RU2450977C2 - Способ удаления серосодержащих остаточных соединений из потока щелочного сырья (варианты) - Google Patents

Способ удаления серосодержащих остаточных соединений из потока щелочного сырья (варианты) Download PDF

Info

Publication number
RU2450977C2
RU2450977C2 RU2010110989/05A RU2010110989A RU2450977C2 RU 2450977 C2 RU2450977 C2 RU 2450977C2 RU 2010110989/05 A RU2010110989/05 A RU 2010110989/05A RU 2010110989 A RU2010110989 A RU 2010110989A RU 2450977 C2 RU2450977 C2 RU 2450977C2
Authority
RU
Russia
Prior art keywords
sulfur
alkaline
stream
post
ppm
Prior art date
Application number
RU2010110989/05A
Other languages
English (en)
Other versions
RU2010110989A (ru
Inventor
Тецзюнь ЧЖАН (US)
Тецзюнь ЧЖАН
Original Assignee
Меричем Компани
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Меричем Компани filed Critical Меричем Компани
Publication of RU2010110989A publication Critical patent/RU2010110989A/ru
Application granted granted Critical
Publication of RU2450977C2 publication Critical patent/RU2450977C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G19/00Refining hydrocarbon oils in the absence of hydrogen, by alkaline treatment
    • C10G19/08Recovery of used refining agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/3236Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3265Non-macromolecular compounds with an organic functional group containing a metal, e.g. a metal affinity ligand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3416Regenerating or reactivating of sorbents or filter aids comprising free carbon, e.g. activated carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/345Regenerating or reactivating using a particular desorbing compound or mixture
    • B01J20/3475Regenerating or reactivating using a particular desorbing compound or mixture in the liquid phase
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Treating Waste Gases (AREA)

Abstract

Изобретения могут быть использованы при очистке углеводородов от соединений серы щелочью. В одном варианте изобретения для удаления остаточных серосодержащих соединений проводят подачу предварительно окисленного и отделенного потока щелочного сырья, содержащего серосодержащие соединения, в установку доочистки, причем серосодержащие соединения составляют менее 500 м.д. по массе в виде серы. После этого осуществляют контактирование потока щелочного сырья со слоем твердого адсорбента в установке доочистки и адсорбцию на слое адсорбента дисульфидов, введенных в установку доочистки как часть серосодержащих соединений в потоке щелочного сырья. Из установки доочистки отводят щелочной поток, содержащий менее 20 м.д. по массе (в виде серы) серосодержащих соединений. В другом варианте комбинируют окисление и адсорбцию для удаления остаточных соединений серы из обогащенного щелочного потока в присутствии фталоцианина металла, нанесенного на твердый адсорбент. Этот способ особенно применим в качестве стадии доочистки в проточной схеме регенерации щелочи. Изобретения обеспечивают экономичное получение обедненной щелочи с содержанием примесей серы менее 5 м.д. по массе. 2 н. и 14 з.п. ф-лы, 2 ил., 1 пр.

