RU2437135C2 - Способ и устройство для электропитания с резервированием нескольких серводвигателей или приводных электродвигателей при помощи общего силового электронного блока - Google Patents

Способ и устройство для электропитания с резервированием нескольких серводвигателей или приводных электродвигателей при помощи общего силового электронного блока Download PDF

Info

Publication number
RU2437135C2
RU2437135C2 RU2008128148A RU2008128148A RU2437135C2 RU 2437135 C2 RU2437135 C2 RU 2437135C2 RU 2008128148 A RU2008128148 A RU 2008128148A RU 2008128148 A RU2008128148 A RU 2008128148A RU 2437135 C2 RU2437135 C2 RU 2437135C2
Authority
RU
Russia
Prior art keywords
engines
engine control
control units
power
operate
Prior art date
Application number
RU2008128148A
Other languages
English (en)
Other versions
RU2008128148A (ru
Inventor
Мартин РЕКСИЕК (DE)
Мартин РЕКСИЕК
Кристоф ГИЕБЕЛЕР (DE)
Кристоф ГИЕБЕЛЕР
Original Assignee
Эйрбас Оперейшнз Гмбх
Дойчес Центрум Фюр Люфт-Унд Раумфарт И.В. (Длр)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Эйрбас Оперейшнз Гмбх, Дойчес Центрум Фюр Люфт-Унд Раумфарт И.В. (Длр) filed Critical Эйрбас Оперейшнз Гмбх
Publication of RU2008128148A publication Critical patent/RU2008128148A/ru
Application granted granted Critical
Publication of RU2437135C2 publication Critical patent/RU2437135C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B9/00Safety arrangements
    • G05B9/02Safety arrangements electric
    • G05B9/03Safety arrangements electric with multiple-channel loop, i.e. redundant control systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/24Transmitting means
    • B64C13/38Transmitting means with power amplification
    • B64C13/50Transmitting means with power amplification using electrical energy
    • B64C13/505Transmitting means with power amplification using electrical energy having duplication or stand-by provisions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction

Abstract

Изобретение имеет отношение к способу и устройству для электропитания с резервированием нескольких серводвигателей или приводных двигателей при помощи общего силового блока, в частности, на воздушном судне. Для этого способ и устройство для электропитания с резервированием нескольких серводвигателей или приводных электродвигателей при помощи общего силового электронного блока, в частности, на воздушном судне содержит силовой электронный блок с несколькими электронными блоками управления двигателями, при этом электродвигатели работают с номинальной мощностью, если электронные блоки управления двигателями являются полностью функциональными. В соответствии с настоящим изобретением двигатели работают с имеющейся остаточной мощностью блоков управления двигателями, если происходит частичный отказ блоков управления двигателями. Двигатели в соответствии с предпочтительными вариантами изобретения могут работать последовательно или одновременно. 2 н. и 22 з.п. ф-лы, 11 ил.

