RU2444084C1 - Способ образования на подложке упорядоченного массива наноразмерных сфероидов - Google Patents

Способ образования на подложке упорядоченного массива наноразмерных сфероидов Download PDF

Info

Publication number
RU2444084C1
RU2444084C1 RU2010143537/28A RU2010143537A RU2444084C1 RU 2444084 C1 RU2444084 C1 RU 2444084C1 RU 2010143537/28 A RU2010143537/28 A RU 2010143537/28A RU 2010143537 A RU2010143537 A RU 2010143537A RU 2444084 C1 RU2444084 C1 RU 2444084C1
Authority
RU
Russia
Prior art keywords
film
substrate
plate
substance
spheroids
Prior art date
Application number
RU2010143537/28A
Other languages
English (en)
Inventor
Владимир Владимирович Чесноков (RU)
Владимир Владимирович Чесноков
Дмитрий Владимирович Чесноков (RU)
Дмитрий Владимирович Чесноков
Original Assignee
Государственное образовательное учреждение высшего профессионального образования "Сибирская государственная геодезическая академия" (ГОУ ВПО "СГГА")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования "Сибирская государственная геодезическая академия" (ГОУ ВПО "СГГА") filed Critical Государственное образовательное учреждение высшего профессионального образования "Сибирская государственная геодезическая академия" (ГОУ ВПО "СГГА")
Priority to RU2010143537/28A priority Critical patent/RU2444084C1/ru
Application granted granted Critical
Publication of RU2444084C1 publication Critical patent/RU2444084C1/ru

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

Изобретение относится к микроэлектронике, оптической и оптоэлектронной технике, к нелитографическим микротехнологиям формирования на подложках тонкопленочных рисунков из наносимых на ее поверхность веществ. Сущность изобретения: способ образования на подложке упорядоченного массива наноразмерных сфероидов заключается в переносе вещества пленки, нанесенной на поверхность прозрачной пластины-донора, на акцепторную подложку путем импульсного лазерного облучения пленки сквозь пластину, при этом между упомянутой пленкой и пластиной наносят жертвенный подслой, который при упомянутом облучении испаряется. Изобретение обеспечивает повышение разрешающей способности формирования рисунка, получение возможности изготовления микроструктур с минимальными размерами, много меньшими длины волны излучения, инициирующего технологический процесс. 4 з.п. ф-лы, 3 ил.