Description

ОБЛАСТЬ ТЕХНИКИ
В целом настоящее изобретение относится к способу удаления остаточных соединений серы из жидкого щелочного потока. Более конкретно, в одном варианте изобретения дисульфиды удаляют из щелочного потока поглощением с помощью адсорбента на основе активированного угля. В другом варианте изобретения для удаления остаточных соединений серы из щелочного потока комбинируют адсорбцию с каталитическим окислением в присутствии фталоцианина металла, нанесенного на твердый адсорбент. Данное изобретение можно также включить в способ удаления примесей серы из углеводородов в качестве доочистки путем регенерации щелочью, что минимизирует потребность в операциях промывки с использованием дорогого растворителя.
ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ
Удаление примесей серосодержащих соединений, особенно меркаптанов, из углеводородных потоков с помощью щелочи хорошо известно. Также хорошо известно окисление этих меркаптанов в дисульфиды при контактировании обогащенного щелочного потока с твердым катализатором в присутствии кислорода с последующим отделением дисульфидов от щелочи. Независимо от использованных способов окисления и/или разделения всегда в отработанном щелочном растворе присутствуют остаточные серосодержащие соединения. Ввиду настоятельной потребности в более экономичных и более компактных способах необходимо заменять традиционную промывку растворителем на несколько более экономичный способ доочистки для получения не содержащей серы щелочи, которую можно было бы повторно использовать для обработки загрязненных серой углеводородов.
Высшей точкой действия Постановления США по чистому воздуху 1990 г. в Северной Америке стало требование о содержании менее 10 м.д. по массе серы. С практической точки зрения это означает, что нефтеперерабатывающий завод обычно выпускает бензин с содержанием менее 5 м.д. по массе серы, что обеспечивает такое загрязнение трубопровода остатками на его стенках от прежних перевозчиков и точность способа тестирования, которые отвечали бы требованиям Закона о чистоте воздуха.
Другим последствием Закона о чистоте воздуха 1990 г. было сокращение числа малых неэффективных нефтеперерабатывающих заводов в Америке от более 330 предприятий в 1980 г. до менее 175 предприятий в 2007 г. В последние 25 лет новых нефтеперерабатывающих заводов не строили, но имеющиеся мощности и импорт удовлетворяли потребности Америки в бензине.
Для уменьшения производства топочного мазута и получения дополнительного высокооктанового бензина и повышенного количества олефинов существующие нефтеперерабатывающие заводы также перешли на более жесткие операции в установках каталитического крекинга в кипящем слое. Такими олефинами являются пропан/пропилен и бутан/изобутан/изобутилен. Они служат сырьем для следующей стадии обработки, которая протекает в установке алкилирования. На таких нефтеперерабатывающих заводах алкилируют амилены (пентен) согласно принятым экономическим моделям.
Для алкилирования смешанных бутиленов или смешанных пропиленов большинство нефтеперерабатывающих заводов используют установки алкилирования либо с помощью HF (фтористоводородной кислоты), либо серной кислоты. Алкилирование является процессом, в котором изобутан взаимодействует с олефином и образует парафин с разветвленной цепью. Поскольку сера является ядом для процесса алкилирования, на большинстве нефтеперерабатывающих заводов используют щелочные системы для экстракции легко удаляемемых метил- и этилмеркаптанов и более трудно удаляемемых пропилмеркаптанов, присутствующих в жидком нефтяном газе («LPG»), содержащем смесь олефинов.
Обычно для щелочной обработки используют аппараты для контактирования жидкость-жидкость и в некоторых случаях аппараты с волокнистыми пленками, как описано в патентах США №3758404; 3977829 и 3992156, которые включены здесь ссылками. Для сохранения щелочи почти всегда используют регенератор для щелочи. Обычная проточная схема способа для обработки LPG включает первую обработку щелочью с использованием по меньшей мере одного аппарата контактирования жидкость-жидкость для экстракции примесей серы, обычно меркаптанов, из исходного LPG, в котором образуется «отработанный» щелочной раствор, обогащенный меркаптаном, или так называемая обогащенная щелочь; отделение LPG в этом аппарате; окисление обогащенной щелочи для превращения меркаптанов в дисульфиды (обычно называемые дисульфидным маслом («DSO»), при котором образуется «окисленный» щелочной раствор, и затем использование отстойника для отделения DSO от окисленного щелочного раствора. В некоторых примерах для дальнейшего отделения DSO от окисленной щелочи используют слой гранул угля в сочетании с отстойником в качестве коагулятора. Сразу после удаления DSO регенерированную щелочь можно далее обработать и затем вернуть в способ, где ее смешивают со свежеприготовленной щелочью и используют в аппаратах контактирования жидкость-жидкость для обработки исходного LPG. Кроме того, обычно для уменьшения количества непревращенных меркаптанов и остаточного DSO предпочтительно до уровня ниже 5 м.д. по массе в виде серы требуется дополнительная очистка. Присутствие меркаптанов в регенерированной щелочи нежелательно, поскольку они могут понизить эффективность экстракции и создать возможность для последующего образования дисульфидов по ходу потока. Присутствие DSO в регенерированной щелочи ведет к нежелательному попаданию или обратной экстракции DSO в углеводород во время экстракции из углеводорода щелочью.
Промывка растворителем является известной технологией и часто используется в качестве стадии доочистки для экстракции остаточных DSO из щелочи. Однако из-за ограничений, связанных с массопереносом и равновесием, операции в установках для промывки растворителем обычно включают много стадий, что требует дополнительных капитальных и эксплуатационных вложений. Кроме того, промывка растворителем не эффективна для удаления меркаптанов из щелочи. Аналогично, способы с центрифугированием и разделением на мембранах весьма затратны и не обеспечивают содержания серы менее 5 м.д. по массе.
Доочистка с помощью адсорбции является еще одной технологией, которую можно использовать. Для удаления серосодержащих соединений из углеводородов, таких как бензин и дизельное топливо, применяли адсорбционное десульфирование. Примеры приведены в патентах США 7093433; 7148389; 7063732 и 5935422. Однако адсорбенты, рассмотренные в этих патентах и другой литературе, не эффективны в щелочной среде.
Поэтому остается необходимость в разработке технологии экономичного удаления как дисульфидов, так и меркаптанов из щелочи, которая была бы стадией доочистки для достижения концентрации серы менее 20 м.д. по массе, предпочтительно менее 5 м.д. и наиболее предпочтительно менее 2 м.д.
Предлагаемый способ включает единственную стадию окисления и адсорбционного разделения (OAS) для удаления как дисульфидов, так и меркаптанов из щелочного раствора. Способ OAS заменяет промывку растворителем в качестве стадии доочистки и при его использовании после объемного отделения DSO превращает остаточные меркаптаны в DSO и удаляет все остаточное DSO, включая DSO, которое образовалось in-situ из меркаптанов. Кроме того, данный способ чрезвычайно экономичен по сравнению с традиционными способами удаления остаточных соединений серы из щелочных растворов благодаря минимизации как капитальных, так и эксплуатационных затрат. Эти и другие преимущества будут очевидны из последующего подробного описания изобретения.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Как было указано, настоящее изобретение относится к способам удаления остаточных соединений серы из окисленного щелочного раствора, образовавшегося в ходе регенерации щелочи. В одном аспекте настоящее изобретение включает адсорбцию остаточного DSO активированным углем, так чтобы выделенный щелочной поток содержал соединения серы в количестве менее 20 м.д. по массе, предпочтительно менее 5 м.д. по массе (в виде серы).
