RU2493561C1 - Вихретоково-магнитный способ дефектоскопии ферромагнитных объектов - Google Patents

Вихретоково-магнитный способ дефектоскопии ферромагнитных объектов Download PDF

Info

Publication number
RU2493561C1
RU2493561C1 RU2012118106/28A RU2012118106A RU2493561C1 RU 2493561 C1 RU2493561 C1 RU 2493561C1 RU 2012118106/28 A RU2012118106/28 A RU 2012118106/28A RU 2012118106 A RU2012118106 A RU 2012118106A RU 2493561 C1 RU2493561 C1 RU 2493561C1
Authority
RU
Russia
Prior art keywords
eddy current
controlled object
magnetic field
eddy
current transducer
Prior art date
Application number
RU2012118106/28A
Other languages
English (en)
Inventor
Петр Николаевич Шкатов
Константин Викторович Мякушев
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет приборостроения и информатики"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет приборостроения и информатики" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет приборостроения и информатики"
Priority to RU2012118106/28A priority Critical patent/RU2493561C1/ru
Application granted granted Critical
Publication of RU2493561C1 publication Critical patent/RU2493561C1/ru

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

Изобретение относится к неразрушающему контролю и может быть использовано для выявления подповерхностных дефектов в ферромагнитных объектах. Сущность изобретения заключается в том, что в предлагаемом способе контролируемый объект намагничивают постоянным магнитным полем, возбуждают с помощью вихретокового преобразователя на контролируемом участке вихревые токи, регистрируют вносимое в вихретоковый преобразователь напряжение U _ в н
Figure 00000007
и по нему судят о наличии дефектов, и согласно изобретению путем изменения параметра Р, регулирующего воздействие постоянного магнитного поля на контролируемый объект, плавно изменяют напряженность Н постоянного магнитного поля от минимальной величины до максимальной, регистрируют максимум Uмax амплитуды вносимого в вихретоковый преобразователь напряжения U _ в н
Figure 00000008
и величину соответствующего ему значения параметра Р, а параметры дефекта оценивают по совокупности значений Uмах и Р. Технический результат - повышение чувствительности и информативности контроля. 2 з.п. ф-лы, 3 ил.

