RU2442151C2 - Способ выявления подповерхностных дефектов в ферромагнитных объектах - Google Patents

Способ выявления подповерхностных дефектов в ферромагнитных объектах Download PDF

Info

Publication number
RU2442151C2
RU2442151C2 RU2010107405/28A RU2010107405A RU2442151C2 RU 2442151 C2 RU2442151 C2 RU 2442151C2 RU 2010107405/28 A RU2010107405/28 A RU 2010107405/28A RU 2010107405 A RU2010107405 A RU 2010107405A RU 2442151 C2 RU2442151 C2 RU 2442151C2
Authority
RU
Russia
Prior art keywords
eddy current
controlled object
current transducer
subsurface
defect
Prior art date
Application number
RU2010107405/28A
Other languages
English (en)
Other versions
RU2010107405A (ru
Inventor
Сергей Владимирович Клюев (RU)
Сергей Владимирович Клюев
Петр Николаевич Шкатов (RU)
Петр Николаевич Шкатов
Original Assignee
Государственное образовательное учреждение высшего профессионального образования "Московский государственный университет приборостроения и информатики"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования "Московский государственный университет приборостроения и информатики" filed Critical Государственное образовательное учреждение высшего профессионального образования "Московский государственный университет приборостроения и информатики"
Priority to RU2010107405/28A priority Critical patent/RU2442151C2/ru
Publication of RU2010107405A publication Critical patent/RU2010107405A/ru
Application granted granted Critical
Publication of RU2442151C2 publication Critical patent/RU2442151C2/ru

Links

Images

Abstract

Изобретение относится к неразрушающему контролю. Способ выявления подповерхностных дефектов в ферромагнитных объектах заключается в том, что контролируемый объект намагничивают системой намагничивания, возбуждают с помощью вихретокового преобразователя вихревые токи, сканируют поверхность контролируемого объекта, регистрируют в процессе сканирования изменения
Figure 00000005
вносимых в вихретоковый преобразователь параметров. При этом согласно изобретению частоту возбуждаемых вихревых токов выбирают из условия их проникновения в тонкий поверхностный слой контролируемого объекта, проводят измерение, по меньшей мере, одной из составляющей ΔВ индукции магнитных потоков рассеяния, а о наличии подповерхностных дефектов судят по совокупности полученных изменений

