньшей мере частично придают пористую структуру путем обработки этой поверхности электролитом заданной концентрации или нанесением на нее покрытия.
28. Способ по п.26 или 27, отличающийся тем, что между первыми участками (9) материала подложки и материалом катализатора наносят изолирующий слой.
29. Способ по п.26, отличающийся тем, что с помощью металлической структуры обеспечивают электрическое подключение первых и/или вторых участков (12) материала подложки или материала катализатора на первых участках (9) материала подложки.
30. Способ по п.26, отличающийся тем, что покровный слой (16) и подложку (3) соединяют прямым сращиванием, пайкой эвтектическим сплавом, стеклоприпоем, клеями на основе керамики или обычной пайкой.
31. Способ по п.30, отличающийся тем, что в покровном слое (16) путем съема материала формируют проходящий по контуру краевой участок (30), по меньшей мере частично расположенный в плоскости (33) монтажа, в которой покровный слой (16) соединяют с подложкой (3), с образованием охватываемой краевым участком (30) функциональной зоны (31), заглубленной относительно плоскости (33) монтажа.
32. Способ по п.31, отличающийся тем, что в функциональной зоне (31) создают слоистую структуру (34), состоящую из изолирующего слоя, металлизирующего слоя и пассивирующего слоя, таким образом, чтобы слоистая структура (34) не выступала над плоскостью (33) монтажа.
33. Способ по п.31 или 32, отличающийся тем, что в процессе съема материала на проходящем по замкнутому контуру краевом участке (30) формируют токоподводящий участок, являющийся частью функциональной зоны, причем промежуток между пассивирующим слоем и плоскостью (33) монтажа заполняют пассивирующим материалом.
34. Способ по п.31 или 32, отличающийся тем, что токоподводящий участок после соединения покровного слоя (16) и подложки (3) заполняют пастой-наполнителем, причем пасту-наполнитель вводят через отверстие в покровном слое (16) или в подложке (3) в зоне токоподводящего участка.
35. Способ по п.26 или 27, отличающийся тем, что на тыльную сторону подложки (3) наносят электроизолирующий пассивирующий слой, имеющий проем только в зоне первых участков (9) материала подложки.
RU2008103481/06A 2007-02-05 2008-02-04 Микродвигатель, применяемый прежде всего в качестве двигателя управления положением, двигатель малой тяги, содержащий такие микродвигатели, и способ изготовления микродвигателя RU2454560C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007006444.8 2007-02-05
DE200710006444 DE102007006444B4 (de) 2007-02-05 2007-02-05 Mikrotriebwerk, insbesondere zur Verwendung als Lageregelungstriebwerk, Kleintriebwerk sowie Verfahren zum Herstellen eines Mikrotriebwerks

Publications (2)

Publication Number Publication Date
RU2008103481A RU2008103481A (ru) 2009-08-10
RU2454560C2 true RU2454560C2 (ru) 2012-06-27

Family

ID=39587379

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008103481/06A RU2454560C2 (ru) 2007-02-05 2008-02-04 Микродвигатель, применяемый прежде всего в качестве двигателя управления положением, двигатель малой тяги, содержащий такие микродвигатели, и способ изготовления микродвигателя

Country Status (5)

Country Link
US (1) US8407980B2 (ru)
CN (1) CN101285433B (ru)
DE (1) DE102007006444B4 (ru)
FR (1) FR2912471B1 (ru)
RU (1) RU2454560C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2594941C1 (ru) * 2015-04-09 2016-08-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный технический университет" Электротермический микродвигатель

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7690187B2 (en) * 2006-09-26 2010-04-06 The Aerospace Corporation Modular micropropulsion device and system
US8613188B2 (en) * 2008-05-14 2013-12-24 Purdue Research Foundation Method of enhancing microthruster performance
US9410539B2 (en) * 2010-02-08 2016-08-09 Microspace Rapid Pte Ltd Micro-nozzle thruster
FR2986213B1 (fr) * 2012-02-01 2014-10-10 Snecma Engin spatial a propulsion electrique et chimique a propergol solide
US9488100B2 (en) * 2012-03-22 2016-11-08 Saudi Arabian Oil Company Apparatus and method for oxy-combustion of fuels in internal combustion engines
US10378521B1 (en) 2016-05-16 2019-08-13 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Solid electrolyte-based microthrusters
CN106837605A (zh) * 2017-02-23 2017-06-13 北京航空航天大学 一种过氧化氢推进器
WO2018127899A2 (en) * 2018-04-13 2018-07-12 Ingeniería Aplicada, S.A. Liquid thrust engine milled in layers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3603093A (en) * 1970-03-06 1971-09-07 Nasa Heated porous plug microthrustor
US4608821A (en) * 1984-07-31 1986-09-02 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Heat exchanger for electrothermal devices
RU2125176C1 (ru) * 1995-12-13 1999-01-20 Опытное конструкторское бюро "Факел" Ракетный двигатель на сжатом газе
RU2186237C2 (ru) * 2000-05-15 2002-07-27 Конструкторское бюро "Полет" ГУДП ГП Производственное объединение "Полет" Способ создания реактивной тяги электротермическим микродвигателем и микродвигатель для его осуществления