Description

Изобретение относится к неразрушающему контролю и может быть использовано для дефектоскопии объектов из ферромагнитных металлов.
Известен способ выявления подповерхностных дефектов в ферромагнитных объектах, заключающийся в том, что намагничивают контролируемый объект с помощью системы намагничивания, сканируют поверхность контролируемого объекта, регистрируют магниточувствительными элементами, по меньшей мере, одну составляющую индукции магнитных потоков рассеяния над контролируемым участком и по ее изменению судят о наличии подповерхностных дефектов [1].
Недостаток известного способа заключается в невозможности выявления дефектов, залегающим на глубине более 15 мм. Это связано с тем, что изменения магнитных потоков рассеяния, созданные такими дефектами, сопоставимы с изменениями шумовой составляющей, обусловленными вариацией влияющих факторов.
Известен способ выявления подповерхностных дефектов в ферромагнитных объектах, заключающийся в том, что контролируемый объект намагничивают системой намагничивания, возбуждают с помощью вихретокового преобразователя вихревые токи, проникающие на толщину контролируемого участка, сканируют поверхность контролируемого объекта, регистрируют в процессе сканирования изменение вносимых в вихретоковый преобразователь параметров, и по величине этих изменений судят о наличии и параметрах подповерхностных дефектов [2].
Недостаток известного способа заключается в необходимости использования низких частот возбуждаемых вихревых токов, для обеспечения их проникновения на толщину контролируемого объекта. При этом снижается пропорциональная рабочей частоте абсолютная чувствительность к дефектам. Для обеспечения требуемой абсолютной чувствительности необходимо существенное увеличения размеров и числа витков катушек индуктивности вихретоковых преобразователей, что приводит к соответствующему уменьшению локальности контроля.
Наиболее близок к предложенному, принятый за прототип, вихретоково-магнитный способ выявления подповерхностных дефектов в ферромагнитных объектах, заключающийся в том, что контролируемый объект намагничивают системой намагничивания, возбуждают с помощью вихретокового преобразователя вихревые токи, сканируют поверхность контролируемого объекта, регистрируют в процессе сканирования изменения Δ U _ в н
Figure 00000001
вносимых в вихретоковый преобразователь параметров, отличающийся тем, что, частоту возбуждаемых вихревых токов выбирают из условия их проникновения в тонкий поверхностный слой контролируемого объекта, проводят измерение, по меньшей мере, одной из составляющей ΔВ индукции магнитных потоков рассеяния, а о наличии подповерхностных дефектов судят по совокупности полученных изменений Δ U _ в н
Figure 00000002
и ΔВ [3].
Недостаток известного способа заключается в том, что он не обладает потенциально достижимой при вихретоково-магнитном способе дефектоскопии чувствительностью и информативностью.
Цель изобретения - повышение чувствительности и информативности контроля.
Поставленная цель в заявляемом способе выявления дефектов в ферромагнитных объектах, заключающемся в том, что контролируемый объект намагничивают постоянным магнитным полем, возбуждают с помощью вихретокового преобразователя на контролируемом участке вихревые токи, регистрируют вносимое в вихретоковый преобразователь напряжение Uвн и по нему судят о наличии дефектов, достигается благодаря тому, что плавно изменяют напряженность Н постоянного магнитного поля от минимальной величины до максимальной, изменяя регулируемый параметр контроля Р, регистрируют максимум Uмакс амплитуды вносимого в вихретоковый преобразователь напряжения U _ в н
Figure 00000003
и соответствующий ему параметр контроля Р, а параметры дефекта оценивают по совокупности значений Uмакс и Р.
На фиг.1, 2 представлены схемы контроля, согласно заявляемому способу; на фиг.3 - зависимости амплитуды Uвн* от относительной глубины подповерхностного дефекта при разных значениях напряженности Н намагничивающего постоянного магнитного поля.