Description

Изобретение относится к микроэлектронике, оптической и оптоэлектронной технике, к нелитографическим микротехнологиям формирования на подложках тонкопленочных рисунков из наносимых на ее поверхность веществ.
Аналогами изобретения авторы считают лазерно-фотолитический и лазерно-пиролитический способы получения микрорисунков на подложке [Вьюков Л.А., Емельянов Ф.В., Ермолов А.В. Лазерные процессы в технологии микроэлектроники // Изв. АН СССР, Сер. Физ. - 1987. - Т.51, №6. - С.1203-1210], при которых подложка облучается сфокусированным лазерным излучением и находится в атмосфере паров соединения, разлагающегося под действием света или нагревания. На облучаемом участке подложки оседает слой вещества тонкопленочного рисунка. Недостатком аналога является малое разрешение, что вызвано дифракцией света на объективе осветителя; достижимое минимальное значение фокального пятна порядка длины волны света, то есть не менее сотен нм при использовании ультрафиолетового излучателя.
Прототипом изобретения является способ переноса вещества тонкой пленки с подложки-донора на подложку-акцептор путем лазерного облучения тонкой металлической пленки сквозь прозрачную подложку-донор при ретуши фотошаблонов [Вейко В.П. Лазерная обработка пленочных элементов. - Л.: Машиностроение, 1986]. При локальном облучении металлической пленки, расположенной непосредственно на поверхности донора, участок пленки испарялся, пары вещества пересекали зазор между пластинами донора и акцептора и оседали, создавая на поверхности акцептора островок из тонкого слоя металла, размер которого несколько больше облученной области пленки на подложке-доноре. Недостатком способа - прототипа является, как и в аналоге, малое разрешение.
Задачами, решаемыми в данном изобретении, являются:
- преодоление недостатков прототипа: увеличение разрешающей способности способа, получение возможности изготовления микроструктур с минимальными размерами, много меньшими длины волны излучения, инициирующего технологический процесс;
- создание способа получения объемных нанообразований типа сфер или сфероидов.
Задача решается тем, что в способе переноса вещества пленки, нанесенной на поверхность прозрачной пластины-донора, на акцепторную подложку путем импульсного лазерного облучения пленки сквозь пластину, в соответствии с изобретением, между упомянутой пленкой и пластиной наносят жертвенный подслой, причем подслой при упомянутом облучении испаряется.
Предлагается также, чтобы упомянутая пленка была сформирована в виде массива островков.
Предлагается также, чтобы упомянутое лазерное облучение велось путем сканирования фокальным пятном.
Предлагается также, чтобы пластину-донор перемещали относительно подложки.
Предлагается также, чтобы температура испарения жертвенного слоя была меньше температуры испарения пленки, но больше температуры ее плавления, причем облучение необходимо проводить в условиях вакуума или инертной атмосферы.
Способ поясняется на Фиг.1, 2, 3.
На Фиг.1 а), б), в) показана последовательность этапов получения наносфер в соответствии с п.1 Формулы. Здесь 1 - пленка переносимого вещества, 2 - прозрачная пластина-донор, 3 - жертвенный подслой между переносимой пленкой и донором, 4 - подложка-акцептор, 5 - зазор между акцептором и пластиной-донором, 6 - лазерный пучок, 7 - фокальное пятно лазерного пучка, 8 - участок пленки 1, отделившийся от пластины 2 после испарения жертвенного слоя в фокальном пятне, 9 - сфера, в которую был стянут участок 8 силами поверхностного натяжения во время перемещения в зазоре 5.
На Фиг.2 а) и б) показана последовательность этапов получения наносфер в соответствии с п.2 Формулы. Здесь 10 - массив островков переносимой пленки, 11 - массив сфер, оказавшихся на подложке 4 в результате переноса массива островков с донора 2.
На Фиг.3 показан перенос вещества пленки 1 пластины 2 на подложку и получение наносфер в соответствии с п.3 Формулы. Здесь 12 - сфокусированный сканирующий лазерный пучок, перемещаемый по направлению стрелки, 13 - участок пленки, отделившийся от пластины 2 в результате воздействия лазерного пучка, 14 - массив сфер, оказавшихся на подложке 4 в результате поочередного лазерного облучения новых участков пленки двухслойной структуры.
При облучении жертвенного слоя 3 (Фиг.1) сфокусированным лазерным пучком 6 излучение поглощается, и участок жертвенного слоя в области фокального пятна 7 нагревается за время лазерного импульса до температуры кипения и испаряется. Давлением пара отрывается участок 8 пленки 1, температура этого участка оказывается приблизительно одинаковой с температурой пара. Если эта температура выше температуры плавления пленки, силами поверхностного натяжения плоский лоскут пленки собирается в сферическую каплю 9. Расчеты показали, что времени пролета (~0,2 мкс) капли в зазоре 5, величина которого должна составлять 1-2 мкм, достаточно для формирования сферы. Часть вещества пленки оказывается перенесенной через зазор на поверхность подложки и имеет на ней форму сфероида. При толщине пленки 8 нм и диаметре фокального пятна 200 нм образующаяся сфера имеет диаметр 80 нм.
В соответствии с п.2 Формулы реализуется групповой перенос (Фиг.2) множества пленочных островков 10 на подложку 4 и образование на ней массива наношариков 11. Островки заранее формируются одним из известных, например, электронно-литографическим, способов на пластине-доноре; лазерному облучению одновременно подвергается вся поверхность пластины, занятая островками. При толщине пленки 2 нм и диаметре островка 50 нм диаметр образующихся наносфер равен 20 нм.