Description

Изобретение относится к неразрушающему контролю и может быть использовано для дефектоскопии объектов из ферромагнитных металлов.
Известен способ выявления подповерхностных дефектов в ферромагнитных объектах, заключающийся в том, что намагничивают контролируемый объект с помощью системы намагничивания, сканируют поверхность контролируемого объекта, регистрируют магниточувствительными элементами, по меньшей мере, одну составляющую индукции магнитных потоков рассеяния над контролируемым участком и по ее изменению судят о наличии подповерхностных дефектов [1].
Недостаток известного способа заключается в невозможности выявления дефектов, залегающих на глубине более 15 мм. Это связано с тем, что изменения магнитных потоков рассеяния, созданные такими дефектами, сопоставимы с изменениями шумовой составляющей, обусловленными вариацией влияющих факторов.
Наиболее близок к предложенному принятый за прототип способ выявления подповерхностных дефектов в ферромагнитных объектах, заключающийся в том, что контролируемый объект намагничивают системой намагничивания, возбуждают с помощью вихретокового преобразователя вихревые токи, проникающие на толщину контролируемого участка, сканируют поверхность контролируемого объекта, регистрируют в процессе сканирования изменение вносимых в вихретоковый преобразователь параметров и по величине этих изменений судят о наличии и параметрах подповерхностных дефектов [2].
Недостаток известного способа заключается в необходимости использования низких частот возбуждаемых вихревых токов, для обеспечения их проникновения на толщину контролируемого объекта. При этом снижается пропорциональная рабочей частоте абсолютная чувствительность к дефектам. Для обеспечения требуемой абсолютной чувствительности необходимо существенное увеличение размеров и числа витков катушек индуктивности вихретоковых преобразователей, что приводит к соответствующему уменьшению локальности контроля.
Цель изобретения - повышение достоверности контроля, путем повышения локальности пятна контроля.
Поставленная цель в заявляемом способе выявления подповерхностных дефектов в ферромагнитных объектах, заключающемся в том, что контролируемый объект намагничивают системой намагничивания, возбуждают с помощью вихретокового преобразователя вихревые токи, сканируют поверхность контролируемого объекта, регистрируют в процессе сканирования изменения
Figure 00000001
вносимых в вихретоковый преобразователь параметров, достигается благодаря тому, что частоту возбуждаемых вихревых токов выбирают из условия их проникновения в тонкий поверхностный слой контролируемого объекта, проводят измерение, по меньшей мере, одной из составляющей ΔВ индукции магнитных потоков рассеяния, а о наличии подповерхностных дефектов судят по совокупности полученных изменений
Figure 00000002
и ΔВ.
Проведенные заявителем патентно-литературные исследования не выявили технических решений с существенными признаками, идентичными или эквивалентными отличительным признакам заявляемого объекта. Таким образом, по мнению заявителя, заявляемое техническое решение соответствует критерию "существенные отличия".
На фиг.1 представлена схема контроля согласно заявляемому способу; на фиг.2 - зависимость амплитуды ΔUвн от глубины подповерхностного дефекта при намагничивании контролируемого объекта, на фиг.3 - изменение дифференциальной магнитной проницаемости металла от глубины дефекта при намагничивании контролируемого объекта; на фиг.4 - изменение дифференциальной магнитной проницаемости металла при изменении напряженности Н намагничивающего поля; на фиг.5 - изменение напряженности ΔВт тангенциальной составляющей индукции магнитных потоков рассеяния при изменении глубины дефекта.
Заявляемый способ реализуется с помощью схемы контроля, представленной на фиг.1. Она состоит из намагничивающей системы 1, вихретокового преобразователя 2, генератора 3 гармонического напряжения, последовательно соединенных компенсатора 4, усилителя 5, амплитудного детектора 6, блока 7 обработки и отображения информации, датчика 8 Холла, подключенного токовым входом к источнику 9, последовательно соединенных второго компенсатора 10, второго усилителя 11, подключенного своим выходом ко второму входу блока 7. Выход датчика 8 Холла подключен к входу компенсатора 10. Вихретоковый преобразователь 2 состоит из возбуждающей катушки 12, подключенной к выходу генератора 3, а также дифференциально включенных измерительной катушки 13 и компенсационной катушки 14, подключенных внешними выводами ко входу компенсатора 4. Все катушки вихретокового преобразователя соосны, возбуждающая катушка 12 находится между идентичными измерительной катушкой 13 и компенсационной катушкой 14, установленными с одинаковым осевым зазором относительно возбуждающей катушки 12. Намагничивающая система 1 выполнена П-образной и состоит из стержневых постоянных магнитов 15 и 16, соединенных магнитопроводом 17. Для обеспечения возможности сканирования с заданным зазором намагничивающая система 1 снабжена колесными опорами 18 и 19. Вихретоковый преобразователь 2 и датчик 8 Холла расположены в межполюсном пространстве намагничивающей системы и симметрично относительно ее стержней. Рабочий торец вихретокового преобразователя 2 и рабочие торцы намагничивающей системы 1 лежат в параллельных плоскостях. Рабочая поверхность датчика 8 Холла перпендикулярна рабочему торцу вихретокового преобразователя и плоскости, проходящей через оси симметрии боковых стержней П-образной намагничивающей системы 1.
На фиг.1 также показан контролируемый объект 20 в виде ферромагнитной пластины толщиной Т с подповерхностным дефектом 21 глубиной h, a также силовые линии 22 индукции В намагничивающего поля.
Заявляемый способ реализуется следующим образом.
Контролируемый объект намагничивают системой намагничивания 1. Величину напряженности Н намагничивающего поля рекомендуется выбирать не менее величины Нм, обеспечивающей максимальную статическую магнитную проницаемость µст=В/Н, где В - магнитная индукция, Н - напряженность магнитного поля в металле. Выбирают задаваемую генератором 3 частоту возбуждаемых вихревых токов из условия их проникновения в тонкий поверхностный слой контролируемого объекта, возбуждают с помощью вихретокового преобразователя 2 вихревые токи в контролируемом объекте 20. Затем компенсируют выходное напряжение вихретокового преобразователя 2 и выходное напряжение датчика 8 Холла на бездефектном участке контролируемого объекта 20 с помощью компенсаторов 4 и 10 соответственно и сканируют поверхность контролируемого объекта 20.