Заявляемый способ реализуется с помощью одной из двух схем контроля, представленных на фиг.1 и 2. Схема на фиг.1 состоит из системы 1 намагничивания, образованной П-образным магнитопроводом 2 и обмоткой 3, подключенной к регулируемому источнику 4 постоянного тока, вихретокового преобразователя 5, возбуждающая обмотка 6 которого подключена к генератору 7 гармонического напряжения, а измерительная 8 и компенсационная 9 обмотки - к электронному блоку 10 обработки и отображения информации. Изменение уровня напряженности магнитного поля в образце осуществляется путем задания выходного тока I источника 4 постоянного тока, являющегося параметром контроля Р. Зазор z между системой 1 намагничивания и контролируемым объектом 11 остается постоянным и обеспечивается опорными роликами 12, обеспечивающими также возможность сканирования. Схема на фиг.2 состоит из системы 1 намагничивания, образованного П-образным магнитопроводом 2 с постоянными магнитами 13, вихретокового преобразователя 5, возбуждающая обмотка 6 которого подключена к генератору 7 гармонического напряжения, а измерительная 8 и компенсационная 9 обмотки - к электронному блоку 10 обработки и отображения информации. Изменение уровня напряженности магнитного поля в образце осуществляется путем изменения зазора z между системой 1 намагничивания и контролируемым объектом 11, являющегося параметром контроля Р. Для изменения зазора z могут быть использованы упорные регулировочные винты 14, связанные с опорными роликами 12, обеспечивающими возможность сканирования.
Вихретоковый преобразователь 2 расположен в межполюсном пространстве системы 1 намагничивания симметрично относительно ее полюсов. Рабочий торец вихретокового преобразователя и рабочие торцы системы намагничивания лежат в параллельных плоскостях.
На фиг.1, 2 показан контролируемый объект 12 в виде ферромагнитной пластины толщиной Т с подповерхностным дефектом 15 глубиной h и силовые линии 16 индукции В намагничивающего поля.
С помощью схемы на фиг.1 заявляемый способ реализуется следующим образом. Контролируемый объект 12 намагничивают постоянным магнитным полем. Для этого с помощью регулируемого источника 4 постоянного тока задают минимальный ток намагничивания Iмин. В общем случае значение тока намагничивания Iмин на начальном этапе может быть равно 0. Выбирают задаваемую генератором 7 гармонического напряжения частоту возбуждаемых вихревых токов из условия их проникновения в тонкий поверхностный слой контролируемого объекта 12, возбуждают с помощью вихретокового преобразователя 5 вихревые токи в контролируемом объекте. Выходное напряжение вихретокового преобразователя 5 компенсируют на бездефектном участке контролируемого объекта 11 с помощью электронного блока 10, производят сканирование контролируемого объекта системой контроля при неизменном зазоре z, обеспечиваемом опорными роликами 12, фиксируют максимум Uмакс амплитуды вносимого в вихретоковый преобразователь напряжения U _ в н
Figure 00000004
и соответствующее ему значение тока намагничивания I. Затем повторяют процедуру компенсации и сканирования необходимое количество раз, увеличивая при этом ток намагничивания I на каждом этапе вплоть до достижения значения тока Iмакс и фиксируя значения Uмакс и I. Ток намагничивания I, задаваемый регулируемым источником 4 постоянного тока является параметром контроля Р для схемы на фиг.1.
С помощью схемы на фиг.2 заявляемый способ реализуется следующим образом. Контролируемый объект 11 намагничивают постоянным магнитным полем. Для этого с помощью упорных регулировочных винтов 14 устанавливают зазор z между полюсами магнитной системы и объектом контроля равный zмакс. В общем случае zмакс может быть равен бесконечности, т.е. система намагничивания может быть удалена. Выбирают задаваемую генератором 7 гармонического напряжения частоту возбуждаемых вихревых токов из условия их проникновения в тонкий поверхностный слой контролируемого объекта 11, возбуждают с помощью вихретокового преобразователя 5 вихревые токи в контролируемом объекте. Выходное напряжение вихретокового преобразователя 5 компенсируют на бездефектном участке контролируемого объекта 11 с помощью электронного блока 10 и производят сканирование контролируемого объекта системой контроля при неизменном зазоре z, фиксируют максимум Uмакс амплитуды вносимого в вихретоковый преобразователь напряжения U _ в н
Figure 00000005
и соответствующее ему значение зазора z. Затем повторяют процедуру компенсации и сканирования необходимое количество раз, уменьшая с помощью упорных регулировочных винтов 14 зазор z на каждом этапе вплоть до достижения значения гмин и фиксируя значения Uмакс и z. Регулируемый зазор z является параметром контроля Р для схемы фиг.2.
Вихретоковый преобразователь 5 в обеих схемах может иметь произвольную конструкцию, однако рекомендуется применять преобразователь, состоящий из возбуждающей обмотки 6, измерительной обмотки 8 и компенсационной обмотки 9, изображенный на фиг.1, 2. Измерительная обмотка 8 и компенсационная обмотка 9 преобразователя включены по дифференциальной схеме.