В соответствии с п.3 Формулы реализуется поочередное формирование наносфер на подложке без предварительного формирования островков переносимого вещества на донорной пластине (Фиг.3). Сфокусированный лазерный пучок 12 перемещается относительно неподвижных пластины и подложки (или они перемещаются относительно неподвижного лазерного луча); лазер импульсно облучает пластину; за каждый импульс на подложке образуется наносфера 14. Перемещение лазера может быть скачкообразным или непрерывным, непрерывное перемещение возможно при малой длительности лазерного импульса порядка единиц наносекунд. Минимальное расстояние между наносферами определяется диаметром фокального пятна на жертвенном слое 3. Период следования лазерных импульсов должен быть согласован со скоростью сканирования.
На подложке формируется упорядоченный массив наночастиц, размер которых определяется толщиной пленки и диаметром испаренной зоны жертвенного слоя аналогично рассмотренному выше.
В соответствии с п.4 Формулы пластину-донор перемещают относительно подложки параллельно ее поверхности при одновременном сканирующем движении лазерного луча. Этим достигается возможность уменьшения минимального расстояния между наносферами, необходимо лишь двигать пластину навстречу движению луча.
Условия, предусмотренные в п.5 Формулы - вакуум или инертная атмосфера в зазоре, - обеспечивают отсутствие химического взаимодействия расплава переносимого вещества со средой за время переноса. Предполагается также, что инертная среда благодаря гидродинамическому воздействию на движущуюся каплю расплава может изменить ее форму со сферической на веретенообразную. Подобные формы осаждаемых наночастиц необходимы в некоторых применениях, например, при их использовании в качестве наноантенн.
Из вышесказанного следует:
- техническим результатом использования испаряющегося при облучении жертвенного слоя (п.1 Формулы) является предотвращение испарения переносимого с поверхности донора на акцептор вещества, возможность его переноса в компактном виде;
- техническим результатом предварительного формирования поверх жертвенного слоя массива островков переносимого вещества (п.2 Формулы) является возможность одновременного переноса большого числа островков, увеличение производительности при получении на акцепторной пластине слоя наносфер, а также возможность уменьшения размеров наносфер, так как островки могут быть выполнены с использованием неоптической технологии много меньших размеров, чем размер фокального пятна оптического излучения;
- техническим результатом использования облучения в виде сканирования фокальным пятном (п.3 Формулы) является возможность избежать стадии предварительного формирования массива островков переносимого вещества на доноре (упрощение технологии);
- техническим результатом перемещения пластины-донора параллельно поверхности акцептора в процессе сканирования фокальным пятном (п.4 Формулы) является возможность уменьшения расстояний между осаждающимися наносферами до значений, меньших диаметра фокального пятна;
- техническим результатом выбора температуры испарения жертвенного слоя в диапазоне между температурами плавления и испарения переносимой пленки, причем процесс переноса проводится в вакууме или инертном газе (п.5 Формулы) является возможность переноса вещества в компактном расплавленном состоянии. Химическая инертность среды переноса обеспечивает отсутствие химических воздействий на переносимое вещество, упругость газовой атмосферы предоставляет возможность управления формой осаждаемой наночастицы.
Рассмотрим примеры реализации изобретения.
Переносимым материалом, из которого состоят осаждающиеся на подложке нанообразования, может быть практически любой металл, полупроводник, диэлектрик (алюминий, золото, молибден, вольфрам, кремний, двуокись кремния, стекло, арсенид галлия, тройные и четверные полупроводники и т.д.). В качестве материала донорной пластины необходимо использовать прозрачные стекло, сапфир и др., в качестве материала акцепторной пластины могут быть применены и прозрачные, и непрозрачные материалы, в том числе стекло, металл, полупроводники кремний, германий, арсенид галлия и др.
Жертвенный слой может быть из легко испаряющихся или легко диссоциирующих при нагревании, предпочтительно поглощающих в тонких слоях лазерное излучение веществ (металлы алюминий, магний и др., органические соединения типа маннита, азиды металлов и т.д.). Условие поглощения в тонких слоях не обязательно, так как жертвенный слой может нагреваться и от переносимого островка за счет теплопроводности, если переносимое вещество тугоплавкое.
Лазерное излучение должно быть импульсным с длительностью импульса порядка единиц - сотен нс, длина волны излучения в диапазоне от УФ до ближней ИК-области спектра (эксимерные лазеры, азотный и твердотельный лазеры, последний - с модуляцией добротности и др.). Плотность мощности излучения на поверхности жертвенного слоя в импульсе - порядка 106-108 Вт/см2, при этом достигаются импульсные температуры нагреваемого вещества от единиц тысяч до десятков тысяч градусов, расчетные значения давления паров жертвенного слоя - десятки атм.
Таким образом, показано, что новые элементы в предложениях обеспечивают возникновение полезных эффектов; показана реализуемость изобретения, показана достижимость целей изобретения.
Практическое применение изобретение может найти в микро- и наноэлектронике как нелитографическая технология формирования наноточек с упорядоченным их расположением, в оптике и нанооптике при создании фотонных кристаллов и сверхбыстродействующих приемников излучения и излучателей и др.