При наличии подповерхностного дефекта магнитный поток, создаваемый намагничивающей системой 1, перераспределяется, частично выходит за пределы металла, образуя магнитные потоки рассеяния, и концентрируется над дефектом. По этой причине дифференциальная магнитная проницаемость µd=dB/dH металла над дефектом 21, в том числе и на поверхности контролируемого объекта 20, изменяется. При изменении µd, связанном с воздействием подповерхностного дефекта, происходит изменение электромагнитного взаимодействия вихретокового преобразователя 2 с металлом. В результате изменяется величина вносимого в вихретоковый преобразователь 2 напряжения и происходит регистрация сигнала, обусловленного влиянием подповерхностного дефекта. Соответствующее изменение ΔUвн с выхода компенсатора 4 через усилитель 5 поступает на вход амплитудного детектора 6, а затем на первый вход блока 7 обработки и отображения информации. За счет того, что формируемое подповерхностным дефектом изменение µd считывается вихретоковым преобразователем 2 непосредственно с поверхности контролируемого объекта 20, нет необходимости в применении низкочастотных вихревых токов, проникающих вглубь металла. За счет этого размеры рабочего торца вихретокового преобразователя при реализации данного способа соответствуют стандартным размерам высокочастотных вихретоковых преобразователей и могут составлять величину порядка 1…5 мм, в зависимости от особенностей решаемой задачи.
Однако получение информации о наличии и параметрах подповерхностного дефекта путем считывания только сигнала, регистрируемого вихретоковым преобразователем 2, не обеспечивает надежного выявления подповерхностных дефектов. Это происходит из-за неоднозначности зависимости ΔUвн*=ΔUвн*(h), приведенной на фиг.2. Данная зависимость приведена для пластины толщиной Т=12 мм из стали марки Ст 45 при намагничивании магнитным полем с напряженностью Н=6000 А/м. По оси ординат здесь отложена величина относительного приращения амплитуды ΔUвн*=ΔUвн/U0, где U0 - напряжение, наводимое на измерительную обмотку 13 в режиме "холостого хода", т.е. при отсутствии взаимодействия вихретокового преобразователя 2 с металлом. Из приведенной зависимости видно, что начиная с некоторого значения глубины h дефекта 21 наблюдается стабилизация ΔUвн*, а затем и его уменьшение. Это может привести к пропуску наиболее опасного предсквозного дефекта. Данный характер зависимости ΔUвн*=ΔUвн*(h) сохраняется при изменении напряженности Н и изменении толщины Т. Это объясняется особенностями формирования µd на поверхности контролируемого объекта при увеличении глубины дефекта 21. Соответствующие зависимости изменения µd над подповерхностным дефектом типа трещины показаны на фиг.3. Здесь по оси абсцисс отложена координата Х от центра трещины в перпендикулярном к ее плоскости направлении. На фиг.3 дано семейство зависимостей µdd(X) для различных значений глубины h дефекта 21. Из приведенных зависимостей видно, что µd при изменении координаты X имеет один или три экстремума. При этом количество экстремумов, соотношение между их величинами и расстояние по оси X зависят от h. С увеличением h, кроме минимума µd, наблюдаемого над трещиной, формируются два максимума, симметрично смещенных относительно центра трещины. Соотношение изменений µd в точках максимума и минимумов с ростом h монотонно падает. Одновременно происходит пространственное сближение минимумов. Это и приводит к тому, что с ростом h при превышении некого граничного значения h=hг наблюдается уменьшение ΔUвн* за счет компенсации электромагнитного воздействия участков металла с увеличенной и уменьшенной величинами µd. Проведенные исследования показали, что hг уменьшается с ростом Н и при величине H, соответствующей техническому насыщению, hг приближается к Т/2 при равномерном намагничивании по толщине контролируемого участка. Таким образом, при считывании информации о подповерхностном дефекте по изменению µd на поверхности металла удается получить однозначную информацию о глубине подповерхностных дефектов, расположенных глубже, чем половина толщины контролируемого объекта. Именно выявление подобных дефектов магнитным методом составляет проблему из-за низкой к ним чувствительности. Вместе с тем, выявление дефектов, развивающихся с тыльной стороны ферромагнитного объекта и превышающих по глубине половину его толщины, может быть легко осуществлено магнитным методом, путем регистрации созданных дефектом магнитных потоков рассеяния. Для этого одновременно с регистрацией изменений
Figure 00000003
осуществляется регистрация ΔВ с помощью датчика 8 Холла. Возможна регистрация изменений магнитных потоков рассеяния и другими магниточувствительными элементами, например феррозондами. Датчик Холла 8 для обеспечения требуемой чувствительности должен иметь площадь активной зоны порядка 1…2 мм2, что не ухудшает локальности контроля. Сигнал с его выхода после компенсации компенсатором 10 через усилитель 11 поступает на второй вход блока 7. В блоке 7 задается условие, что о параметрах выявленного дефекта судят по величине
Figure 00000004
, если не превышается величина ΔВг, соответствующая значению hг. Зависимость ΔВ=ΔВ(h) зависит от h монотонно (фиг.5), что позволяет надежно выявлять дефекты и однозначно оценивать их параметры и при h>hг.
Заявляемый способ по сравнению с известным обеспечивает выявление подповерхностных дефектов в ферромагнитных материалах при более высокой локальности контроля, за счет считывания информации о поверхностных дефектах глубиной менее hг по изменению дифференциальной магнитной проницаемости на поверхности контролируемого объекта и о дефектах с глубиной h≥hг по изменению магнитных потоков рассеяния над контролируемым участком.
Источники информации
1. Неразрушающий контроль: Справочник: В 7 т. Под общ. ред. В.В.Клюева. Т6: В 3 кн. Кн.1. Магнитные методы контроля / В.В.Клюев, В.Ф.Мужицкий, Э.С.Горкунов, В.Е.Щербинин. - М.: Машиностроение, 2004. - С.96-98.
2. Неразрушающий контроль: Справочник: В 7 т. Под общ. ред. В.В.Клюева. Т6: В 3 кн. Кн.1. Магнитные методы контроля / В.В. Клюев, В.Ф.Мужицкий, Э.С.Горкунов, В.Е.Щербинин. - М.: Машиностроение, 2004. - С.96-98 (прототип).