При наличии подповерхностного дефекта магнитный поток, создаваемый системой 1 намагничивания, перераспределяется и концентрируется над дефектом 15. По этой причине дифференциальная магнитная проницаемость µd=dB/dH металла над дефектом 15, в том числе и на поверхности контролируемого объекта 11, изменяется. При изменении µd, связанного с воздействием подповерхностного дефекта, происходит изменение электромагнитного взаимодействия вихретокового преобразователя 5 с металлом. В результате изменяется величина вносимого в вихретоковый преобразователь напряжения и происходит регистрация сигнала, обусловленного влиянием подповерхностного дефекта с помощью электронного блока 10 обработки и отображения информации. При изменении параметра контроля Р картина перераспределения µd в контролируемом объекте 11 над дефектом 15 меняется, что приводит к изменению амплитуды сигнала преобразователя.
За счет того, что формируемое подповерхностным дефектом изменение µd считывается вихретоковым преобразователем 5 непосредственно с поверхности контролируемого объекта 11, нет необходимости в применении низкочастотных вихревых токов, проникающих вглубь металла. За счет этого размеры рабочего торца вихретокового преобразователя при реализации данного способа соответствуют стандартным размерам высокочастотных вихретоковых преобразователей и могут составлять величину порядка 1…5 мм, в зависимости от особенностей решаемой задачи. По той же причине, способ может быть реализован без создания в материале объекта контроля состояния магнитного насыщения, необходимого для формирования над поверхностью объекта контроля потоков рассеяния, надежно фиксируемых магниточувствительными элементами, что затруднительно для массивных объектов контроля.
При реализации обеих схем контроля для получения информации о наличии и параметрах подповерхностного дефекта недостаточно считывания сигнала, регистрируемого вихретоковым преобразователем 5, при одном значении параметра контроля Р. Это происходит из-за неоднозначности зависимостей Uвн*=Uвн*(h*), приведенных на фиг.3. Данные зависимости приведены для листа из стали марки Ст 45 для разных значений напряженности Н поля намагничивания. По оси ординат здесь отложена величина относительного приращения амплитуды Uвн*=ΔUвн/U0, где U0 - напряжение наводимое на измерительную обмотку 8 в режиме "холостого хода", т.е. при отсутствии взаимодействия вихретокового преобразователя 5 с металлом, по оси абсцисс - относительная глубина подповерхностного дефекта h*=h/T. Из приведенных зависимостей видно, что начиная с некоторого значения относительной глубины h* наблюдается стабилизация ΔUвн*, а затем и его уменьшение. Это может привести к пропуску наиболее опасного предсквозного дефекта. Данный характер зависимости Uвн*=Uвн*(h*) сохраняется при изменении напряженности H поля намагничивания. Это объясняется особенностями формирования µd на поверхности контролируемого объекта при увеличении глубины дефекта 15 [3]. Однако из зависимостей, приведенных на фиг.3. видно, что для разных значений относительной глубины подповерхностного дефекта h* максимальное значение относительного приращения амплитуды сигнала Uвн* достигается при разных значениях напряженности Н поля намагничивания. При этом видна однозначная закономерность - чем меньше относительная глубина дефекта h*, тем при большей напряженности Н поля намагничивания наступает максимум относительного приращения амплитуды сигнала Uвн*. Таким образом, соотношение значений Н и Uвн* позволяет получить однозначную информацию о наличии и глубине подповерхностных дефектов.
Поскольку измерить значение напряженности Н поля намагничивания в объекте контроля затруднительно, а чаще всего невозможно, вводится параметр контроля Р, однозначно связанный с Н. Однако значение параметра Р не позволяет судить о численном значении Н. Поэтому перед проведением контроля необходимо установить связь между Р, Uвн* и h* в виде таблиц или зависимостей, аналогичных фиг.3, с использованием эталонных образцов из заданного материала заданной толщины с предварительно нанесенными дефектами различной глубины.
Заявляемый способ по сравнению с прототипом обладает большей чувствительностью и информативностью контроля, так как обеспечивает измерение реакции дефекта при оптимальной величине намагничивания и позволяет количественно интерпретировать регистрируемые сигналы.
Источники информации
1. Неразрушающий контроль: Справочник: В 7 т. Под общ. ред. В.В. Клюева. Т.6: В 3 кн.. Кн.1. Магнитные методы контроля. / В.В. Клюев, В.Ф. Мужицкий, Э.С. Горкунов, В.Е. Щербинин. - М.: Машиностроение, 2004. - С.96-98.
2. Неразрушающий контроль: Справочник: В 7 т. Под общ. ред. В.В. Клюева. Т.6: В 3 кн.. Кн.1. Магнитные методы контроля. / В.В. Клюев, В.Ф.Мужицкий, Э.С. Горкунов, В.Е. Щербинин. - М.: Машиностроение, 2004. - С.96-98.
3. Патент РФ №2442151 Способ выявления подповерхностных дефектов в ферромагнитных объектах G01N 27/90. Приоритет от 10.02.2010 г. (прототип).

