RU2434895C2 - Способ получения порошкообразных материалов из фторсодержащих полимеров - Google Patents

Способ получения порошкообразных материалов из фторсодержащих полимеров Download PDF

Info

Publication number
RU2434895C2
RU2434895C2 RU2008133605/05A RU2008133605A RU2434895C2 RU 2434895 C2 RU2434895 C2 RU 2434895C2 RU 2008133605/05 A RU2008133605/05 A RU 2008133605/05A RU 2008133605 A RU2008133605 A RU 2008133605A RU 2434895 C2 RU2434895 C2 RU 2434895C2
Authority
RU
Russia
Prior art keywords
fluorine
containing polymer
frozen
solid particles
temperature
Prior art date
Application number
RU2008133605/05A
Other languages
English (en)
Other versions
RU2008133605A (ru
Inventor
Майкл КОУТС (US)
Майкл КОУТС
Роберт Ян УИТЛОУ (GB)
Роберт Ян УИТЛОУ
Терри АНДЕРСОН (GB)
Терри АНДЕРСОН
Original Assignee
Уитфорд Плэстикс Лимитед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Уитфорд Плэстикс Лимитед filed Critical Уитфорд Плэстикс Лимитед
Publication of RU2008133605A publication Critical patent/RU2008133605A/ru
Application granted granted Critical
Publication of RU2434895C2 publication Critical patent/RU2434895C2/ru

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B5/00Drying solid materials or objects by processes not involving the application of heat
    • F26B5/04Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum
    • F26B5/06Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum the process involving freezing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/18Monomers containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/06Treatment of polymer solutions
    • C08F6/10Removal of volatile materials, e.g. solvents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/24Treatment of polymer suspensions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Изобретение относится к способу получения порошкообразных материалов из фторсодержащих полимеров. Суспензию твердых частиц фторсодержащего полимера в жидком носителе, предпочтительно воде, замораживают, а затем замороженный носитель удаляют сублимацией при субатмосферном давлении для получения сухого порошка частиц фторсодержащего полимера. Способ позволяет получать порошкообразные материалы из жидкой суспензии твердых частиц фторсодержащего полимера, который при нормальных условиях не поддается перекачке насосом из-за способности к фибриллированию. 12 з.п. ф-лы.