Хотя хорошо известно, что для превращения меркаптанов в DSO можно использовать окисление, обычно в таких известных способах не все меркаптаны превращаются в DSO, и в потоке продуктов реакции окисления остается до 5% или более меркаптанов. До появления данного изобретения непревращенные меркаптаны всегда оставались в регенерированной щелочи, что оказывало отрицательное влияние на последующую экстракцию углеводородов из щелочного раствора. До появления данного изобретения отсутствовало осознание того, что эти остаточные меркаптаны можно превратить в DSO и адсорбировать вместе с оставшимся DSO, не удаленным при разделении, которое обычно следует за окислением обогащенных щелочных потоков, все в одной стадии. Настоящий способ можно легко интегрировать в новые и существующие проточные схемы способа регенерации щелочи, в которых обогащенный щелочной поток образуется при контакте примесей серы из LPG и других углеводородных потоков с обедненной щелочью.
Использованный здесь термин «дисульфидное масло», или DSO, включает смесь всех возможных дисульфидов, в том числе диметилдисульфид, диэтилдисульфид и высшие дисульфиды. Аналогично термин «меркаптан» включает любой класс сероорганических соединений, подобных спирту и фенолу, но содержащих атом серы вместо атома кислорода, и конкретно включает меркаптиды. Соединения, содержащие группу -SH в качестве основной группы, соединенной непосредственно с углеродом, называют «тиолами».
Один вариант данного изобретения представляет собой способ удаления остаточных соединений серы из потока щелочного сырья, который включает в комбинации введение потока щелочного сырья, содержащего щелочь и соединения серы, в установку доочистки, причем соединения серы составляют менее 500 м.д. по массе в виде серы, предпочтительно менее 100 м.д. по массе и наиболее предпочтительно менее 50 м.д. по массе; контактирование щелочного потока с неподвижным слоем адсорбента; адсорбцию на адсорбенте дисульфидов, введенных на стадию доочистки как часть соединений серы в потока щелочного сырья, и отвод из установки доочистки образовавшегося доочищенного щелочного потока, содержащего соединения серы в количестве менее 20 м.д. по массе, предпочтительно менее 5 м.д. по массе и наиболее предпочтительно менее 2 м.д. по массе (в виде серы). Предпочтительными адсорбентами являются активированные угли с большой адсорбционной емкостью по DSO, которые имеют объем пор 0.5-1.5 см3/г N2 по методу BJH (Баррет-Джойнер-Халенд) и/или величину поверхности 500-2000 м2/г по БЭТ, полученные из такого сырья, как уголь, лигнит, дерево, торф, оливковые косточки и скорлупа кокосовых орехов. Примерами являются активированные угли Norit lignite-based MRX, MeadWestvaco wood-based Nuchar series, Calgon coal-based CPG. Активированные угли могут быть в виде гранул или экструдированных таблеток. Рабочие температуры в данном изобретении находятся в интервале примерно 50-212°F, предпочтительно примерно 75-175°F и наиболее предпочтительно примерно 75-150°F. Настоящий способ можно осуществлять при нормальном давлении или при рабочих давлениях, обычно применяемых в проточных схемах способа регенерации щелочи.
Другой вариант настоящего изобретения относится к способу удаления остаточных серосодержащих соединений из щелочного потока сырья, который включает в комбинации подачу щелочного потока сырья, содержащего щелочь и соединения серы, в установку доочистки, причем серосодержащие соединения составляют 500 м.д. по массе в виде серы, предпочтительно менее 100 м.д. по массе и наиболее предпочтительно менее 50 м.д. по массе; подачу окислителя в установку доочистки; смешение и контактирование щелочного потока и окислителя в присутствии неподвижного слоя катализатора, содержащего нанесенный фталоцианин металла/превращение в дисульфиды меркаптанов, присутствующих как часть серосодержащих соединений; адсорбцию на нанесенном катализаторе дисульфидов, образовавшихся in situ из меркаптанов, и дисульфидов, введенных в установку доочистки как часть серосодержащих соединений в потоке щелочного сырья, и удаление из установки для доочистки полученного доочищенного щелочного потока, содержащего серосодержащие соединения в количестве менее 20 м.д. по массе, предпочтительно менее 5 м.д. по массе и наиболее предпочтительно менее 2 м.д. по массе (в виде серы).
Эти и другие вопросы станут более понятными из подробного описания предпочтительного варианта, приведенного ниже.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Фигура 1 схематически иллюстрирует один возможный вариант способа по настоящему изобретению с использованием либо только адсорбции, либо комбинации окисления и адсорбции в одной стадии для удаления остаточных соединений серы из щелочного потока после окисления обогащенной щелочи и отделения большей части образовавшегося DSO.
Фигура 2 графически представляет эффективность данного изобретения, в котором исходную щелочь, содержащую в среднем 86 м.д. по массе серосодержащих соединений, доочищают до содержания в щелочи менее 1 м.д. по массе меркаптана и менее 2 м.д. по массе DSO.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Как было показано выше, настоящее изобретение относится к новому способу интегрирования в схему регенерации щелочи с удалением остаточных соединений серы из окисленного потока щелочи после отделения массы DSO, образовавшегося во время окисления. Одно конкретное применение данного изобретения относится к способу доочистки для удаления остаточных примесей серы из окисленных щелочных потоков, которые представляют опасность для последующих способов, особенно при щелочной обработке углеводородов, таких как LPG. Более конкретно, данное изобретение исключает необходимость в промывке дорогим растворителем для получения обедненной щелочи, содержащей менее 5 м.д. по массе соединений серы, которая пригодна для возвращения в процесс и контактирования с загрязненными углеводородами.
Фигура 1 иллюстрирует один вариант настоящего изобретения, в котором исходный LPG с примесью меркаптанов, например метил- и этилмеркаптидов, подают по линии 1 в секцию обработки щелочью 3. Конкретная конструкция секции обработки щелочью не критична для данного изобретения; однако предпочтительная конструкция секции обработки щелочью включает ряд контактных аппаратов, работающих в режиме противотока, причем наиболее предпочтительна конструкция контактного аппарата жидкость-жидкость, использующего волокнистые пленки. Такие и другие конструкции контактных аппаратов хорошо известны специалистам в данной области. Обедненную щелочь подают по линии 5 в секцию обработки щелочью 3 аппарата контактирования, где она контактирует с LPG, введенным по линии 1. Щелочь по данному изобретению может быть любого типа, известного специалистам в демеркаптанизации углеводородов, в том числе это могут быть растворы, содержащие NaOH, KOH, Са(ОН)2, Na2CO3, аммиак, экстракты из органических кислот или их смеси. Предпочтительно, чтобы щелочь включала растворы гидроксида калия и водные растворы гидроксида натрия с концентрацией гидроксида щелочного металла примерно 1-50%, более предпочтительно примерно 3-25%, еще более предпочтительно примерно 5-20% по массе.
Практически не содержащий серы LPG отводят из секции 3 контактного аппарата по линии 7 и используют на последующих стадиях, например, в установке алкилирования. Термин «практически не содержащий серы» означает, что LPG содержит общую серу в концентрации <150 м.д., предпочтительно <20 м.д. и более предпочтительно <10 м.д. Щелочной раствор из секции 3 аппарата контактирования представляет собой обогащенный щелочной раствор, который отводят по линии 9. Обогащенная щелочь содержит меркаптаны в виде меркаптидов и другие примеси серосодержащих соединений, экстрагированные из исходного LPG.