Claims (3)

1. Способ выявления дефектов в ферромагнитных объектах, заключающийся в том, что контролируемый объект намагничивают постоянным магнитным полем, возбуждают с помощью вихретокового преобразователя на контролируемом участке вихревые токи, регистрируют вносимое в вихретоковый преобразователь напряжение U _ в н
Figure 00000006
и по нему судят о наличии дефектов, отличающийся тем, что путем изменения параметра Р, регулирующего воздействие постоянного магнитного поля на контролируемый объект, плавно изменяют напряженность Н постоянного магнитного поля от минимальной величины до максимальной, регистрируют максимум Uмах амплитуды вносимого в вихретоковый преобразователь напряжения U _ в н
Figure 00000006
и величину соответствующего ему значения параметра Р, а параметры дефекта оценивают по совокупности значений Uмах и Р.
2. Способ по п.1, отличающийся тем, что воздействие постоянного магнитного поля на контролируемый объект изменяют за счет изменения тока электромагнита.
3. Способ по п.1, отличающийся тем, что воздействие постоянного магнитного поля на контролируемый объект изменяется за счет изменения рабочего зазора между рабочим торцом намагничивающей системы и поверхностью контролируемого объекта.
RU2012118106/28A 2012-05-04 2012-05-04 Вихретоково-магнитный способ дефектоскопии ферромагнитных объектов RU2493561C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012118106/28A RU2493561C1 (ru) 2012-05-04 2012-05-04 Вихретоково-магнитный способ дефектоскопии ферромагнитных объектов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012118106/28A RU2493561C1 (ru) 2012-05-04 2012-05-04 Вихретоково-магнитный способ дефектоскопии ферромагнитных объектов

Publications (1)

Publication Number Publication Date
RU2493561C1 true RU2493561C1 (ru) 2013-09-20

Family

ID=49183540

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012118106/28A RU2493561C1 (ru) 2012-05-04 2012-05-04 Вихретоково-магнитный способ дефектоскопии ферромагнитных объектов

Country Status (1)

Country Link
RU (1) RU2493561C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2566416C1 (ru) * 2014-07-01 2015-10-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет приборостроения и информатики" Устройство для вихретоко-магнитной дефектоскопии ферромагнитных объектов
EP3438657A1 (en) * 2017-08-02 2019-02-06 Eddyfi NDT Inc. Device for pulsed eddy current testing of ferromagnetic structures covered with ferromagnetic protective jacket
RU2745662C1 (ru) * 2020-07-22 2021-03-30 Открытое акционерное общество "Радиоавионика" Устройства намагничивания для дефектоскопии подошвы рельса

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1335861A1 (ru) * 1985-07-29 1987-09-07 Саратовский Институт Механизации Сельского Хозяйства Им.М.И.Калинина Способ вихретоковой дефектоскопии изделий
RU2319955C2 (ru) * 2005-03-29 2008-03-20 Общество с ограниченной ответственностью "Газпром геофизика" Способ магнитной дефектоскопии и измерительное устройство для его осуществления
US20110037461A1 (en) * 2008-04-16 2011-02-17 Institut Dr. Foerster Gmbh & Co. Kg Method and device for detecting near-surface defects by means of magnetic leakage flux measurement
RU2442151C2 (ru) * 2010-03-01 2012-02-10 Государственное образовательное учреждение высшего профессионального образования "Московский государственный университет приборостроения и информатики" Способ выявления подповерхностных дефектов в ферромагнитных объектах

