RU2426800C2 - Способ производства штрипса для труб магистральных трубопроводов - Google Patents

Способ производства штрипса для труб магистральных трубопроводов Download PDF

Info

Publication number
RU2426800C2
RU2426800C2 RU2008149189/02A RU2008149189A RU2426800C2 RU 2426800 C2 RU2426800 C2 RU 2426800C2 RU 2008149189/02 A RU2008149189/02 A RU 2008149189/02A RU 2008149189 A RU2008149189 A RU 2008149189A RU 2426800 C2 RU2426800 C2 RU 2426800C2
Authority
RU
Russia
Prior art keywords
temperature
strip
cooling
deformation
workpiece
Prior art date
Application number
RU2008149189/02A
Other languages
English (en)
Other versions
RU2008149189A (ru
Inventor
Игорь Васильевич Горынин (RU)
Игорь Васильевич Горынин
Валерий Васильевич Рыбин (RU)
Валерий Васильевич Рыбин
Виктор Андреевич Малышевский (RU)
Виктор Андреевич Малышевский
Елена Игоревна Хлусова (RU)
Елена Игоревна Хлусова
Виктор Валерьевич Орлов (RU)
Виктор Валерьевич Орлов
Светлана Владимировна Ермакова (RU)
Светлана Владимировна Ермакова
Николай Викторович Малахов (RU)
Николай Викторович Малахов
Евгений Христофорович Шахпазов (RU)
Евгений Христофорович Шахпазов
Юрий Дмитриевич Морозов (RU)
Юрий Дмитриевич Морозов
Сергей Юрьевич Настич (RU)
Сергей Юрьевич Настич
Максим Юрьевич Матросов (RU)
Максим Юрьевич Матросов
Original Assignee
Открытое акционерное общество "Северсталь" (ОАО "Северсталь")
Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" (Фгуп "Цнии Км "Прометей")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Северсталь" (ОАО "Северсталь"), Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" (Фгуп "Цнии Км "Прометей") filed Critical Открытое акционерное общество "Северсталь" (ОАО "Северсталь")
Priority to RU2008149189/02A priority Critical patent/RU2426800C2/ru
Publication of RU2008149189A publication Critical patent/RU2008149189A/ru
Application granted granted Critical
Publication of RU2426800C2 publication Critical patent/RU2426800C2/ru

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

Изобретение относится к области металлургии, конкретнее к производству штрипса для магистральных подводных трубопроводов диаметром до 1420 мм, класса прочности Х70, толщиной до 40 мм. Для получения высоких прочностных свойств и сопротивляемости хрупким разрушениям при температурах -20°С осуществляют выплавку стали определенного химического состава, разливку стали в заготовки, нагрев заготовки до температуры 1150-1200°С в течение 7-8 час, предварительную деформацию с суммарной степенью обжатия 58-65% с регламентированными обжатиями 14-20% при температуре 940-990°С, охлаждение полученной заготовки на 70-100°С со скоростью 4-12°С/с, выдержку 3-5 с на мм сечения заготовки на воздухе, окончательную деформацию при температуре 830-750°С с суммарной степенью обжатий не менее 43% и не менее 12% за проход, ускоренное охлаждение до температур 550-400°С, далее замедленное охлаждение штрипса в кессоне до температуры не выше 150°С, затем на воздухе. 1 табл.