Обогащенную щелочь из секции обработки щелочью затем подают в аппарат окисления 10. Как и в случае контактных аппаратов жидкость-жидкость, точная конструкция аппарата окисления не критична для данного изобретения, и поэтому можно использовать различные конструкции аппарата окисления, такие как аппараты окисления с барботированием воздуха, аппараты с набивкой из неактивных каталитически твердых веществ и аппараты, работающие по технологии гетерогенных катализаторов. Предпочтительный аппарат окисления содержит слой неподвижного катализатора, предпочтительно катализатора, содержащего активный металл типа кобальта, нанесенный пропиткой твердого носителя, например активированного угля. Наиболее предпочтительным является катализатор от Merichem Company под торговой маркой ARI™-120L. В одном альтернативном варианте данного изобретения в аппарат окисления 10 вместе с потоком обогащенной щелочи вводят небольшой объем потока растворителя 11. Этот поток растворителя можно смешать с обогащенной щелочью до подачи в аппарат окисления или подавать в аппарат окисления в виде отдельного потока. Растворителем может быть любой легкий углеводород, который будет способствовать последующему отделению DSO от щелочного раствора после окисления. В качестве растворителя в данном изобретении можно использовать любой относительно легкий углеводород или смесь таких углеводородов, однако предпочтительными растворителями являются нефть и керосин. Хотя точный механизм положительного влияния растворителя на отделение DSO от окисленной щелочи не известен, одна из теорий заключается в том, что растворитель гораздо лучше растворяет DSO, чем щелочь, причем разница в растворимости создает движущую силу экстракции. Этот эффект можно усилить путем проведения процесса в аппарате с волокнистой пленкой, которая создает большую площадь поверхности раздела. Количество растворителя в расчете на объемный процент исходной обогащенной щелочи, введенное в аппарат окисления либо вместе с обогащенной щелочью, либо отдельно, не особенно критично для данного изобретения, поскольку используют его минимальное количество для осуществления последующего отделения. Как отмечено, необходим только малый объем растворителя, предпочтительно в интервале минимальных подач растворителя примерно 0.1-10.0 об.%, предпочтительно примерно 0.5-5.0 об.% от исходной обогащенной щелочи, подаваемой по линии 9.
Кроме обогащенной щелочи и растворителя в аппарат окисления по линии 12 подают окислитель, например воздух, пероксид водорода или другие кислородсодержащие газы. Количество окислителя, подаваемого в аппарат окисления, должно быть достаточно для достижения 95+% окисления меркаптанов, изначально присутствующих в LPG, в дисульфиды, наиболее предпочтительно 99+% окисления. Предпочтительный интервал рабочих условий аппарата окисления включает температуру примерно 75-200°F и скорость потока щелочи до 10 LHSV, но предпочтительно примерно 100-150°F и менее 5 LHSV. Рабочее давление в предлагаемом способе не критично при условии, что технологические потоки остаются в жидком состоянии.
Отходящий поток из аппарата окисления 10 или окисленную щелочь, которая является смесью щелочи, DSO и остаточных меркаптанов (в виде меркаптидов), отводят по линии 13 из аппарата окисления 10 и направляют в сепаратор 14, где DSO отделяют от щелочи, обычно в отстойнике, по любой известной технологии.
Во время работы сепаратора 14 на дне сборника 21 образуются два слоя: нижний слой 23, содержащий щелочной раствор, и верхний слой 22, содержащий объемное DSO, образовавшееся на стадии окисления. Как было указано, Фиг.1 также иллюстрирует альтернативный вариант, в котором в аппарат окисления 10 сверху подают малый поток растворителя. При реализации такой альтернативы добавленный растворитель отводят вместе с DSO в верхнем слое 22. В любом случае отходящие газы удаляют сверху сборника 21 по линии 15. DSO в верхнем слое 22 удаляют из сепаратора 14 по линии 16 и направляют на хранение или дальнейшую обработку.
Время пребывания в сепараторе 14 выбирают таким, чтобы достичь максимального удаления DSO из щелочной фазы при целевой концентрации всех соединений серы, включая меркаптаны, менее 500 м.д. по массе, более конкретно менее 100 м.д. Обычно время пребывания в отстойнике составляет 90 мин или более.
Скорость удаления щелочного раствора в нижнем слое 23 по линии 17 устанавливают такой, чтобы поддерживать время пребывания, необходимое для достижения концентрации примесей серы в этом слое на уровне 500 м.д. или менее. Отделенный щелочной раствор в потоке 17 затем направляют в установку доочистки 24, где остаточное DSO адсорбируют на твердом адсорбенте, предпочтительно на активированном угле. В тех случаях, когда щелочь содержит меркаптаны, в активированный уголь включают металлический катализатор для превращения меркаптанов в дисульфиды. Эти дисульфиды затем адсорбируют на твердом адсорбенте. Чтобы способствовать такой конверсии меркаптанов, в установку доочистки 24 также вводят окислитель (показано пунктирной линией 20). Количество окислителя, вводимое в установку, должно быть таким же или предпочтительно в два раза больше, чем стехиометрическое количество, необходимое для окисления меркаптанов в дисульфиды. Как было указано выше, предпочтительными твердыми адсорбентами являются активированные угли с объемом пор 0.5-1.5 см3/г BJH N2 и/или величинами поверхности 500-2000 м2/г по БЭТ. Предпочтительно, чтобы металлический катализатор представлял собой фталоцианин металла, и наиболее предпочтительно, чтобы металл выбирали из железа и кобальта или их смеси и наносили на твердый адсорбент. Необязательно данное изобретение может включать периодическую регенерацию твердого адсорбента. Специалистам в данной области известно, что существует множество способов регенерации слоев адсорбента как in situ, так и вне колонны, включая ионный обмен, обратную промывку растворителем, прокаливание, пиролиз и т.д. Конкретный используемый способ зависит от выбранного адсорбента, присутствия катализатора, а также от экономики и эффективности всего способа доочистки.
Настоящее изобретение позволяет получать обедненную щелочь с содержанием примесей серы менее 5 м.д. по массе. Окончательно очищенную щелочь затем отбирают из сосуда 24 как обедненную щелочь и возвращают по линии 5 в секцию обработки щелочью 3.
Пример
Для демонстрации удивительных и неожиданных результатов настоящего изобретения было проведено лабораторное тестирование. Колонну диаметром 1 дюйм и высотой 4 фута наполнили активированным углем, который предварительно пропитали фталоцианином кобальта. В колонну подавали исходную щелочь, содержащую в среднем 86 м.д. по массе серосодержащих соединений, вместе с потоком воздуха, в котором содержался пятикратный избыток против стехиометрического количества кислорода, необходимого для полного окисления меркаптанов в дисульфиды. Колонну поддерживали примерно при 125°F и давлении 25 фунт/кв. дюйм.
Реализация изобретения показана на Фигуре 2. В то время как исходная щелочь содержала в среднем 86 м.д. по массе соединений серы, полученная щелочь содержала менее 1 м.д. по массе меркаптанов и менее 2 м.д. дисульфидов. Общее содержание соединений серы составляет практически менее 5 м.д. по массе.
Также удивляет то обстоятельство, что такая активность сочетается с непрерывной работой в течение по меньшей мере 137 часов без заметного проскока. За это время слой активированного угля адсорбировал серосодержащие соединения в количестве примерно 17 мас.% (в виде серы) от собственной массы.
Когда со временем слой угля насыщается, его можно заменить новым слоем или регенерировать для многократного повторного использования. Выбор определяется экономичностью и эффективностью регенерации.
Приведенное описание конкретных вариантов настолько полно раскрывает сущность изобретения, что на основе современных знаний можно легко модифицировать и/или адаптировать конкретные варианты для разных применений без отклонения от общей концепции, и поэтому такие адаптации и модификации будут включены в содержание и интервалы эквивалентов раскрытых вариантов. Следует понимать, что использованная фразеология или терминология служат для описания, но не для ограничения вариантов.