Claims (5)

1. Способ образования на подложке упорядоченного массива наноразмерных сфероидов, заключающийся в переносе вещества пленки, нанесенной на поверхность прозрачной пластины-донора, на акцепторную подложку путем импульсного лазерного облучения пленки сквозь пластину, отличающийся тем, что между упомянутой пленкой и пластиной наносят жертвенный подслой, причем подслой при упомянутом облучении испаряется.
2. Способ по п.1, отличающийся тем, что упомянутая пленка сформирована в виде массива островков.
3. Способ по п.1, отличающийся тем, что упомянутое лазерное облучение ведется путем сканирования фокальным пятном.
4. Способ по п.3, отличающийся тем, что пластину-донор перемещают относительно упомянутой подложки.
5. Способ по п.1, или 2, или 3, или 4, отличающийся тем, что температура испарения упомянутого жертвенного подслоя меньше температуры испарения переносимой пленки, но больше температуры ее плавления, причем упомянутое облучение проводят в условиях вакуума или инертной атмосферы.
RU2010143537/28A 2010-10-25 2010-10-25 Способ образования на подложке упорядоченного массива наноразмерных сфероидов RU2444084C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010143537/28A RU2444084C1 (ru) 2010-10-25 2010-10-25 Способ образования на подложке упорядоченного массива наноразмерных сфероидов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010143537/28A RU2444084C1 (ru) 2010-10-25 2010-10-25 Способ образования на подложке упорядоченного массива наноразмерных сфероидов

Publications (1)

Publication Number Publication Date
RU2444084C1 true RU2444084C1 (ru) 2012-02-27

Family

ID=45852426

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010143537/28A RU2444084C1 (ru) 2010-10-25 2010-10-25 Способ образования на подложке упорядоченного массива наноразмерных сфероидов

Country Status (1)

Country Link
RU (1) RU2444084C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU188920U1 (ru) * 2018-11-01 2019-04-29 федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский ядерный университет МИФИ" (НИЯУ МИФИ) Устройство для сбора солнечного излучения и генерации носителей заряда для прозрачных солнечных батарей
RU2756777C1 (ru) * 2020-12-28 2021-10-05 Федеральное государственное бюджетное учреждение науки Институт электрофизики и электроэнергетики Российской академии наук (ИЭЭ РАН) Способ получения микроструктур на поверхности полупроводника

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2305065C2 (ru) * 2005-07-07 2007-08-27 Институт теплофизики экстремальных состояний объединенного института высоких температур Российской Академии наук (ИТЭС ОИВТ РАН) Способ получения углеродных, металлических и металлоуглеродных наночастиц
RU2373303C1 (ru) * 2008-07-21 2009-11-20 Государственное образовательное учреждение высшего профессионального образования "Омский государственный университет им. Ф.М. Достоевского" Способ получения наночастиц металла на поверхности подложки
RU2380195C1 (ru) * 2008-05-04 2010-01-27 Федеральное государственное унитарное предприятие "Научно-исследовательский институт электрофизической аппаратуры им. Д.В. Ефремова" Способ получения осажденных на носителе наночастиц металла или полупроводника
RU2387044C1 (ru) * 2008-10-17 2010-04-20 Центр Фотохимии Российской Академии Наук Способ получения упорядоченных наноструктурированных пленок на основе наночастиц