Claims (1)

  1. Способ выявления подповерхностных дефектов в ферромагнитных объектах, заключающийся в том, что контролируемый объект намагничивают системой намагничивания, возбуждают с помощью вихретокового преобразователя вихревые токи, сканируют поверхность контролируемого объекта, регистрируют в процессе сканирования изменения ΔU ВН вносимых в вихретоковый преобразователь параметров, отличающийся тем, что частоту возбуждаемых вихревых токов выбирают из условия их проникновения в тонкий поверхностный слой контролируемого объекта, проводят измерение, по меньшей мере, одной из составляющей ΔВ индукции магнитных потоков рассеяния, а о наличии подповерхностных дефектов судят по совокупности полученных изменений ΔU ВН и ΔВ.
RU2010107405/28A 2010-03-01 2010-03-01 Способ выявления подповерхностных дефектов в ферромагнитных объектах RU2442151C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010107405/28A RU2442151C2 (ru) 2010-03-01 2010-03-01 Способ выявления подповерхностных дефектов в ферромагнитных объектах

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010107405/28A RU2442151C2 (ru) 2010-03-01 2010-03-01 Способ выявления подповерхностных дефектов в ферромагнитных объектах

Publications (2)

Publication Number Publication Date
RU2010107405A RU2010107405A (ru) 2011-11-27
RU2442151C2 true RU2442151C2 (ru) 2012-02-10

Family

ID=45317304

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010107405/28A RU2442151C2 (ru) 2010-03-01 2010-03-01 Способ выявления подповерхностных дефектов в ферромагнитных объектах

Country Status (1)

Country Link
RU (1) RU2442151C2 (ru)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2493561C1 (ru) * 2012-05-04 2013-09-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет приборостроения и информатики" Вихретоково-магнитный способ дефектоскопии ферромагнитных объектов
RU2566416C1 (ru) * 2014-07-01 2015-10-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет приборостроения и информатики" Устройство для вихретоко-магнитной дефектоскопии ферромагнитных объектов
RU2574420C1 (ru) * 2012-02-20 2016-02-10 АйЭйчАй КОРПОРЕЙШН Способ и устройство для обнаружения дефектов посредством вихревых токов
RU178417U1 (ru) * 2017-06-27 2018-04-03 Федеральное государственное бюджетное учреждение науки " Удмуртский федеральный исследовательский центр Уральского отделения Российской академии наук" (УдмФИЦ УрО РАН) Магнитный структуроскоп
RU2658595C1 (ru) * 2017-08-14 2018-06-21 Федеральное государственное бюджетное учреждение науки Институт физики металлов имени М.Н. Михеева Уральского отделения Российской академии наук (ИФМ УрО РАН) Устройство для неразрушающего контроля сжимающих механических напряжений в низкоуглеродистых сталях
WO2018231186A1 (en) 2017-06-16 2018-12-20 Kalenychenko Oleksandr Hryhorovych System and method for determining the structure of electromagnetic field and object material
RU2745662C1 (ru) * 2020-07-22 2021-03-30 Открытое акционерное общество "Радиоавионика" Устройства намагничивания для дефектоскопии подошвы рельса