Description

Предпосылки к созданию изобретения
Настоящее изобретение имеет отношение к способу и устройству для электропитания с резервированием нескольких серводвигателей или приводных электродвигателей при помощи общего силового электронного блока, в частности, на воздушном судне. До недавнего времени в технологии приводов современных гражданских воздушных судов доминировали гидроприводы, например, для посадочных щитков, шасси, рулей высоты и т.п. За счет быстрого развития в области микротехнологии и технологии силовых полупроводниковых приборов в течение последних 20 лет, особенно в том, что касается конструктивных размеров, частоты коммутации, термостойкости и электрической прочности, электроприводы, то есть серводвигатели и приводные электродвигатели, также стали привлекательными для использования в авиационной промышленности. В дополнение к их низким расходам на эксплуатацию электроприводы являются высокоэффективными и гибкими. Существует потребность в силовой электронике и двигателях, которые адаптированы друг к другу так, что они позволяют оптимально удовлетворять специфические требования авиационной промышленности по весу, размеру и надежности.
Одним эффективным решением для снижения веса и экономии пространства (размеров) является совместное использование силового электронного блока для различных систем воздушного судна, которые содержат серводвигатели или приводные электродвигатели. Для этого необходимо повысить коэффициент готовности общего силового электронного блока за счет повышения избыточности, при одновременном снижении полного веса воздушного судна.
Более высокая степень резервирования становится менее привлекательной, когда она реализована за счет умножения (повышения) числа независимых блоков, которые, однако, не обладают отказоустойчивостью к индивидуальным дефектам. Этот простой вариант повышения степени резервирования не только неблагоприятно увеличивает вес и требует дополнительного пространства для установки оборудования, но он также связан с тем недостатком, что, например, 50% транспортируемого веса обычно не используют в системе с двойным резервирование, причем 50% мощности теряется, если возникает индивидуальный дефект. Кроме того, вероятность возникновения отказов повышается за счет увеличения полного числа компонентов, необходимого для выполнения заданной функции, если не повышать отказоустойчивость к таким индивидуальным дефектам.
Сущность изобретения
Задачей настоящего изобретения является создание улучшенного способа и усовершенствованного устройства для электропитания с резервированием нескольких серводвигателей или приводных электродвигателей при помощи общего силового электронного блока.
В соответствии с примерным вариантом настоящего изобретения предлагается способ электропитания с резервированием нескольких серводвигателей или приводных электродвигателей при помощи общего силового электронного блока, в частности, на воздушном судне, причем силовой электронный блок содержит несколько электронных блоков управления двигателями, при этом электродвигатели работают с номинальной мощностью, если электронные блоки управления двигателями являются полностью функциональными (сохраняют полные функциональные возможности). В соответствии с примерным вариантом настоящего изобретения двигатели работают с имеющейся остаточной мощностью блоков управления двигателями, если происходит частичный отказ блоков управления двигателями.
В соответствии с примерным вариантом заявленного способа блоки управления двигателями соответственно служат для генерирования части x фаз, с которыми двигатели работают, причем двигатели работают с еще сохраненными фазами блоков управления двигателями, если происходит частичный отказ блоков управления двигателями.
В соответствии с примерным вариантом заявленного способа блоки управления двигателями, в частности два блока управления двигателями, соответственно служат для генерирования половины x/2 числа x фаз, с которыми работают двигатели, в частности два двигателя.
В соответствии с другим примерным вариантом заявленного способа блоки управления двигателями соответственно служат для генерирования полного числа x фаз, с которыми двигатели работают, причем двигатели работают с пониженной мощностью еще сохранивших функциональные возможности блоков управления двигателями, если происходит частичный отказ блоков управления двигателями.
В соответствии с примерным вариантом заявленного способа двигатели работают последовательно.
В соответствии с другим примерным вариантом заявленного способа, двигатели работают одновременно.
В соответствии с примерным вариантом заявленного способа двигатели приводят в действие привод посадочного щитка и основной опоры шасси воздушного судна.
В соответствии с примерным вариантом заявленного способа двигатели последовательно приводят в действие привод посадочного щитка и основной опоры шасси воздушного судна, причем энергию, генерируемую при помощи одного из двигателей, используют для приведения в действие других двигателей в случае дефицита энергии
В соответствии с другим примерным вариантом заявленного способа двигатели приводят в действие дуплексный привод посадочного щитка воздушного судна.
В соответствии с примерным вариантом настоящего изобретения двигатели преимущественно принадлежат к одному классу по мощности и имеют одинаковую выходную мощность, особенно когда они работают одновременно.
В соответствии с примерным вариантом настоящего изобретения двигатели пространственно расположены близко друг к другу, особенно когда они работают одновременно.
В соответствии с примерным вариантом заявленного способа все двигатели работают с питанием от еще функциональных блоков управления двигателями, если происходит отказ части блоков управления двигателями.
В соответствии с другим примерным вариантом заявленного способа все двигатели работают с еще имеющейся остаточной мощностью блоков управления двигателями, если происходит частичный отказ блоков управления двигателями.