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2305065C2 (ru) * 2005-07-07 2007-08-27 Институт теплофизики экстремальных состояний объединенного института высоких температур Российской Академии наук (ИТЭС ОИВТ РАН) Способ получения углеродных, металлических и металлоуглеродных наночастиц
RU2380195C1 (ru) * 2008-05-04 2010-01-27 Федеральное государственное унитарное предприятие "Научно-исследовательский институт электрофизической аппаратуры им. Д.В. Ефремова" Способ получения осажденных на носителе наночастиц металла или полупроводника
RU2373303C1 (ru) * 2008-07-21 2009-11-20 Государственное образовательное учреждение высшего профессионального образования "Омский государственный университет им. Ф.М. Достоевского" Способ получения наночастиц металла на поверхности подложки
RU2387044C1 (ru) * 2008-10-17 2010-04-20 Центр Фотохимии Российской Академии Наук Способ получения упорядоченных наноструктурированных пленок на основе наночастиц

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Вейко В.П. Лазерная обработка пленочных элементов. - Л.: Машиностроение, 1986. Вьюков Л.А. и др. Лазерные процессы в технологии микроэлектроники. Изв. АН СССР, Сер. Физ., 1987, Т.51, №6, с.1203-1210. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU188920U1 (ru) * 2018-11-01 2019-04-29 федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский ядерный университет МИФИ" (НИЯУ МИФИ) Устройство для сбора солнечного излучения и генерации носителей заряда для прозрачных солнечных батарей
RU2756777C1 (ru) * 2020-12-28 2021-10-05 Федеральное государственное бюджетное учреждение науки Институт электрофизики и электроэнергетики Российской академии наук (ИЭЭ РАН) Способ получения микроструктур на поверхности полупроводника
RU2756777C9 (ru) * 2020-12-28 2021-12-14 Федеральное государственное бюджетное учреждение науки Институт электрофизики и электроэнергетики Российской академии наук (ИЭЭ РАН) Способ получения микроструктур на поверхности полупроводника

Similar Documents

Publication Publication Date Title
US8598051B2 (en) Femtosecond laser-induced formation of submicrometer spikes on a semiconductor substrate
US8101247B2 (en) Sub-micron laser direct write
US20090130427A1 (en) Nanomaterial facilitated laser transfer
US20120242987A1 (en) Surface-enhanced raman scattering apparatus and methods
Brodoceanu et al. Fabrication of silicon nanowire arrays by near-field laser ablation and metal-assisted chemical etching
TWI644177B (zh) 用於產生輻射之方法及裝置
Rapp et al. Smart beam shaping for the deposition of solid polymeric material by laser forward transfer
Henley et al. Laser implantation of plasmonic nanostructures into glass
Hong et al. Laser assisted surface nanopatterning
RU2444084C1 (ru) Способ образования на подложке упорядоченного массива наноразмерных сфероидов
Rehman et al. Fundamentals and advances in laser-induced transfer
Amoako Femtosecond laser structuring of materials: A review
US11272606B2 (en) EUV light source and apparatus for lithography
RU2613054C1 (ru) Способ формирования тонкоплёночного рисунка на подложке
EP2000558B1 (en) Method and apparatus for manufacturing purely refractive optical structures
US11801704B2 (en) Method and a device for assembly of a nanomaterial structure
Ruffino et al. Metal nanostructures with complex surface morphology: The case of supported lumpy Pd and Pt nanoparticles produced by laser processing of metal films
Kabashin et al. Laser–ablative nanostructuring of surfaces
Narazaki et al. Nano-and microdot array formation by laser-induced dot transfer
JP2008512695A (ja) フォトニック結晶の製造方法
JP6041145B2 (ja) 酸化物ドットパターンの作製方法
Hong et al. From transparent particle light enhancement to laser nanoimprinting
Bartnik et al. Micro-and nanoprocessing of polymers using a laser plasma extreme ultraviolet source
RU2546719C1 (ru) Способ получения рельефа на поверхности
Zamfirescu et al. Laser processing and characterization with femtosecond laser pulses

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20181026