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3328960A (en) * 1965-08-16 1967-07-04 Thomas W Martin Ion propulsion system employing lifecycle wastes as a source of ionizable gas
US5780157A (en) * 1994-06-06 1998-07-14 Ultramet Composite structure
RU2118685C1 (ru) * 1996-01-25 1998-09-10 Опытное конструкторское бюро "Факел" Однокомпонентный жидкостный ракетный двигатель
US6263665B1 (en) * 1998-06-05 2001-07-24 The United States Of America As Represented By The Secretary Of The Air Force Microthruster for heating a propellant, driving the vapors produced to a discharge section
US6272846B1 (en) * 1999-04-14 2001-08-14 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Reduced toxicity fuel satellite propulsion system
US6516604B2 (en) * 2000-03-27 2003-02-11 California Institute Of Technology Micro-colloid thruster system
DE10118005B4 (de) * 2001-04-10 2005-11-10 Schwesinger, Norbert, Prof.Dr.-Ing. Mikrotriebwerk
KR100837393B1 (ko) * 2002-01-22 2008-06-12 삼성에스디아이 주식회사 탄소와 친화도가 높은 금속을 전극으로 구비하는 전자소자
US6786716B1 (en) * 2002-02-19 2004-09-07 Sandia Corporation Microcombustor
US6931832B2 (en) * 2003-05-13 2005-08-23 United Technologies Corporation Monopropellant combustion system
CN1204019C (zh) * 2003-07-25 2005-06-01 清华大学 微小型一体结构冷气推进器
KR100649549B1 (ko) * 2005-10-24 2006-11-27 한국과학기술원 마이크로 비드층 반응기를 갖는 초소형 단일추진제 추력기및 그 생산방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3603093A (en) * 1970-03-06 1971-09-07 Nasa Heated porous plug microthrustor
US4608821A (en) * 1984-07-31 1986-09-02 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Heat exchanger for electrothermal devices
RU2125176C1 (ru) * 1995-12-13 1999-01-20 Опытное конструкторское бюро "Факел" Ракетный двигатель на сжатом газе
RU2186237C2 (ru) * 2000-05-15 2002-07-27 Конструкторское бюро "Полет" ГУДП ГП Производственное объединение "Полет" Способ создания реактивной тяги электротермическим микродвигателем и микродвигатель для его осуществления

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2594941C1 (ru) * 2015-04-09 2016-08-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный технический университет" Электротермический микродвигатель

Also Published As

Publication number Publication date
US20090120056A1 (en) 2009-05-14
US8407980B2 (en) 2013-04-02
FR2912471B1 (fr) 2017-04-14
RU2008103481A (ru) 2009-08-10
DE102007006444B4 (de) 2015-05-13
CN101285433A (zh) 2008-10-15
DE102007006444A1 (de) 2008-08-07
CN101285433B (zh) 2012-07-04
FR2912471A1 (fr) 2008-08-15

Similar Documents

Publication Publication Date Title
RU2454560C2 (ru) Микродвигатель, применяемый прежде всего в качестве двигателя управления положением, двигатель малой тяги, содержащий такие микродвигатели, и способ изготовления микродвигателя
US10939505B2 (en) Electrical heating system for a motor vehicle
EP2551894B1 (en) Region temperature-controlled structure
KR101299496B1 (ko) 세라믹스 히터 및 세라믹스 히터의 제조방법
US8092640B2 (en) Plasma processing apparatus and semiconductor device manufactured by the same apparatus
KR100773211B1 (ko) 피가열물 탑재용 히터 부재 및 그를 이용한 기판 처리 장치
JP5236927B2 (ja) 耐腐食性積層セラミックス部材
KR101513605B1 (ko) 샤프트 부착 히터 유닛 및 샤프트 부착 히터 유닛의 제조 방법
JP2001012986A (ja) 熱式空気流量センサ
KR102132572B1 (ko) 통합 온도 센서를 가진 가열 디바이스
US7150189B2 (en) Thermal-process-type air-flow-rate sensor
JP6580244B2 (ja) 半導体レーザ光源装置
JP2014182149A (ja) マイクロ電気化学的なセンサおよびマイクロ電気化学的なセンサを作動させる方法
US6728091B2 (en) Electrostatic adsorption device
CN103402648A (zh) 静电雾化装置及其制造方法
JP2004296961A (ja) 熱電素子とその製造方法
JP2007250403A (ja) セラミックスヒーターおよびヒーター給電部品
KR102351851B1 (ko) 히터 코어, 히터 및 이를 포함하는 히팅 시스템
WO2020158155A1 (ja) 検出装置
KR101327573B1 (ko) 인라인 히터 어셈블리
KR102603485B1 (ko) 샤프트를 갖는 세라믹 히터
JP4968290B2 (ja) 熱式空気流量センサの製造方法
JP2023061525A (ja) 保持装置
US20210043475A1 (en) Heater and heater system
JP4533732B2 (ja) 製膜装置及びその製造方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190205