Предлагается также устройство для электропитания с резервированием нескольких серводвигателей или приводных электродвигателей при помощи общего силового электронного блока, в частности, на воздушном судне, в котором силовой электронный блок содержит несколько электронных блоков управления двигателями и коммутационное устройство для избирательного соединения блоков управления двигателями с двигателями и в котором электродвигатели могут работать с номинальной мощностью, если электронные блоки управления двигателями являются полностью функциональными. В соответствии с примерным вариантом настоящего изобретения двигатели могут работать с имеющейся остаточной мощностью блоков управления двигателями при помощи коммутационного устройства, если происходит частичный отказ блоков управления двигателями.
В соответствии с примерным вариантом заявленного устройства блоки управления двигателями соответственно служат для генерирования части x фаз, с которыми двигатели работают, причем двигатели могут работать с еще сохраненными фазами блоков управления двигателями при помощи коммутационного устройства, если происходит частичный отказ блоков управления двигателями.
В соответствии с примерным вариантом заявленного устройства блоки управления двигателями, в частности два блока управления двигателями, соответственно служат для генерирования половины x/2 числа x фаз, с которыми могут работать двигатели, в частности два двигателя.
В соответствии с другим примерным вариантом заявленного устройства блоки управления двигателями соответственно служат для генерирования полного числа x фаз, с которыми двигатели могут работать, причем двигатели могут работать с пониженной мощностью еще функциональных блоков управления двигателями при помощи коммутационного устройства, если происходит частичный отказ блоков управления двигателями.
В соответствии с примерным вариантом заявленного устройства двигатели могут работать последовательно при помощи коммутационного устройства.
В соответствии с другим примерным вариантом заявленного устройства двигатели могут работать одновременно при помощи коммутационного устройства.
В соответствии с примерным вариантом заявленного устройства двигатели приводят в действие привод посадочного щитка и основной опоры шасси воздушного судна.
В соответствии с примерным вариантом заявленного устройства двигатели последовательно приводят в действие привод посадочного щитка и основной опоры шасси воздушного судна, причем энергию, генерируемую при помощи одного из двигателей, используют для приведения в действие других двигателей в случае дефицита энергии.
В соответствии с примерным вариантом заявленного устройства двигатели приводят в действие дуплексный привод посадочного щитка воздушного судна.
В соответствии с примерным вариантом настоящего изобретения двигатели принадлежат к одному классу по мощности и имеют одинаковую выходную мощность, особенно когда они работают одновременно.
В соответствии с примерным вариантом настоящего изобретения двигатели расположены пространственно близко друг к другу, особенно когда они работают одновременно.
В соответствии с примерным вариантом заявленного устройства все двигатели могут работать с мощностью еще функциональных блоков управления двигателями при помощи коммутационного устройства, если происходит отказ части блоков управления двигателями.
В соответствии с примерным вариантом заявленного устройства, все двигатели могут работать с еще имеющейся остаточной мощностью блоков управления двигателями при помощи коммутационного устройства, если происходит частичный отказ блоков управления двигателями.
В отличие от обычного резервирования "комплексное резервирование" в соответствии с настоящим изобретением означает, что сначала создают автономность одного блока или функции, а затем производят секционирование так, что отказоустойчивость к индивидуальным дефектам повышается и одновременно снижается мощность на индивидуальный дефект.
За счет существенного повышения коэффициента готовности настоящее изобретение позволяет последовательно использовать множество систем потребителей с аналогичными характеристиками потребления энергии и с продолжительностью цикла, а именно без снижения полного коэффициента готовности участвующих потребителей. Такое решение просто требует использования дополнительных силовых соединений, а также выполнения функции переключения между потребителями.
В соответствии с примерным вариантом настоящего изобретения электродвигатели, например, действуют как преобразователи электромеханической энергии соответствующей системы воздушного судна и принадлежат к одному классу по мощности, причем электродвигатели расположены так, что пространственно они не слишком удалены от используемой совместно силовой электроники. Это приводит не только к снижению веса проводов, но в первую очередь уменьшает паразитную емкость линий, которая оказывает отрицательное влияние на характеристики блока силовой электроники (силового электронного блока) и блока управления. Такое совместное использование может быть реализовано в системах, имеющих не совпадающие по времени рабочие интервалы, то есть при последовательном многократном использовании. Однако можно также реализовать совокупность с синхронным использованием, то есть с одновременным использованием, причем последний вариант является предпочтительным в качестве резерва для идентичных смежных систем.
Привод посадочного щитка и привод основной опоры шасси являются примерами двух идеальных систем для последовательного использования, так как на них требуется последовательно подавать питание только в течение относительно короткого периода времени, однако с очень высокой надежностью. Кроме того, указанные системы воздушного судна соответствуют критерию "сходства мощности", а также пространственной близости. Что касается последовательного использования силовой электроники, потенциал синергии (совместного использования) системы посадочного щитка и системы шасси с электрическим приводом является особенно интересным, так как активная и пассивная фазы обеих систем могут быть использованы для задач рекуперации энергии.