Description

Данное изобретение относится к способу получения порошкообразных материалов из фторсодержащих полимеров.
Фторсодержащие полимеры представляют собой длинноцепочечные полимеры, в основном, включающие в себя линейные последовательности этиленовых повторяющихся звеньев, в которых некоторые или все атомы водорода замещены атомами фтора. Примеры включают политетрафторэтилен, простой полифторметилвиниловый эфир (MFA), полифторэтиленпропилен (FEP), полиперфторалкокси (PFA), полихлортрифторэтилен и поливинилфторид. Они являются одними из наиболее химически инертных полимеров и характеризуются исключительной устойчивостью по отношению к воздействию кислот, оснований и растворителей. Они обладают исключительно низкими фрикционными свойствами и обладают способностью выдерживать экстремальные температуры. Соответственно, фторсодержащие полимеры используют в широком спектре применений, в которых необходима устойчивость в экстремальных условиях окружающей среды. Современные применения включают получение материалов для труб и упаковочных материалов для химических заводов, полупроводникового оборудования, деталей автомобилей и конструктивной облицовки.
Существуют некоторые способы применения, в одном из которых необходимо использовать фторсодержащий полимер в порошкообразном виде. При этом фторсодержащий полимер обычно наносят на поверхность электростатическим распылением порошка. Применения включают покрытия для бытовой кухонной посуды для повышения антипригарных свойств и устойчивости к истиранию, а также покрытия для деталей автомобилей для повышения устойчивости к разрушению под влиянием воздействий условий окружающей среды.
В настоящее время для получения порошкообразной формы фторсодержащего полимера применяют два способа. Способы сушки распылением включают в себя нагнетание насосом водной дисперсии сырья фторсодержащего полимера в распылительную систему, расположенную, как правило, сверху камеры для сушки. Жидкость распыляют в поток нагретого газа для испарения воды и получения сухого порошка. Этот способ обладает несколькими ограничениями. Требование того, чтобы водную дисперсию нагнетали насосом в распылительную систему, ограничивает применение этого способа материалами, которые поддаются перекачке насосом, а высушенные в результате распыления агломераты крепко связаны друг с другом и устойчивы к последующей агломерации. Кроме того, можно применять только материалы, не способные к фибриллированию, так как распыление может вызвать образование волокон фторсодержащего полимера, приводящего к образованию трудноперерабатываемого материала в виде «пастилы», с которым тяжело работать.
Альтернативный способ включает коагуляцию частиц в водной дисперсии. Коагуляцию облегчают, используя значительное механическое сдвигающее усилие, добавляя кислоты или добавляя реагенты, способствующие гелеобразованию, и далее подвергая обработке не смешивающимися с водой органическими жидкостями. Скоагулировавшие частицы можно отделить от остающейся жидкости фильтрованием и затем сушить, используя, как правило, поддон, ленточный конвейер или сушильные аппараты с мгновенным испарением. Скоагулировавшие гранулы обычно цементируют для удобства обращения. Однако образование агломератов приводит к тому, что размер частиц оказывается слишком большим для применения традиционных методик нанесения порошков способом распыления. Измельчение, которое традиционно используют для регулирования распределения частиц по размерам, может вызывать образование частицами волокон, приводящего к получению трудноперерабатываемого материла, с которым тяжело обращаться. Цементированный материал также вызывает образование компактного агломерата, который устойчив к последующей дисагломерации.
Цель настоящего изобретения заключается в предоставлении способа получения порошкообразных материалов из фторсодержащего полимера, при котором частицы фторсодержащего полимера не связаны прочно в агломераты и при котором порошкообразный материал можно получать из жидкой суспензии твердых частиц фторсодержащего полимера, который при нормальных условиях не поддается перекачке насосом из-за своей способности к фибриллированию.
Согласно настоящему изобретению предоставляется способ получения порошкообразных материалов из фторсодержащего полимера, причем данный способ включает в себя замораживание суспензии твердых частиц фторсодержащего полимера в жидком носителе и последующее отделение частиц фторсодержащего полимера посредством сублимации замороженного носителя для получения сухого порошка.
Данный способ является в особенности подходящим для переработки нижеследующих полимеров: политетрафторэтилена, простого полиперфторметилвинилового эфира (МFА), полифторэтиленпропилена (FEP), полиперфторалкокси (PFA).
Предпочтительно, чтобы частицы порошкообразных материалов из фторсодержащего полимера обладали размером, который достаточно мал для возможности применения традиционных методик нанесения порошков распылением. Полученные агломераты (с размером первичных частиц около 0,2 мкм) могут обладать средним диаметром от 1 до 100 мкм, более желательно от 20 до 30 мкм.
Предпочтительно, чтобы суспензию твердых частиц фторсодержащего полимера в жидком носителе замораживали в морозильнике при температуре ниже 0°С. Более желательно, чтобы данную суспензию замораживали при температуре в диапазоне от -60°С до -20°С. Обычно замораживание можно завершить за промежуток времени от 6 часов до 24 часов.
Предпочтительно, чтобы суспензию твердых частиц фторсодержащего полимера в жидком носителе наливали, вычерпывали или иначе переносили в поддон перед замораживанием. Желательно, чтобы поддон, содержащий суспензию твердых частиц фторсодержащего полимера, затем помещали в морозильник и замораживали в поддоне.
Предпочтительно, чтобы жидкий носитель был на водной основе и содержал поверхностно-активное вещество или не содержал его, а также содержал совмещающие растворители (органический растворитель, используемый в целях содействия диспергированию/сольватированию дополнительных полимеров) или не содержал их. При использовании совмещающих растворителей они должны присутствовать в достаточно низкой концентрации и обладать достаточно высокими температурами плавления для того, чтобы не препятствовать замораживанию.
Предпочтительно, чтобы сублимацию проводили, используя субатмосферное давление или вакуум. Использование пониженного давления приводит к сублимации носителя из замороженного состояния непосредственно в газовую фазу, без перехода из твердого состояния в жидкое и из жидкого состояния в газообразное. Желательно, чтобы пониженное давление создавали с помощью вакуумного насоса. Предпочтительно, чтобы значение пониженного давления находилось в диапазоне от 0,01 атмосферы до 0,99 атмосферы, более желательно от 0,04 атмосферы до 0,08 атмосферы. Обычно сублимацию можно завершить за промежуток времени от 12 часов до 48 часов.
Для некоторых фторсодержащих полимеров процесс осуществляют при температуре, которая, на практике, ниже температуры стеклования фторсодержащего полимера. Температура стеклования, Тg, полимера представляет собой температуру, при которой он переходит из стеклообразного в высокоэластическое состояние. Измеряемое значение Тg будет зависеть от молекулярной массы полимера, его термической предыстории и возраста, а также от скорости нагревания и охлаждения. Обычными значениями являются примерно 130°С для PTFE, примерно 75°С для PFA, примерно -208°С для FEP, примерно -45°С для PVDF.