Claims (16)

1. Способ удаления остаточных серосодержащих соединений из потока щелочного сырья, включающий:
a) подачу предварительно окисленного и отделенного потока щелочного сырья, содержащего щелочь и серосодержащие соединения, в установку доочистки, причем серосодержащие соединения составляют менее 500 м.д. по массе в виде серы;
b) контактирование потока щелочного сырья со слоем твердого адсорбента в установке доочистки;
c) адсорбцию на слое адсорбента дисульфидов, введенных в установку доочистки как часть серосодержащих соединений в потоке щелочного сырья; и
d) отвод из установки доочистки полученного доочищенного щелочного потока, содержащего менее 20 м.д. по массе (в виде серы) серосодержащих соединений.
2. Способ по п.1, в котором серосодержащие соединения в потоке щелочного сырья составляют менее 100 м.д. по массе в виде серы.
3. Способ по п.1, в котором серосодержащие соединения в полученном доочищенном щелочном потоке составляют менее 5 м.д. по массе в виде серы.
4. Способ по п.1, в котором адсорбентом является активированный уголь.
5. Способ по п.1, в котором по меньшей мере часть адсорбента подвергают регенерации.
6. Способ обработки обогащенного меркаптанами щелочного потока сырья, включающий:
a) подачу потока обогащенной щелочи, содержащей меркаптаны, в аппарат окисления;
b) окисление меркаптанов в дисульфидное масло (DSO) при конверсии 90% или более в присутствии окислителя и образование смеси, содержащей DSO, щелочь и остаточные меркаптаны;
c) удаление смеси, образовавшейся на стадии b), из аппарата окисления и подачу смеси в сепаратор;
d) отделение в сборник значительной части DSO от щелочи в сепараторе, предоставляя смеси возможность образовать два разных жидких слоя, причем нижний слой содержит щелочную фазу и верхний слой содержит фазу DSO;
e) удаление фазы DSO из сепаратора путем отбора верхнего слоя и удаление из сепаратора фазы щелочи, содержащей менее 500 м.д. по массе соединений серы, путем отбора нижнего слоя;
f) подачу щелочного потока со стадии е) в качестве потока сырья в установку доочистки, содержащую слой активированного угля;
g) адсорбцию на активированном угле дисульфидов, введенных в установку доочистки как часть соединений серы в щелочном потоке со стадии f); и
h) удаление из установки доочистки полученного дочищенного щелочного потока, содержащего менее 20 м.д. по массе (в виде серы) соединений серы.
7. Способ по п.6, в котором серосодержащие соединения в щелочном потоке сырья в установке доочистки составляют менее 100 м.д. по массе в виде серы.
8. Способ по п.6, в котором серосодержащие соединения в полученном доочищенном щелочном потоке составляют менее 5 м.д. по массе в виде серы.
9. Способ по п.6, в котором щелочной поток, подаваемый в установку доочистки, содержит менее чем 50 м.д. по массе меркаптанов.
10. Способ по п.6, в котором активированный уголь имеет объем пор 0,5-1, 5 см3/т по BJH N2 и/или величину поверхности 500-2000 м2/г по БЭТ.
11. Способ по п.6, в котором по меньшей мере часть адсорбента подвергают регенерации.
12. Способ по п.6, в котором серосодержащие соединения в полученном доочищенном щелочном потоке составляют менее 5 м.д. по массе в виде серы.
13. Способ по п.6, в котором:
i. подают окислитель в установку доочистки;
ii. смешивают и приводят в контакт поток щелочного сырья с окислителем в установке доочистки в присутствии слоя катализатора, содержащего нанесенный фталоцианин металла;
iii. превращают меркаптаны, присутствующие как часть серосодержащих соединений в потоке щелочного сырья стадии f), в дисульфиды; и
iv. адсорбируют на носителе катализатора те дисульфиды, которые образовались в процессе окисления на стадии iii), и дисульфиды, введенные в установку доочистки как часть серосодержащих соединений в потоке щелочного сырья стадии f).
14. Способ по п.13, в котором окислителем является воздух или по меньшей мере кислородсодержащий газ.
15. Способ по п.13, в котором металл выбирают из группы, включающей кобальт, железо и их смеси.
16. Способ по п.13, в котором растворитель вводят в аппарат окисления на стадии а) и растворитель отводят вместе с DSO на стадии е).
RU2010110989/05A 2007-09-10 2008-05-19 Способ удаления серосодержащих остаточных соединений из потока щелочного сырья (варианты) RU2450977C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/900,105 2007-09-10
US11/900,105 US7875185B2 (en) 2007-09-10 2007-09-10 Removal of residual sulfur compounds from a caustic stream