После взлета втягивание (уборка) посадочных щитков с помощью воздействующего на них воздуха может быть использовано для генерирования энергии для уборки (подъема) шасси в случае дефицита энергии или отказа систем электропитания. Аналогичные обстоятельства возникают при так называемых маневрах ухода на второй круг. Наоборот, при приземлении требуется энергия для выпуска посадочных щитков, причем эта энергия может быть получена, когда шасси выпущено. Повышение надежности или степени резервирования такого объединенного блока по сравнению с отдельными децентрализированными блоками получают за счет желательной комбинации и объединения различных узлов силовой электроники в один блок. Однако задачей является не простая установка различных обычных блоков в общий кожух, а скорее снижение веса и одновременное повышение степени резервирования силовой электроники.
Варианты настоящего изобретения описаны далее со ссылкой на чертежи.
Краткое описание чертежей
На фиг.1 показана сильно упрощенная блок-схема последовательного использования общего (объединенного) блока силовой электроники различных систем воздушного судна, которые соответственно содержат серводвигатели или приводные электродвигатели, получающие питание от блока силовой электроники.
На фиг.2а) и b) показаны принципиальные электрические схемы системы в соответствии с одним из вариантов изобретения, в которой общий блок силовой электроники используют последовательно, например, в системе посадочного щитка и шасси, при полностью функциональном нормальном рабочем режиме.
На фиг.3а) и b) показаны принципиальные электрические схемы системы, в которой общий блок силовой электроники используют последовательно, например, в системе посадочного щитка и шасси в соответствии с вариантом изобретения, показанным на фиг.2, при возникновении дефекта в силовой электронике.
На фиг.4 показана принципиальная электрическая схема системы в соответствии с одним из вариантов изобретения, в которой два вполне законченных блока управления двигателями с перестраиваемой конфигурацией используют для управления двумя двигателями одновременно, например, в дуплексном приводе центрального привода посадочного щитка, при полностью функциональном нормальном рабочем режиме
На фиг.5а)-е) показаны соответственно принципиальные электрические схемы системы в соответствии с одним из вариантов изобретения, показанной на фиг.4, в которой два вполне законченных блока управления двигателями реконфигурированы по причине возникновения в них различных дефектов, для того, чтобы их можно было использовать для питания одного или двух двигателей, имеющихся в дуплексном приводе.
Подробное описание изобретения
На фиг.1 показана упрощенная блок-схема последовательного или альтернативного использования общего блока 10; 20 силовой электроники (РСЕ, Power Control Electronics) в различных системах воздушного судна, в частности в системе high lift system (High Lift FAS) и шасси, которые соответственно содержат серводвигатели или приводные электродвигатели 14, 24 и 15; 25, которые получают питание от общего блока 10; 20 силовой электроники и подключаются избирательно, то есть в соответствии с требованиями, к блоку 10; 20 силовой электроники при помощи коммутационного устройства 13; 23. Блок 10; 20 силовой электроники содержит различные источники 1-3 питания PWR с резервированием, схематично показанные на фиг.1.
На фиг.2а) и b) показаны соответственно принципиальные электрические схемы системы в соответствии с одним из вариантов изобретения, в которой общий блок 10 силовой электроники РСЕ (Power Control Electronics) используют последовательно, например, в системе посадочного щитка и шасси, при полностью функциональном нормальном рабочем режиме.
Устройство для электропитания с резервированием нескольких серводвигателей или приводных электродвигателей, а в этом случае двух двигателей 14, 15, при помощи общего силового электронного блока 10 (РСЕ) содержит несколько электронных блоков 11, 12 управления двигателями МСЕ (Motor Control Electronics), а в этом случае два блока управления двигателями, и коммутационное устройство 13 для избирательного соединения блоков 11, 12 управления двигателями с двигателями 14, 15, чтобы подавать питание на эти двигатели (а именно на двигатель 14 на фиг.2а) и на двигатель 15 на фиг.2b). Когда электронные блоки управления двигателями 11, 12 являются полностью функциональными, электродвигатели 11, 12 работают соответственно с номинальной мощностью.
Два блока 11, 12 управления двигателями соответственно служат для генерирования части x фаз, а именно половины x/2 x фаз, с которыми двигатели работают, причем два двигателя 14, 15 работают с еще сохраненными фазами блоков 11, 12 управления двигателями при помощи коммутационного устройства 13, если происходит частичный отказ блоков 11, 12 управления двигателями, то есть оба двигателя 14, 15 работают с еще имеющейся остаточной мощностью блоков 11, 12 управления двигателями при помощи коммутационного устройства 13, если происходит частичный отказ блоков 11, 12 управления двигателями.
Следовательно, блок 10 РСЕ является "внутренне резервированным", то есть полное число фаз х делят на два отдельных и автономных преобразователя (МСЕ), то есть блоки 11, 12 управления двигателями соответственно служат для генерирования половины фаз. Это не только исключает полный отказ при возникновении индивидуального дефекта, но одновременно позволяет снизить вес устройства по сравнению с двумя независимыми блоками РСЕ, каждый из которых имеет полное число фаз.