Температуру регулируют для облегчения процесса сублимации и предотвращения плавления жидкого носителя. Благоприятным совпадением является то, что такое регулирование также сохраняет температуру ниже значений Тg некоторых из перечисленных материалов. Таким образом, процесс можно осуществлять при комнатной температуре. Альтернативно процесс можно осуществлять при температуре выше комнатной температуры для уменьшения времени, необходимого для завершения процесса.
Частицы фторсодержащего полимера можно модифицировать перед замораживанием, после завершения сублимации или на любом этапе процесса по настоящему изобретению. Такая модификация может включать введение наполнителей, измельчение или облучение фторсодержащего полимера. Введение наполнителей осуществляют перед сушкой для повышения стабильности смеси, измельчение осуществляют после сушения.
Облучение фторсодержащего полимера проводят после измельчения для облегчения регулирования размера частиц.
Введение наполнителей на стадии существования жидкости позволяет эффективно диспергировать частицы наполнителя, придавая, таким образом, желаемые свойства конечному порошковому покрытию. Пост-измельчение или облучение высушенных лиофильной сушкой материалов из фторсодержащих полимеров может также повысить их возможность применения в качестве материалов для порошковых покрытий.
Наполнители включают в себя те вещества, которые улучшают или модифицируют конкретные физические характеристики фторсодержащего полимера. Например, наполнители могут изменять цвет, адгезионные характеристики, твердость или коррозионную устойчивость фторсодержащего полимера. Примеры наполнителей включают термостабильные пигменты, связующие, стеклянные шарики, порошок бронзы и вольфрам. Другие конкретные наполнители включают карбид кремния, полифениленсульфид (PPS), фосфат цинка, полиамидимид (PAI), полиэфиримид (PEI), полиэфирэфиркетон (РЕЕК), а также другие конструкционные полимеры.
Способ может дополнительно включать в себя измельчение частиц фторсодержащего полимера. Измельчением регулируют распределение частиц фторсодержащего полимера по размерам, например, уменьшая средний размер частиц для получения более высокодисперсного порошка. Обычно измельчение осуществляют традиционным способом в штифтовой дробилке или струйной мельнице.
Способ может дополнительно включать в себя облучение частиц фторсодержащего полимера, обычно в виде порошка, но, альтернативно, и в суспензии. Облучением регулируют характеристики фторсодержащего полимера, относящиеся к плавлению, например, для понижения температур плавления/температур стеклования и повышения скорости течения расплава.
Процесс по настоящему изобретению не сопровождается сильной агломерацией частиц, приводя вместо этого к получению высокодисперсного порошка, который является подходящим для применения с использованием традиционных методик нанесения порошков распылением или для повторного диспергирования в водных или органических средах. Рассыпчатый порошок можно легко раздробить для изменения размера частиц.
В отличие от известных способов, включающих сушку распылением и коагуляцию, для которых необходимы температуры, значительно превосходящие 100°С, процесс по данному изобретению можно осуществлять при температуре ниже температуры стеклования фторсодержащего полимера. Проведение процесса при комнатной температуре позволяет более рационально использовать энергию, тогда как осуществление процесса при температурах выше комнатной температуры, но ниже температуры стеклования, позволяет повысить скорость сублимации. Проведение процесса при температурах выше комнатной позволяет также облегчить вторичную сушку, осуществляемую для удаления любых следов оставшегося жидкого носителя.
Способ по данному изобретению можно применять для получения порошкообразных материалов из фторсодержащего полимера, которые либо способны к фибриллированию, либо не способны к этому. Способные к фибриллированию материалы представляют собой те, которые образуют волокна при воздействии силы сдвига. В известных способах, которые включают сушку распылением и коагуляцию, твердые частицы фторсодержащего полимера также подвергают воздействию силы сдвига, что может приводить к получению трудноперерабатываемого материала. Настоящее изобретение не включает применение сил сдвига на какой-либо стадии и, поэтому, является подходящим для использования в случае способных к фибриллированию фторсодержащих полимеров.
Способ по данному изобретению можно использовать для получения порошкообразного материала из фторсодержащего полимера из поддающейся перекачке насосом суспензии твердых частиц фторсодержащего полимера в жидком носителе или не способной к этому суспензии. Суспензия может не поддаваться перекачке насосом из-за высокой вязкости или чувствительности к сдвигу, а примеры включают высокомолекулярный PTFE или нестабилизированные дисперсии PFA, MFA и FEP. Процесс не включает какие-либо стадии, на которых суспензию необходимо перекачивать насосом. Вместо этого суспензию можно наливать или вычерпывать в поддон для замораживания, а твердый замороженный блок можно переносить в вакуумную камеру.
На практике данное изобретение можно осуществлять различными способами и некоторые варианты осуществления будут теперь описаны примерами.
Общее описание
При типичном процессе фторсодержащий полимер (модифицированный или немодифицированный), размер частиц которого составляет примерно 0,2 мкм, переводят в дисперсию в воде размешиванием, желательно с использованием поверхностно-активного вещества и/или совмещающего растворителя в зависимости от природы полимера. Дисперсию разливают по поддонам обычно так, чтобы глубина слоя составляла от 1 до 1,5 см. Затем загруженные поддоны замораживают при температуре, находящейся в диапазоне от -60 до -20°С. При загрузке замороженных поддонов в вакуумную камеру давление уменьшают до величины, находящейся в диапазоне от 0,01 до 0,99 атмосферы, более типично в диапазоне 0,04-0,08 атмосферы. При таких условиях происходит сублимация жидкого носителя. Можно применять дополнительное нагревание для облегчения процесса сублимации при предотвращении плавления замороженного вещества носителя и для облегчения вторичной сушки.
Последовательные стадии процесса могут включать измельчение, облучение и прессование для модификации свойств порошков и адаптации к конкретным требованиям.
Конкретные дисперсии, полученные и обработанные, как описано, указаны ниже.
Фторсодержащие полимеры
Дисперсия PFA в воде с содержанием твердых веществ 23-27% (вес.) и определяемой при температуре 372°С скоростью течения расплава 7,2 г/10 мин.
Дисперсия FEP в воде с содержанием твердых веществ 23-27% (вес.) и определяемой при температуре 372°С скоростью течения расплава 6,5 г/10 мин.
Дисперсия MFA в воде с содержанием твердых веществ 28-32% (вес.) и определяемой при температуре 372°С скоростью течения расплава 5,4 г/10 мин.
Дисперсия PTFE в воде с содержанием твердых веществ 30-60% (вес.) и определяемой при температуре 372°С скоростью течения расплава 1-10 г/10 мин.
Другие компоненты
Другие компоненты, которые можно включать в упомянутые дисперсии, включают:
карбид кремния, средний размер частиц 3 микрона, доступный от фирмы CARBOREX.
Полифениленсульфид (PPS), доступный от фирмы RYTON.
Пигмент оксид железа Red 120, доступный от фирмы BAYFEROX.
Охровый пигмент PK 6075, доступный от фирмы FERRO.
Черный минеральный пигмент 34E23, доступный от фирмы JOHNSON.