Publications (2)

Publication Number Publication Date
RU2010110989A RU2010110989A (ru) 2011-10-20
RU2450977C2 true RU2450977C2 (ru) 2012-05-20

Family

ID=39650994

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010110989/05A RU2450977C2 (ru) 2007-09-10 2008-05-19 Способ удаления серосодержащих остаточных соединений из потока щелочного сырья (варианты)

Country Status (10)

Country Link
US (1) US7875185B2 (ru)
EP (2) EP2190787B1 (ru)
JP (1) JP5475664B2 (ru)
CN (1) CN101855175B (ru)
BR (1) BRPI0816748A2 (ru)
ES (1) ES2569230T3 (ru)
HK (2) HK1149580A1 (ru)
RU (1) RU2450977C2 (ru)
TW (1) TWI389732B (ru)
WO (1) WO2009035480A1 (ru)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2008262567B2 (en) 2007-05-03 2013-05-16 Auterra, Inc. Product containing monomer and polymers of titanyls and methods for making same
US8308957B2 (en) * 2007-06-14 2012-11-13 Merichem Company Process for separating mercaptans from caustic
US8197671B2 (en) * 2008-03-26 2012-06-12 Auterra, Inc. Methods for upgrading of contaminated hydrocarbon streams
US8241490B2 (en) * 2008-03-26 2012-08-14 Auterra, Inc. Methods for upgrading of contaminated hydrocarbon streams
US9206359B2 (en) 2008-03-26 2015-12-08 Auterra, Inc. Methods for upgrading of contaminated hydrocarbon streams
US8764973B2 (en) 2008-03-26 2014-07-01 Auterra, Inc. Methods for upgrading of contaminated hydrocarbon streams
US8298404B2 (en) 2010-09-22 2012-10-30 Auterra, Inc. Reaction system and products therefrom
US8894843B2 (en) 2008-03-26 2014-11-25 Auterra, Inc. Methods for upgrading of contaminated hydrocarbon streams
WO2009120238A1 (en) * 2008-03-26 2009-10-01 Applied Nanoworks, Inc. Sulfoxidation catalysts and methods and systems of using same
US9061273B2 (en) 2008-03-26 2015-06-23 Auterra, Inc. Sulfoxidation catalysts and methods and systems of using same
US20110127194A1 (en) * 2009-11-30 2011-06-02 Merichem Company Hydrocarbon Treatment Process
US8900446B2 (en) 2009-11-30 2014-12-02 Merichem Company Hydrocarbon treatment process
US8597501B2 (en) * 2010-06-30 2013-12-03 Uop Llc Process for removing one or more sulfur compounds from a stream
US9828557B2 (en) 2010-09-22 2017-11-28 Auterra, Inc. Reaction system, methods and products therefrom
US9296956B2 (en) 2010-10-28 2016-03-29 Chevron U.S.A. Inc. Method for reducing mercaptans in hydrocarbons
US9028675B2 (en) * 2011-07-07 2015-05-12 Exxonmobil Research And Engineering Company Method for increasing thermal stability of a fuel composition using a solid phosphoric acid catalyst
CN102689976A (zh) * 2012-06-20 2012-09-26 中钢集团鞍山热能研究院有限公司 水溶性酞菁催化剂在处理兰炭废水中的应用
US9394188B2 (en) 2013-01-18 2016-07-19 Uop Llc Process for oxidizing sulfides and an apparatus relating thereto
US9157032B2 (en) 2013-02-19 2015-10-13 Uop Llc Process for oxidizing one or more thiol compounds
US9283496B2 (en) 2013-06-18 2016-03-15 Uop Llc Process for separating at least one amine from one or more hydrocarbons, and apparatus relating thereto
US9327211B2 (en) 2013-06-18 2016-05-03 Uop Llc Process for removing carbonyl sulfide in a gas phase hydrocarbon stream and apparatus relating thereto
US9126879B2 (en) 2013-06-18 2015-09-08 Uop Llc Process for treating a hydrocarbon stream and an apparatus relating thereto
US9284493B2 (en) 2013-06-18 2016-03-15 Uop Llc Process for treating a liquid hydrocarbon stream
US9523047B2 (en) * 2014-06-12 2016-12-20 Uop Llc Apparatuses and methods for treating mercaptans
US10246647B2 (en) 2015-03-26 2019-04-02 Auterra, Inc. Adsorbents and methods of use
US10450516B2 (en) * 2016-03-08 2019-10-22 Auterra, Inc. Catalytic caustic desulfonylation
US10435362B2 (en) 2016-12-21 2019-10-08 Uop Llc Process for oxidizing one or more thiol compounds and subsequent separation in a single vessel
US10240096B1 (en) 2017-10-25 2019-03-26 Saudi Arabian Oil Company Integrated process for activating hydroprocessing catalysts with in-situ produced sulfides and disulphides
CN108704480B (zh) * 2018-04-13 2020-11-06 中国石油天然气股份有限公司 一种液化气脱硫醇碱液的再生方法
US11198107B2 (en) 2019-09-05 2021-12-14 Visionary Fiber Technologies, Inc. Conduit contactor and method of using the same
US11524283B2 (en) 2020-12-21 2022-12-13 Merichem Company Catalytic carbon fiber preparation methods
US11517889B2 (en) 2020-12-21 2022-12-06 Merichem Company Catalytic carbon fiber contactor
US11826736B2 (en) 2021-11-29 2023-11-28 Merichem Company Catalytic carbon fiber preparation methods
US20240174912A1 (en) * 2021-03-26 2024-05-30 ExxonMobil Technology and Engineering Company Regenerating solvent mixtures that are used for elemental sulfur removal within hydrocarbon wells