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112763543B (zh) * 2020-12-29 2021-08-03 电子科技大学 一种基于主动电场的物体缺陷探测方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Неразрушающий контроль: Справочник: В 7 т. Под общ. ред. В.В.Клюева. Т.6: В 3 кн. Кн.1. Магнитные методы контроля. / В.В.Клюев, В.Ф.Мужицкий, Э.С.Горкунов, В.Е.Щербинин. - М.: Машиностроение, 2004, с.96-98. *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2574420C1 (ru) * 2012-02-20 2016-02-10 АйЭйчАй КОРПОРЕЙШН Способ и устройство для обнаружения дефектов посредством вихревых токов
RU2493561C1 (ru) * 2012-05-04 2013-09-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет приборостроения и информатики" Вихретоково-магнитный способ дефектоскопии ферромагнитных объектов
RU2566416C1 (ru) * 2014-07-01 2015-10-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет приборостроения и информатики" Устройство для вихретоко-магнитной дефектоскопии ферромагнитных объектов
WO2018231186A1 (en) 2017-06-16 2018-12-20 Kalenychenko Oleksandr Hryhorovych System and method for determining the structure of electromagnetic field and object material
RU178417U1 (ru) * 2017-06-27 2018-04-03 Федеральное государственное бюджетное учреждение науки " Удмуртский федеральный исследовательский центр Уральского отделения Российской академии наук" (УдмФИЦ УрО РАН) Магнитный структуроскоп
RU2658595C1 (ru) * 2017-08-14 2018-06-21 Федеральное государственное бюджетное учреждение науки Институт физики металлов имени М.Н. Михеева Уральского отделения Российской академии наук (ИФМ УрО РАН) Устройство для неразрушающего контроля сжимающих механических напряжений в низкоуглеродистых сталях
RU2745662C1 (ru) * 2020-07-22 2021-03-30 Открытое акционерное общество "Радиоавионика" Устройства намагничивания для дефектоскопии подошвы рельса

Also Published As

Publication number Publication date
RU2010107405A (ru) 2011-11-27

Similar Documents

Publication Publication Date Title
RU2442151C2 (ru) Способ выявления подповерхностных дефектов в ферромагнитных объектах
Tsukada et al. Small eddy current testing sensor probe using a tunneling magnetoresistance sensor to detect cracks in steel structures
Tsukada et al. Detection of inner corrosion of steel construction using magnetic resistance sensor and magnetic spectroscopy analysis
JP4975142B2 (ja) 渦流計測用センサ及び渦流計測方法
EP2360467A1 (en) Barkhausen noise inspection apparatus and inspection method
US11604166B2 (en) Method for the contactless determination of a mechanical-technological characteristic variable of ferromagnetic metals, and also apparatus for said method
Deng et al. A permeability-measuring magnetic flux leakage method for inner surface crack in thick-walled steel pipe
Yoshimura et al. Detection of slit defects on backside of steel plate using low-frequency eddy-current testing
JP4804006B2 (ja) 探傷プローブ及び探傷装置
Tsukada et al. Integrated magnetic sensor probe and excitation wire for nondestructive detection of submillimeter defects
Wang et al. A novel magnetic flux leakage testing method based on AC and DC composite magnetization
WO2017082770A1 (ru) Способ вихретокового контроля электропроводящих объектов и устройство для его реализации
RU2493561C1 (ru) Вихретоково-магнитный способ дефектоскопии ферромагнитных объектов
Zheng et al. High-spatial-resolution magnetic Barkhausen noise sensor with shielded receiver
JP2666301B2 (ja) 磁気探傷法
JP3743191B2 (ja) 渦流探傷法
JP2017067743A (ja) 非破壊検査装置及び非破壊検査方法
JP3307220B2 (ja) 磁性金属体の探傷方法および装置
JP2013068465A (ja) 渦電流検出器と位相制御回路
Faraj et al. Hybrid of eddy current probe based on permanent magnet and GMR sensor
RU2634544C2 (ru) Устройство для вихретоковой дефектоскопии ферромагнитных труб со стороны их внутренней поверхности
Chady et al. Fusion of electromagnetic inspection methods for evaluation of stress-loaded steel samples
JPH09507294A (ja) 金属製品を磁気的に試験する方法および装置
JPH09166582A (ja) 電磁気探傷法
Qiu et al. Normal Magnetizing-based Eddy Current Testing Method for Surface Crack and Internal Delamination of Steel Plate

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
MM4A The patent is invalid due to non-payment of fees

Effective date: 20150302