Claims (13)

1. Способ получения модифицированного порошкообразного материала из фторсодержащего полимера, который включает в себя стадии: замораживание суспензии твердых частиц фторсодержащего полимера и, по меньшей мере, одного наполнителя в жидком носителе на водной основе и сублимация замороженного носителя с получением модифицированного фторсодержащего полимера в виде сухого порошка.
2. Способ по п.1, в котором сублимации замороженного носителя достигают, используя субатмосферное давление.
3. Способ по п.2, в котором значение пониженного давления находится в диапазоне от 0,01 до 0,99 атмосферы.
4. Способ по п.1, в котором стадию сублимации осуществляют при температуре ниже температуры стеклования фтосодержащего полимера.
5. Способ по п.4, в котором стадию сублимации осуществляют при комнатной температуре.
6. Способ по п.4, в котором стадию сублимации осуществляют при температуре между комнатной температурой и температурой стеклования фторсодержащего полимера.
7. Способ по п.1, в котором суспензию твердых частиц фторсодержащего полимера и наполнителя в жидком носителе замораживают при температуре в диапазоне от -60°С до -20°С.
8. Способ по п.1, в котором суспензию твердых частиц фторсодержащего полимера и наполнителя в жидком носителе замораживают в поддонах.
9. Способ по п.1, в котором наполнитель выбирают из числа пигментов, связующих и их комбинаций.
10. Способ по п.1, в котором твердые частицы фторсодержащего полимера дополнительно модифицируют посредством измельчения.
11. Способ по п.1, в котором твердые частицы фторсодержащего полимера дополнительно модифицируют посредством облучения.
12. Способ по любому из предшествующих пунктов, в котором фторсодержащий полимер способен к фибриллированию.
13. Способ по п.1, в котором фторсодержащий полимер не поддается перекачке насосом.
RU2008133605/05A 2006-01-16 2007-01-16 Способ получения порошкообразных материалов из фторсодержащих полимеров RU2434895C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0600823.9 2006-01-16
GB0600823A GB2434152A (en) 2006-01-16 2006-01-16 Fluoropolymer powdered materials