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB782942A (en) * 1954-05-04 1957-09-18 Gelsenberg Benzin Ag Process for reduction of the hydrogen sulphide and mercaptan sulphur content of aqueous caustic alkali liquors
RU2108302C1 (ru) * 1993-04-30 1998-04-10 Юоп Способ обработки водного потока, содержащего водорастворимое неорганическое сульфидное соединение
US5961819A (en) * 1998-02-09 1999-10-05 Merichem Company Treatment of sour hydrocarbon distillate with continuous recausticization
RU2224006C1 (ru) * 2002-07-22 2004-02-20 Государственное унитарное предприятие Всероссийский научно-исследовательский институт углеводородного сырья Способ очистки углеводородов от меркаптанов, сероводорода, сероокиси углерода и сероуглерода
RU61282U1 (ru) * 2006-09-11 2007-02-27 Общество с ограниченной ответственностью "Оренбурггазпром" (ООО "Оренбурггазпром") Установка очистки углеводородного сырья от сероорганических соединений

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2740749A (en) 1954-01-29 1956-04-03 Standard Oil Co Regeneration of aqueous caustic-mercaptide solutions with oxygen and a liquid hydrocarbon
US2853432A (en) 1954-12-28 1958-09-23 Universal Oil Prod Co Regeneration of used alkaline reagents by oxidizing the same in the presence of a phthalocyanine catalyst
US3108081A (en) * 1959-07-17 1963-10-22 Universal Oil Prod Co Catalyst and manufacture thereof
US3758404A (en) 1971-07-09 1973-09-11 Merichem Co Liquid liquid mass transfer process and apparatus
US3977829A (en) 1973-05-18 1976-08-31 Merichem Company Liquid-liquid mass transfer apparatus
JPS5820302B2 (ja) * 1974-10-25 1983-04-22 武田薬品工業株式会社 カツセイタンノサイセイホウホウ
US3992156A (en) 1975-07-23 1976-11-16 Merichem Company Mass transfer apparatus
JPS52134868A (en) * 1976-05-07 1977-11-11 Nippon Oil Co Ltd Treatment of waste alkali solution
US4558022A (en) * 1981-02-06 1985-12-10 Calgon Carbon Corporation Regeneration of caustic impregnated activated carbons
US4675100A (en) 1985-05-30 1987-06-23 Merichem Company Treatment of sour hydrocarbon distillate
CA2174713C (en) 1995-07-21 2000-06-27 Kenneth R. Maycock Removal of trace metal and metalloid species from brine
JP3565972B2 (ja) * 1996-01-31 2004-09-15 新日本石油化学株式会社 廃ソーダの湿式酸化方法
US5904854A (en) * 1997-01-31 1999-05-18 Electrophor, Inc. Method for purifying water
US5935422A (en) 1997-12-29 1999-08-10 Uop Llc Removal of organic sulfur compounds from FCC gasoline using regenerable adsorbents
US7029574B2 (en) 2002-09-04 2006-04-18 The Regents Of The University Of Michigan Selective sorbents for purification of hydrocarbons
US7053256B2 (en) 2001-09-04 2006-05-30 The Regents Of The University Of Michigan Selective sorbents for purification of hydrocarbons
WO2003020850A2 (en) 2001-09-04 2003-03-13 The Regents Of The University Of Michigan Selective sorbents for purification of hydrocarbons
US7094333B2 (en) 2001-09-04 2006-08-22 The Regents Of The University Of Michigan Selective sorbents for purification of hydrocarbons
US7063732B2 (en) 2003-07-28 2006-06-20 Fuelcell Energy, Inc. High-capacity sulfur adsorbent bed and gas desulfurization method
US7093433B2 (en) 2003-10-24 2006-08-22 Tesmic Spa Laying apparatus for cables, lines, conductors or suchlike, and relative laying method
US7144499B2 (en) 2003-11-26 2006-12-05 Lyondell Chemical Technology, L.P. Desulfurization process
US7666297B2 (en) 2004-11-23 2010-02-23 Cpc Corporation, Taiwan Oxidative desulfurization and denitrogenation of petroleum oils
US7749376B2 (en) 2005-08-15 2010-07-06 Sud-Chemie Inc. Process for sulfur adsorption using copper-containing catalyst