Варианты, показанные на фиг.3а) и b), позволяют оценить воздействие индивидуального дефекта в одном из двух блоков 11, 12 МСЕ. Это приводит к потере половины фазовых проводов в блоке 10 РСЕ и проявляется в снижении потребления системами потребителей - что показано как х/2 на соответствующих чертежах - но не ведет к полному отказу одной из двух систем. Условие "внутреннего резервирования" было использовано в примере последовательного использования. Эта концепция не является новой сама по себе, однако в комбинации с параллельным использованием в различных системах воздушного судна она открывает новые возможности проектирования систем с пониженным весом и повышенной надежностью. В этом контексте, можно предусмотреть следующие усовершенствования. Если удвоить число фаз каждого блока управления двигателем (МСЕ) в описанном выше примере, то есть если каждый блок МСЕ будет представлять собой полнофазный модуль питания двигателя, и переключатель модифицировать так, чтобы фазы модульных блоков управления двигателями МСЕ могли вместе или отдельно переключаться на один соответствующий двигатель, то тогда два двигателя могут одновременно использовать один МСЕ модуль. В сочетании с описанной выше конфигурацией последовательного использования это позволяет получить совершенно новые варианты конфигурации. Этот ход мыслей служит переходом к новому варианту, в котором одновременное использование блока силовой электроники обсуждается более подробно. Упомянутую выше обычную систему центрального привода посадочных щитков PCU (Power Control Unit), имеющую дуплексные электродвигатели, расположенные в фюзеляже, используют в качестве примера одновременного использования блока силовой электроники, описанного далее со ссылкой на фиг.4 и 5а)-е). В этой совокупности каждый из двух двигателей 24, 25 в нормальном рабочем режиме подключен к отдельному преобразователю, то есть к отдельному блоку 21, 22 управления двигателем (Motor Control Electronics - МСЕ), причем это соответствует, в принципе, получению питания обычным полностью гидравлическим блоком регулирования мощности (PCU) от двух независимых гидравлических систем. Предусмотрено коммутационное устройство 23 для избирательного подключения блоков 21, 22 МСЕ к двигателям 24, 25 в соответствии с требованиями. Если один из блоков 21, 22 МСЕ выходит из строя, то оставшийся работоспособный блок МСЕ обеспечивает продолжение работы обоих двигателей 24, 25 с пониженной мощностью - если топология двигателей выбрана правильно. Если повреждены индивидуальные обмотки одного из двух двигателя вместо дефекта блока или в дополнение к нему, то можно избирательно подавать только неповрежденные фазы или подавать полное питание только на неповрежденный двигатель, если известны соответствующие фазы обоих двигателей. В этом конкретном варианте указанная концепция одновременного использования является "резервной" только в случае возникновения дефекта описанного типа.
Как уже было указано здесь выше, внутренняя структура блока регулирования мощности (PCU) преднамеренно реализована с использованием двух полнофазных блоков 21, 22 МСЕ. Следует иметь в виду, что в примерах последовательного использования, которые были описаны со ссылкой на фиг.2а) и b), так же как и на фиг. 3а) и b), используют блок 10 силовой электроники (РСЕ), который содержит несколько - а в описанном примере два - дополняющих (комплементарных) блока 11, 12, которые соответственно содержат только часть фазных проводов, в то время как вариант с одновременным использованием, описанный далее со ссылкой на фиг.4 и 5а)-с), содержит два полных и независимых блока 21, 22, которые подают все фазы.
Совершенно очевидно, что конструктивное исполнение блока 10 РСЕ по первому варианту последовательного использования может быть перенесено в блоки 21, 22 МСЕ по второму варианту, за счет чего повышается отказоустойчивость и, следовательно, существенно расширяются возможности работы, несмотря на множество дефектов. Графическое представление всех возможных комбинаций намеренно опущено. Различные отказы системы, показанной на фиг.4, а также управление ею описаны далее со ссылкой на фиг.5а)-5е).
Фиг.5а): одновременное использование блока 20 силовой электроники при полном отказе блока 21 МСЕ. Оба двигателя 24, 25 получают питание от работоспособного блока 22 МСЕ. Это означает исключение половины активных фаз двигателя и снижение выходной мощности.
Фиг.5b): частичный отказ двух блоков 21, 22 МСЕ. Это ведет к такому же результату, что и в случае, показанном на фиг.5а), однако питание поступает от двух деградированных (имеющих ухудшенные характеристики. - Прим. переводчика) блоков 21, 22 МСЕ.
Фиг.5с): частичный отказ двух двигателей 24, 25. Оба блока МСЕ являются полностью работоспособными. Это ведет к такому же результату, что и в описанном выше случае.
Фиг.5d): полный отказ блока 21 МСЕ и частичный отказ двух двигателей 24, 25. Блок 22 МСЕ подает питание на оба двигателя 24, 25 с половиной соответствующего числа фаз. Это ведет к такому же результату, что и в случае, показанном на фиг.5а) и b) соответственно.
Фиг.5е): частичный отказ двух блоков 21, 22 МСЕ и двух двигателей 24, 25. Двигатели 24, 25 все еще получают питание от соответствующих блоков 21 или 22 МСЕ, аналогично нормальному рабочему режиму. Снижается только выходная мощность двигателей. Это ведет к такому же результату, что и в описанном выше случае.
В сценариях отказа двигателя, описанных со ссылкой на фиг.5с)-е), всегда предполагали, что происходит частичный отказ двух двигателей 24, 25, несмотря на то, что это маловероятно. Однако следует иметь в виду, что дефект только в одном двигателе будет приводить к такому же результату, так как дефект будет обнаружен и энергопотребление обоих двигателей будет снижено на энергопотребление дефектного двигателя. Дефектную фазу соответствующего двигателя можно найти при помощи измерений, проведенных при его работе.
Подводя итог, можно сказать, что описанная концепция совершенно очевидно является результатом внедрения последовательного использования источника питания системами при короткой продолжительности цикла нагружения. Результирующее требование повышения коэффициента готовности требует повышения степени резервирования Эта повышенная степень резервирования не будет связана с обычным увеличением веса и размеров, которые могли бы снизить конкурентоспособность системного решения. Комплексное резервирование, которое основано на автомизации и разделении исходной функции, не только позволяет выполнять соответствующие требования к весу и размерам, но также позволяет реализовать различные дополнительные конфигурации системы для различных сценариев дефектов, которые повышают гибкость и полную степень готовности системы.