Publications (2)

Publication Number Publication Date
RU2008133605A RU2008133605A (ru) 2010-02-27
RU2434895C2 true RU2434895C2 (ru) 2011-11-27

Family

ID=35998102

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008133605/05A RU2434895C2 (ru) 2006-01-16 2007-01-16 Способ получения порошкообразных материалов из фторсодержащих полимеров

Country Status (18)

Country Link
US (1) US8166668B2 (ru)
EP (1) EP1987086B1 (ru)
JP (1) JP5243968B2 (ru)
KR (1) KR101307608B1 (ru)
CN (1) CN101370856B (ru)
AT (1) ATE501208T1 (ru)
AU (1) AU2007204185A1 (ru)
BR (1) BRPI0706632B1 (ru)
CA (1) CA2636460A1 (ru)
DE (1) DE602007013005D1 (ru)
DK (1) DK1987086T3 (ru)
ES (1) ES2359351T3 (ru)
GB (1) GB2434152A (ru)
PL (1) PL1987086T3 (ru)
PT (1) PT1987086E (ru)
RU (1) RU2434895C2 (ru)
SI (1) SI1987086T1 (ru)
WO (1) WO2007080426A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2671258C2 (ru) * 2017-02-27 2018-10-30 Валерий Владимирович Коваленко Устройство для вакуумной сублимационной сушки

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008024105A2 (en) 2005-08-22 2008-02-28 Genencor International, Inc. Nanocomposites of repeat sequence proteins and phyllosilicate clays and their preparation
JP5300056B2 (ja) 2005-08-22 2013-09-25 ジェネンコー・インターナショナル・インク 反復配列タンパク質複合体及びその調製
GB2434152A (en) * 2006-01-16 2007-07-18 Whitford Plastics Ltd Fluoropolymer powdered materials
GB2451096A (en) * 2007-07-17 2009-01-21 Whitford Plastics Ltd Method of preparing a powdered fluoropolymer blend
GB2451097A (en) * 2007-07-17 2009-01-21 Whitford Plastics Ltd Silicon carbide-modified fluoropolymer powders
RU2497849C2 (ru) 2008-05-30 2013-11-10 Уитфорд Корпорейшн Смешанные композиции фторполимеров
TW201016800A (en) 2008-09-26 2010-05-01 Whitford Corp Blended fluoropolymer coatings for rigid substrates
BRPI0920472B1 (pt) 2008-09-26 2019-09-17 Whitford Corporation Composição de fluoropolímero compreendendo politetrafluoroetileno de alto peso molecular (hptfe), politetrafluoroetileno de baixo peso molecular (lptfe) e fluoropolímero processável por fusão (mpf), revestimento aplicado a um substrato e película contendo tal composição