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB782942A (en) * 1954-05-04 1957-09-18 Gelsenberg Benzin Ag Process for reduction of the hydrogen sulphide and mercaptan sulphur content of aqueous caustic alkali liquors
RU2108302C1 (ru) * 1993-04-30 1998-04-10 Юоп Способ обработки водного потока, содержащего водорастворимое неорганическое сульфидное соединение
US5961819A (en) * 1998-02-09 1999-10-05 Merichem Company Treatment of sour hydrocarbon distillate with continuous recausticization
RU2224006C1 (ru) * 2002-07-22 2004-02-20 Государственное унитарное предприятие Всероссийский научно-исследовательский институт углеводородного сырья Способ очистки углеводородов от меркаптанов, сероводорода, сероокиси углерода и сероуглерода
RU61282U1 (ru) * 2006-09-11 2007-02-27 Общество с ограниченной ответственностью "Оренбурггазпром" (ООО "Оренбурггазпром") Установка очистки углеводородного сырья от сероорганических соединений

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
СМИРНОВ А.Д. Сорбционная очистка воды. - Л.: Химия, 1982, с.10-13, табл.1.1 и 1.2. *

Also Published As

Publication number Publication date
EP2190787B1 (en) 2016-04-06
CN101855175A (zh) 2010-10-06
EP2190787A1 (en) 2010-06-02
CN101855175B (zh) 2013-08-21
US20090065434A1 (en) 2009-03-12
WO2009035480A1 (en) 2009-03-19
BRPI0816748A2 (pt) 2015-03-17
JP2010538822A (ja) 2010-12-16
HK1224326A1 (zh) 2017-08-18
TWI389732B (zh) 2013-03-21
RU2010110989A (ru) 2011-10-20
JP5475664B2 (ja) 2014-04-16
HK1149580A1 (en) 2011-10-07
US7875185B2 (en) 2011-01-25
ES2569230T3 (es) 2016-05-09
TW200914107A (en) 2009-04-01
EP3078725A1 (en) 2016-10-12

Similar Documents

Publication Publication Date Title
RU2450977C2 (ru) Способ удаления серосодержащих остаточных соединений из потока щелочного сырья (варианты)
US7276152B2 (en) Oxidative desulfurization and denitrogenation of petroleum oils
WO2002053683A1 (fr) Procede et dispositif de desulfuration d&#39;hydrocarbures charges en derives thiopheniques
CA2535349A1 (en) A process for the desulfurization of hydrocarbonaceous oil
JP2012162731A (ja) 改良された分離方法
EP1666568A1 (fr) Procédé de désulfuration d&#39;une coupe hydrocarbonée en lit mobile simulé
JP4755792B2 (ja) 超低硫黄炭化水素ストリームを生成させるための吸着方法
US5723039A (en) Process for removal of organo-sulfur compounds from liquid hydrocarbons
US7186328B1 (en) Process for the regeneration of an adsorbent bed containing sulfur oxidated compounds
JP2013538900A (ja) 酸化した炭化水素燃料からのスルホンの除去
EP1958691A1 (en) A process for the regeneration of an absorbent bed containing sulfur oxidated compounds
US6565741B2 (en) Process for desulfurization of petroleum distillates
CN104694151A (zh) 一种含有硫醇盐碱液的氧化再生方法
CN108264932A (zh) 燃油氧化吸附脱硫工艺及装置
WO2017093012A1 (en) Regenerable sulfur adsorption and removal
GB2132630A (en) Process for the elimination of mercaptans contained in gas
US4409124A (en) Process for regenerating sulfur sorbent by oxidation and leaching
CN101092574B (zh) 催化裂化汽油固定床无液碱脱硫化氢方法
WO2017202608A1 (en) A process for the purifying of a raw gas stream containing mainly c1 -c5 hydrocarbons and carbon dioxide, and impurities of organic and inorganic sulfur compounds, halogenated and non-halogenated volatile organic compounds and oxygen
EP0213026B1 (fr) Procédé de régéneration d&#39;un catalyseur utilisé dans un procédé d&#39;acoucissement
KR101362939B1 (ko) 메탄올을 극성용매로하는 2단계 흡착을 이용한 황산화물 분리공정
KR20130042262A (ko) 연속적 황산화물 흡착 제거 공정용 탈착제 및 이를 이용하여 탄화수소 스트림으로부터 황산화물을 제거하는 방법
CN101063043B (zh) 一种轻馏分油的氧化脱臭方法
FR2882761A1 (fr) Procede de desulfuration et/ou de deazotation d&#39;une charge hydrocarbonee par oxydesulfuration
WO1997035945A2 (en) Process for removal of organo-sulfur compounds from liquid hydrocarbons