Claims (24)

1. Способ электропитания с резервированием нескольких серводвигателей или приводных электродвигателей (14, 15; 24, 25) при помощи общего силового электронного блока (10; 20), в частности, на воздушном судне, причем силовой электронный блок (10, 20) содержит несколько электронных блоков (11, 12; 21, 22) управления двигателями, при этом электродвигатели (14, 15; 24, 25) работают с номинальной мощностью, если электронные блоки (11, 12; 21, 22) управления двигателями являются полностью функциональными и работают с имеющейся остаточной мощностью блоков (11, 12; 21, 22) управления двигателями, если происходит частичный отказ блоков (11, 12; 21, 22) управления двигателями, при этом блоки (11, 12) управления двигателями служат для генерирования части x фаз, с которыми двигатели работают, причем двигатели (14, 15) работают с еще сохраненными фазами блоков (11, 12) управления двигателями, если происходит частичный отказ блоков (11, 12) управления двигателями.
2. Способ по п.1, в котором блоки (11, 12) управления двигателями, в частности два блока (11, 12) управления двигателями, соответственно служат для генерирования половины x/2 числа x фаз, с которыми работают двигатели (14, 15), в частности два двигателя (14, 15).
3. Способ по п.1, в котором блоки (21, 22) управления двигателями соответственно служат для генерирования полного числа x фаз, с которыми двигатели (24, 25) работают, и в котором двигатели (24, 25) работают с пониженной мощностью еще функциональных блоков (21, 22) управления двигателями, если происходит частичный отказ блоков (21, 22) управления двигателями.
4. Способ по одному из пп.1, 2 или 3, в котором двигатели (14, 15) работают последовательно.
5. Способ по одному из пп.1, 2 или 3, в котором двигатели (14, 15) работают одновременно.
6. Способ по одному из пп.1,2 или 3, в котором двигатели (14, 15; 24, 25) приводят в действие привод посадочного щитка и основной опоры шасси воздушного судна.
7. Способ по п.6, в котором двигатели (14, 15; 24, 25) последовательно приводят в действие привод посадочного щитка и основной опоры шасси воздушного судна, и в котором энергию, генерируемую при помощи одного из двигателей, используют для приведения в действие других двигателей в случае дефицита энергии.
8. Способ по одному из пп.1, 2 или 3, в котором двигатели (14, 15; 24, 25) приводят в действие дуплексный привод посадочного щитка воздушного судна.
9. Способ по одному из пп.1, 2 или 3, в котором двигатели (14, 15; 24, 25) принадлежат к одному классу по мощности и имеют одинаковую выходную мощность, особенно когда они работают одновременно.
10. Способ по одному из пп.1, 2 или 3, в котором двигатели (14, 15; 24, 25) пространственно расположены близко друг к другу, особенно когда они работают одновременно.
11. Способ по одному из пп.1, 2 или 3, в котором все двигатели (14, 15; 24, 25) работают с питанием от еще функциональных блоков (11, 12; 21, 22, 25) управления двигателями, если часть блоков (11, 12; 21, 22) управления двигателями выходит из строя.
12. Способ по одному из пп.1, 2 или 3, в котором все двигатели (14, 15; 24, 25) работают с еще имеющейся остаточной мощностью блоков (11, 12; 21, 22) управления двигателями, если происходит частичный отказ блоков (11, 12; 21, 22) управления двигателями.
13. Устройство для электропитания с резервированием нескольких серводвигателей или приводных электродвигателей (14, 15; 24, 25) при помощи общего силового электронного блока (10; 20), в частности, на воздушном судне, причем силовой электронный блок (10, 20) содержит несколько электронных блоков (11, 12; 21, 22) управления двигателями и коммутационное устройство (13; 23) для избирательного соединения блоков (11, 12; 21, 22) управления двигателями с двигателями (14, 15; 24, 25), причем электродвигатели (14, 15; 24, 25) работают с номинальной мощностью, если электронные блоки (11, 12; 21, 22) управления двигателями являются полностью функциональными, при этом двигатели (14, 15; 24, 25) могут работать с имеющейся остаточной мощностью блоков (11, 12; 21, 22) управления двигателями при помощи коммутационного устройства (13; 23), если происходит частичный отказ блоков (11, 12, 21, 22) управления двигателями, при этом блоки (11, 12) управления двигателями служат для генерирования части x фаз, с которыми работают двигатели, двигатели (14, 15) могут работать с еще сохраненными фазами блоков (11, 12) управления двигателями при помощи коммутационного устройства (13), если происходит частичный отказ блоков (11, 12) управления двигателями.
14. Устройство по п.13, в котором блоки (11, 12) управления двигателями, в частности два блока (11, 12) управления двигателями, служат для генерирования половины x/2 числа x фаз, с которыми могут работать двигатели (14, 15), в частности два двигателя (14, 15).
15. Устройство по п.13 или 14, в котором блоки (21, 22) управления двигателями служат для генерирования полного числа х фаз, с которыми двигатели (24, 25) могут работать, и в котором двигатели (24, 25) могут работать с пониженной мощностью еще функциональных блоков (21, 22) управления двигателями при помощи коммутационного устройства (23), если происходит частичный отказ блоков (21, 22) управления двигателями.
16. Устройство по одному из пп.13, 14 или 15, в котором двигатели (14, 15) могут работать последовательно при помощи коммутационного устройства (13).
17. Устройство по одному из пп.13, 14 или 15, в котором двигатели (24, 25) могут работать одновременно при помощи коммутационного устройства (23).
18. Устройство по п.13, в котором двигатели (14, 15; 24, 25) приводят в действие привод посадочного щитка и основной опоры шасси воздушного судна.
19. Устройство по п.13 или 14, в котором двигатели (14, 15; 24, 25) последовательно приводят в действие привод посадочного щитка и основной опоры шасси воздушного судна, и в котором энергию, генерируемую при помощи одного из двигателей, используют для приведения в действие других двигателей в случае дефицита энергии.
20. Устройство по п.13 или 14, в котором двигатели (14, 15; 24, 25) приводят в действие дуплексный привод посадочного щитка воздушного судна.
21. Устройство по п.13 или 14, в котором двигатели (14, 15; 24, 25) принадлежат к одному классу по мощности и имеют одинаковую выходную мощность, особенно когда они работают одновременно.
22. Устройство по п.13 или 14, в котором двигатели (14, 15; 24, 25) пространственно расположены близко друг к другу, особенно когда они работают одновременно.
23. Устройство по п.13 или 14, в котором все двигатели (14, 15; 24, 25) могут работать с мощностью еще функциональных блоков (11, 12; 21, 22) управления двигателями при помощи коммутационного устройства (13; 23), если часть блоков (11, 12; 21, 22) управления двигателями выходит из строя.
24. Устройство по п.13 или 14, в котором все двигатели (14, 15; 24, 25) могут работать с еще имеющейся остаточной мощностью блоков (11, 12; 21, 22) управления двигателями при помощи коммутационного устройства (13; 23), если происходит частичный отказ блоков (11, 12; 21, 22) управления двигателями.
RU2008128148A 2005-12-13 2006-12-12 Способ и устройство для электропитания с резервированием нескольких серводвигателей или приводных электродвигателей при помощи общего силового электронного блока RU2437135C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005059423.9 2005-12-13
DE102005059423A DE102005059423A1 (de) 2005-12-13 2005-12-13 Verfahren und Einrichtung zur redundanten Versorgung von mehreren elektrischen Stell-oder Antriebsmotoren durch eine gemeinsame Leistungselektronikeinheit