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3692759A (en) * 1971-02-23 1972-09-19 Pennwalt Corp Extrudable polytetrafluoroethylene powder
US3803108A (en) * 1972-06-12 1974-04-09 Pennwalt Corp Polyvinylidene fluoride powder
JPS6489152A (en) * 1987-09-29 1989-04-03 Mitsubishi Electric Corp Manufacture of electrolyte retaining matrix for fuel cell
JPS6489153A (en) * 1987-09-29 1989-04-03 Mitsubishi Electric Corp Manufacture of electrolyte retaining matrix for fuel cell
US5213938A (en) * 1992-04-15 1993-05-25 Xerox Corporation Oxidation of toner compositions
JPH08185865A (ja) * 1994-12-28 1996-07-16 Tokyo Gas Co Ltd 固体高分子型燃料電池用電極及びその製造方法
US5565188A (en) * 1995-02-24 1996-10-15 Nanosystems L.L.C. Polyalkylene block copolymers as surface modifiers for nanoparticles
JP4969761B2 (ja) * 2000-08-31 2012-07-04 オバン・エナジー・リミテッド 所望粒度を持つ固体基材の小粒子および第一材料の小粒状物を含む相乗作用性混合物を製造する方法
US6355391B1 (en) * 2000-11-28 2002-03-12 Xerox Corporation Micro-powder coating for xerographic carrier
DE10126649A1 (de) * 2001-06-01 2002-12-12 Basf Coatings Ag Kontinuierliches Verfahren zur Herstellung von Pulverlacksuspensionen (Pulverslurries) und Pulverlacken
US7732002B2 (en) * 2001-10-19 2010-06-08 Cabot Corporation Method for the fabrication of conductive electronic features
US8529956B2 (en) * 2002-03-18 2013-09-10 Carnell Therapeutics Corporation Methods and apparatus for manufacturing plasma based plastics and bioplastics produced therefrom
WO2006086081A1 (en) * 2004-12-30 2006-08-17 3M Innovative Properties Company Fluoropolymer nanoparticle coating composition
JP2008530134A (ja) * 2005-02-15 2008-08-07 エラン ファーマ インターナショナル リミテッド ナノ粒子ベンゾジアゼピンのエアロゾル製剤および注射用製剤
WO2007006779A1 (en) * 2005-07-11 2007-01-18 Akzo Nobel Coatings International B.V. Process for preparing a powder coating composition
GB2434152A (en) * 2006-01-16 2007-07-18 Whitford Plastics Ltd Fluoropolymer powdered materials
US20070178051A1 (en) * 2006-01-27 2007-08-02 Elan Pharma International, Ltd. Sterilized nanoparticulate glucocorticosteroid formulations
GB0702795D0 (en) * 2007-02-13 2007-03-28 Whitford Plastics Ltd Process for modifying cellulose
GB2451096A (en) * 2007-07-17 2009-01-21 Whitford Plastics Ltd Method of preparing a powdered fluoropolymer blend
GB2451097A (en) * 2007-07-17 2009-01-21 Whitford Plastics Ltd Silicon carbide-modified fluoropolymer powders
EP2205677A4 (en) * 2007-10-15 2011-08-03 Advanced Flexible Composites Inc NETWORKABLE FLUOROLPOLYMER COMPOSITION AND USES THEREOF
US8273404B2 (en) * 2008-05-19 2012-09-25 Cordis Corporation Extraction of solvents from drug containing polymer reservoirs
RU2497849C2 (ru) * 2008-05-30 2013-11-10 Уитфорд Корпорейшн Смешанные композиции фторполимеров
CA3115327A1 (en) * 2008-06-04 2009-12-10 Jp Laboratories Inc. A monitoring system based on etching of metals
US8383309B2 (en) * 2009-11-03 2013-02-26 Xerox Corporation Preparation of sublimation colorant dispersion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2671258C2 (ru) * 2017-02-27 2018-10-30 Валерий Владимирович Коваленко Устройство для вакуумной сублимационной сушки

Also Published As

Publication number Publication date
GB2434152A (en) 2007-07-18
CN101370856A (zh) 2009-02-18
KR101307608B1 (ko) 2013-09-12
EP1987086B1 (en) 2011-03-09
JP2009523851A (ja) 2009-06-25
PL1987086T3 (pl) 2011-08-31
ATE501208T1 (de) 2011-03-15
AU2007204185A1 (en) 2007-07-19
BRPI0706632B1 (pt) 2018-03-06
JP5243968B2 (ja) 2013-07-24
US8166668B2 (en) 2012-05-01
WO2007080426A1 (en) 2007-07-19
DK1987086T3 (da) 2011-06-27
DE602007013005D1 (de) 2011-04-21
US20100132212A1 (en) 2010-06-03
BRPI0706632A2 (pt) 2011-04-05
GB0600823D0 (en) 2006-02-22
PT1987086E (pt) 2011-04-11
ES2359351T3 (es) 2011-05-20
RU2008133605A (ru) 2010-02-27
CN101370856B (zh) 2011-12-28
CA2636460A1 (en) 2007-07-19
SI1987086T1 (sl) 2011-09-30
EP1987086A1 (en) 2008-11-05
KR20080091344A (ko) 2008-10-10

Similar Documents

Publication Publication Date Title
RU2434895C2 (ru) Способ получения порошкообразных материалов из фторсодержащих полимеров
EP2167569B1 (en) Method for the preparation of fluoropolymer powdered materials
RU2478665C2 (ru) Способ получения фторполимерных порошковых материалов
CA1038527A (en) Perfluorocarbon copolymer powders and preparation by spray drying
CN112876921B (zh) 具有吸水粉体的油性防火涂料及其制作工艺
RU2693724C1 (ru) Добавка для лакокрасочных материалов (варианты)
CN110790956B (zh) 超细氟树脂粉末的制备方法