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1335861A1 (ru) * 1985-07-29 1987-09-07 Саратовский Институт Механизации Сельского Хозяйства Им.М.И.Калинина Способ вихретоковой дефектоскопии изделий
RU2319955C2 (ru) * 2005-03-29 2008-03-20 Общество с ограниченной ответственностью "Газпром геофизика" Способ магнитной дефектоскопии и измерительное устройство для его осуществления
US20110037461A1 (en) * 2008-04-16 2011-02-17 Institut Dr. Foerster Gmbh & Co. Kg Method and device for detecting near-surface defects by means of magnetic leakage flux measurement
RU2442151C2 (ru) * 2010-03-01 2012-02-10 Государственное образовательное учреждение высшего профессионального образования "Московский государственный университет приборостроения и информатики" Способ выявления подповерхностных дефектов в ферромагнитных объектах

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2566416C1 (ru) * 2014-07-01 2015-10-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет приборостроения и информатики" Устройство для вихретоко-магнитной дефектоскопии ферромагнитных объектов
EP3438657A1 (en) * 2017-08-02 2019-02-06 Eddyfi NDT Inc. Device for pulsed eddy current testing of ferromagnetic structures covered with ferromagnetic protective jacket
RU2745662C1 (ru) * 2020-07-22 2021-03-30 Открытое акционерное общество "Радиоавионика" Устройства намагничивания для дефектоскопии подошвы рельса

Similar Documents

Publication Publication Date Title
US4931730A (en) Method and apparatus for non-destructive materials testing and magnetostructural materials investigations
EP2707705B1 (en) Surface property inspection device and surface property inspection method
Sun et al. A new NDT method based on permanent magnetic field perturbation
RU2442151C2 (ru) Способ выявления подповерхностных дефектов в ферромагнитных объектах
EP2360467A1 (en) Barkhausen noise inspection apparatus and inspection method
WO2012057224A1 (ja) 焼入深さ測定方法及び焼入深さ測定装置
Stupakov Controllable magnetic hysteresis measurement of electrical steels in a single-yoke open configuration
JP4804006B2 (ja) 探傷プローブ及び探傷装置
Cheng Nondestructive testing of back-side local wall-thinning by means of low strength magnetization and highly sensitive magneto-impedance sensors
Samimi et al. Multi-parameter evaluation of magnetic Barkhausen noise in carbon steel
RU2493561C1 (ru) Вихретоково-магнитный способ дефектоскопии ферромагнитных объектов
Cheng Magnetic flux leakage testing of reverse side wall-thinning by using very low strength magnetization
Tsukada et al. Integrated magnetic sensor probe and excitation wire for nondestructive detection of submillimeter defects
CN115825219A (zh) 一种消除提离效应的脉冲涡流探头及检测方法
RU2566416C1 (ru) Устройство для вихретоко-магнитной дефектоскопии ферромагнитных объектов
Zheng et al. High-spatial-resolution magnetic Barkhausen noise sensor with shielded receiver
JP2017067743A (ja) 非破壊検査装置及び非破壊検査方法
JP2009031224A (ja) 渦電流センサ、焼き入れ深さ検査装置、および焼入れ深さ検査方法
JP2001133441A (ja) 非破壊硬度計測方法
JP3755403B2 (ja) 磁性体材料の変態状態の計測方法、及び磁性体材料の変態状態の計測装置
JP2013068465A (ja) 渦電流検出器と位相制御回路
RU2634544C2 (ru) Устройство для вихретоковой дефектоскопии ферромагнитных труб со стороны их внутренней поверхности
JPH05203629A (ja) 電磁気探傷方法およびその装置
RU2672978C1 (ru) Способ обнаружения дефектов в длинномерном ферромагнитном объекте
Prabhu Gaunkar et al. Approach for improving the sensitivity of Barkhausen noise sensors with applications to magnetic nondestructive testing

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20150505