Publications (2)

Publication Number Publication Date
RU2008128148A RU2008128148A (ru) 2010-01-20
RU2437135C2 true RU2437135C2 (ru) 2011-12-20

Family

ID=37908207

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008128148A RU2437135C2 (ru) 2005-12-13 2006-12-12 Способ и устройство для электропитания с резервированием нескольких серводвигателей или приводных электродвигателей при помощи общего силового электронного блока

Country Status (9)

Country Link
US (1) US7872367B2 (ru)
EP (1) EP1960856B8 (ru)
JP (1) JP2009519160A (ru)
CN (1) CN101326473B (ru)
BR (1) BRPI0619779A2 (ru)
CA (1) CA2629552A1 (ru)
DE (1) DE102005059423A1 (ru)
RU (1) RU2437135C2 (ru)
WO (1) WO2007068451A1 (ru)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8335600B2 (en) * 2007-12-14 2012-12-18 The Boeing Company Regenerative integrated actuation system and associated method
FR2940245B1 (fr) * 2008-12-22 2011-03-18 Messier Bugatti Architecture de distribution de puissance pour distribuer la puissance a des actionneurs electromecaniques d'un aeronef
GB0905560D0 (en) * 2009-04-01 2009-05-13 Rolls Royce Plc An electrical actuator arrangement
US8228009B2 (en) * 2009-07-27 2012-07-24 Parker-Hannifin Corporation Twin motor actuator
FR2959489B1 (fr) * 2010-05-03 2013-02-15 Airbus Operations Sas Panneau de commande pour aeronef.
FR2961479B1 (fr) * 2010-06-18 2014-01-17 Sagem Defense Securite Aeronef pourvu d'une pluralite d'actionneurs electriques, dispositif d'alimentation et de commande de tels actionneurs et ensemble d'actionnement correspondant
WO2014018972A1 (en) 2012-07-27 2014-01-30 Thoratec Corporation Computer modeling for resonant power transfer systems
WO2014018974A1 (en) 2012-07-27 2014-01-30 Thoratec Corporation Magnetic power transmission utilizing phased transmitter coil arrays and phased receiver coil arrays
US9825471B2 (en) 2012-07-27 2017-11-21 Thoratec Corporation Resonant power transfer systems with protective algorithm
WO2014018967A1 (en) 2012-07-27 2014-01-30 Thoratec Corporation Self-tuning resonant power transfer systems
US10525181B2 (en) 2012-07-27 2020-01-07 Tc1 Llc Resonant power transfer system and method of estimating system state
US10383990B2 (en) 2012-07-27 2019-08-20 Tc1 Llc Variable capacitor for resonant power transfer systems
EP2878062A4 (en) 2012-07-27 2016-04-20 Thoratec Corp RESONANT COILS AND RESONANT TRANSMISSION SYSTEMS
EP4257174A3 (en) 2012-07-27 2023-12-27 Tc1 Llc Thermal management for implantable wireless power transfer systems
US10373756B2 (en) 2013-03-15 2019-08-06 Tc1 Llc Malleable TETs coil with improved anatomical fit
WO2014145664A1 (en) 2013-03-15 2014-09-18 Thoratec Corporation Integrated implantable tets housing including fins and coil loops
WO2015070200A1 (en) 2013-11-11 2015-05-14 Thoratec Corporation Resonant power transfer systems with communications
WO2015070202A2 (en) 2013-11-11 2015-05-14 Thoratec Corporation Hinged resonant power transfer coil
US10615642B2 (en) 2013-11-11 2020-04-07 Tc1 Llc Resonant power transfer systems with communications
US10610692B2 (en) 2014-03-06 2020-04-07 Tc1 Llc Electrical connectors for implantable devices
EP4213298A1 (en) 2014-09-22 2023-07-19 Tc1 Llc Antenna designs for communication between a wirelessly powered implant to an external device outside the body
US9583874B2 (en) 2014-10-06 2017-02-28 Thoratec Corporation Multiaxial connector for implantable devices
DE102015209114A1 (de) * 2015-05-19 2016-11-24 Continental Automotive Gmbh Stationäre Leistungssteuerungsschaltung und teilstationäre Leistungssteuerungsschaltung
US10148126B2 (en) 2015-08-31 2018-12-04 Tc1 Llc Wireless energy transfer system and wearables
EP3902100A1 (en) 2015-10-07 2021-10-27 Tc1 Llc Resonant power transfer systems having efficiency optimization based on receiver impedance
EP3497775B1 (en) 2016-09-21 2022-07-13 Tc1 Llc Systems and methods for locating implanted wireless power transmission devices
CN106452203A (zh) * 2016-10-26 2017-02-22 中国核动力研究设计院 一种可靠的驱动控制系统及其控制方法
WO2018136592A2 (en) 2017-01-18 2018-07-26 Tc1 Llc Systems and methods for transcutaneous power transfer using microneedles
CN109823522B (zh) * 2017-11-23 2024-02-23 成都凯天电子股份有限公司 多冗余度起落架电动收放控制器
US10770923B2 (en) 2018-01-04 2020-09-08 Tc1 Llc Systems and methods for elastic wireless power transmission devices

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4472780A (en) * 1981-09-28 1984-09-18 The Boeing Company Fly-by-wire lateral control system
DE3533720A1 (de) * 1985-09-21 1987-04-16 Messerschmitt Boelkow Blohm Notversorgungssystem
DD271004A1 (de) * 1988-02-26 1989-08-16 Elektroprojekt Anlagenbau Veb Anordnung zur mehrfachnutzung von elementen des zwischenkreises bei redundant eingesetzten zwischenkreisumrichtern
US5493497A (en) * 1992-06-03 1996-02-20 The Boeing Company Multiaxis redundant fly-by-wire primary flight control system
JP3095598B2 (ja) * 1993-12-08 2000-10-03 本田技研工業株式会社 航空機の脚の昇降装置
JPH08251988A (ja) * 1995-03-15 1996-09-27 Toshiba Corp ヒステリシスモータ駆動装置
DE19610800C1 (de) * 1996-03-19 1997-07-24 Siemens Ag Fehlertoleranter Stromrichter
JP2001145386A (ja) * 1999-11-16 2001-05-25 Hitachi Ltd 電動機駆動装置及び電動機駆動方法
JP2001211657A (ja) * 2000-01-28 2001-08-03 Murata Mach Ltd モータ駆動システム
GB0127254D0 (en) 2001-11-13 2002-01-02 Lucas Industries Ltd Aircraft flight surface control system
US6700266B2 (en) * 2002-01-02 2004-03-02 Intel Corporation Multiple fault redundant motor
JP4101538B2 (ja) * 2002-03-07 2008-06-18 三菱重工業株式会社 多重制御冗長電動機、多重制御アクチュエータ及びそれの冗長制御方法
EP1387460B1 (de) * 2002-08-02 2007-09-12 Airbus Deutschland GmbH Energieversorgungsanordnung für eine Bordküche eines Verkehrsmittels, insbesondere eines Flugzeuges
DE10251763B3 (de) * 2002-11-07 2004-08-05 Daimlerchrysler Ag Vorrichtung zur Ansteuerung mehrerer Elektromotoren
FI119862B (fi) * 2003-09-30 2009-04-15 Vacon Oyj Taajuusmuuttajien tai invertterien rinnankäytön ohjaus
FR2864024B1 (fr) * 2003-12-22 2006-04-07 Messier Bugatti Procede de gestion d'une architecture de systeme de freinage d'aeronef, et architecture de systeme de freinage faisant application
US7439634B2 (en) * 2004-08-24 2008-10-21 Honeywell International Inc. Electrical starting, generation, conversion and distribution system architecture for a more electric vehicle

Also Published As

Publication number Publication date
EP1960856A1 (en) 2008-08-27
BRPI0619779A2 (pt) 2011-10-18
EP1960856B8 (en) 2012-11-21
EP1960856B1 (en) 2012-10-10
WO2007068451A1 (en) 2007-06-21
WO2007068451A8 (en) 2008-07-24
JP2009519160A (ja) 2009-05-14
US20090045678A1 (en) 2009-02-19
RU2008128148A (ru) 2010-01-20
US7872367B2 (en) 2011-01-18
DE102005059423A1 (de) 2007-06-21
CA2629552A1 (en) 2007-06-21
CN101326473A (zh) 2008-12-17
CN101326473B (zh) 2010-08-18

Similar Documents

Publication Publication Date Title
RU2437135C2 (ru) Способ и устройство для электропитания с резервированием нескольких серводвигателей или приводных электродвигателей при помощи общего силового электронного блока
US11597504B2 (en) Architecture for a propulsion system of a helicopter including a hybrid turboshaft engine and a system for reactivating said hybrid turboshaft engine
RU2416871C2 (ru) Система питания и управления электрооборудованием двигателя летательного аппарата и его оснащение
US7939962B2 (en) System and method for supplying power to user systems onboard an aircraft
JP6692825B2 (ja) 多発航空機用ハイブリッド推進システム
CN103415975B (zh) 交通工具电力管理和分配
Garcia et al. Reliable electro-mechanical actuators in aircraft
US6755375B2 (en) Method and apparatus for controlling aircraft devices with multiple actuators
US8841872B2 (en) Method and arrangement in connection with electric device system
US20150333527A1 (en) Method for managing the electric power network of an aircraft
BR102015024964A2 (pt) conversor de módulo paralelo, e, método de provisão de energia
CN102686479A (zh) 包括用于涡轮喷气发动机或每个涡轮喷气发动机的电起动器发电机以及安装有用于滑行的电动机的起落架的飞行器
US20180208299A1 (en) Actuator in a landing gear system of an aircraft
CN105765816A (zh) 用于飞行器的配电系统
CN101410298A (zh) 位于飞行器上的应急发电装置及方法
US20110121651A1 (en) Assembly of actuators and of a system for supplying electrical power from a network
RU2648233C2 (ru) Способ и система питания электрической энергией летательного аппарата
CN105452642B (zh) 飞行器发动机机舱的电动推力反向器系统和装备该电动推力反向器系统的飞行器发动机机舱
EP3547518B1 (en) Vehicle power supply system with redundancy and method for controlling the power supply system
US11472539B2 (en) Distributed landing gear system architecture for electromechanical actuation
EP3875365A2 (en) Distributed landing gear system architecture for electromechanical actuation
JP7408647B2 (ja) ハイブリッド推進のための電気アーキテクチャ
RU2005131237A (ru) Способ управления электропотреблением орбитальной группировки космических аппаратов с электрореактивными двигателями
Wheeler et al. An Electromechanically Actuated Nose Landing Gear Using a Dual-Output Motor Control Unit
CN103187860A (zh) 容错dc功率系统

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20201213