Description

Изобретение относится к металлургии, конкретнее к производству штрипсовой стали для магистральных подводных трубопроводов диаметром до 1420 мм, толщиной 24-40 мм.
Известен способ производства штрипсовой стали категории Х70 с использованием контролируемой прокатки из низколегированной стали повышенной прочности марки 10Г2ФБ, отвечающей требованиям к стали данной категории прочности по стандарту API 5L в толщинах до 21,6 мм при температуре испытания падающим грузом -20°С с гарантированным содержанием волокнистой составляющей в изломе не менее 90%, при отношении σТВ≤0,9, содержащей, мас.%: углерод - 0,08-0,11, марганец - 1,55-1,75, кремний - 0,15-0,35, хром - не более 0,3, никель - не более 0,3, медь - не более 0,3, ванадий - 0,06-0,08, ниобий - 0,04-0,06, титан - 0,010-0,25, алюминий 0,015-0,06, фосфор - не более 0,020, сера - не более 0,005, железо - остальное.
Основным недостатком этой марки является отсутствие возможности изготовления в толщинах более 21,6 мм, что обусловливается образованием неоднородной структуры по толщине проката, определяющей снижение хладостойкости и изотропности механических свойств и, как следствие, снижение эксплуатационной надежности.
Наиболее близким по технологии изготовления является способ производства штрипсовой стали для труб подводных морских газопроводов высоких параметров следующего химического состава (мас.%) (RU №2270873, C21D 8/02, опубл. 27.02.2006 г. - прототип):
Углерод 0,05-0,09
Марганец 1,25-1,60
Хром 0,01-0,1
Кремний 0,15-0,30
Никель 0,30-0,60
Молибден 0,10-0,25
Ванадий 0,03-0,10
Алюминий 0,02-0,05
Ниобий 0,01-0,06
Медь 0,20-0,40
Железо остальное.
При этом проводят предварительную деформацию при температуре 950-850°С с суммарными обжатиями 50-60%, затем осуществляют охлаждение полученной заготовки до 820-760°С, окончательную деформацию с суммарной степенью обжатий 65-75% проводят при температуре 770-740°С, ускоренное охлаждение листового проката проводят в установке контролируемого охлаждения до температур 530-350°С со скоростью 35-55°С/с, далее замедленно охлаждают в кессоне до температуры не выше 150°С и затем на воздухе.
Известная сталь обеспечивает высокую технологичность изготовления труб, определяемую соотношением <σТВ≤0,90.
Недостатками прототипа являются пониженные свариваемость, трещиностойкость, хладостойкость, прочностные свойства и сопротивляемость хрупким разрушениям стали при низких температурах до -60°С для листов толщиной до 40 мм.
Техническим результатом изобретения является разработка способа производства штрипсовой стали в толщинах 24-40 мм и шириной до 4500, обеспечивающего лучшую свариваемость, определяемую Сэкв≤0,40% и трещиностойкость, определяемую Pcm≤0,21, более высокие прочностные свойства и сопротивляемость хрупким разрушениям при температурах до -20°С для листов толщиной до 40 мм, определяемую количеством волокнистой составляющей (ИПГ) при сохранении высокой технологичности, определяемой соотношением σТВ≤0,90.
Технический результат достигается тем, что в способе производства штрипса для труб магистральных трубопроводов, включающем получение заготовки из стали, нагрев до температуры выше Ас3, дробную деформацию и ступенчатое охлаждение готового штрипса в установке контролируемого ускоренного охлаждения (УКО) до температуры 550-400°С с последующим охлаждением в кессоне до 150°С и далее на воздухе, согласно изобретению заготовку получают из стали со следующим соотношением элементов, мас.%: углерод - 0,03-0,10, марганец - 1,20-1,85, кремний - 0,15-0,35, никель - 0,10-0,30, алюминий - 0,02-0,06, молибден - 0,01-0,3, ниобий - 0,03-0,06, ванадий - 0,01-0,03, титан - 0,001-0,020, сера - 0,001-0,003, фосфор - 0,002-0,010, железо - остальное, при этом величина углеродного эквивалента определяется как:
Figure 00000001
а коэффициент трещиностойкости при сварке
Figure 00000002
Перед прокаткой металл подвергают аустенизации при температуре 1150-1200°С в течение 7-8 часов, затем проводят предварительную деформацию с суммарной степенью обжатия 58-65% с регламентированными обжатиями 14-20% при температуре 940-990°С, далее осуществляют охлаждение полученной заготовки на 70-100°С со скоростью 4-12°С/с и последующую выдержку 3-5 с на мм сечения листа на воздухе, окончательную деформацию проводят при температуре 830-750°С с суммарной степенью обжатий не менее 43% и не менее 12% за проход.
Основными факторами повышения предела текучести являются твердорастворное, дислокационное, субструктурное и дисперсионное упрочнения.
Повышение предела текучести стали обычно приводит к увеличению склонности к хрупким разрушениям. Единственным механизмом, который одновременно с приростом предела текучести вызывает повышение хладостойкости, является измельчение действительного зерна. Измельчение структуры достигается применением легирования титаном, ванадием и ниобием, которые, образуя мелкодисперсные карбиды, препятствуют росту зерна аустенита при нагреве и оказывают тормозящее действие на собирательную рекристаллизацию при высокотемпературной стадии прокатки.
Главной отличительной особенностью технологии является регламентирование первой стадии прокатки как по величине обжатий, так и по температуре и способу промежуточного охлаждения подката. Обжатия с деформацией 14-20% позволяют в процессе динамической рекристаллизации сформировать мелкодисперсную карбидную фазу, предотвращающую прохождение собирательной рекристаллизации, и обеспечить измельчение структуры по всей толщине. Охлаждение подката с регламентированной скоростью 4-12°С/с позволяет избежать изотермической паузы в интервале температур прохождения собирательной рекристаллизации, выдержка на воздухе 3-5 с на мм сечения листа дается для выравнивая температуры по сечению.
Применение термомеханической обработки с окончанием прокатки при температурах 830-750°С обеспечивает формирование мелкозернистой структуры с развитой субструктурой и равномерно распределенной мелкодисперсной карбидной фазой.
Ускоренное охлаждение листового проката в установке контролируемого охлаждения (УКО) со скоростью не менее 40°С/с до 550-400°С способствует образованию мелкозернистой структуры, состоящей из полигонального и фрагментированного феррита и бейнита. Последующее замедленное охлаждение в кессоне до 150°С обусловливает снятие термических напряжений.
Использование микролегирования обеспечивает формирование мелкозернистой структуры по всей толщине проката. Содержание никеля не более 0,3 мас.% и марганца не более 1,85 мас.% определяет широкий интервал скоростей охлаждения для получения заданной феррито-бейнитной структуры по всей толщине проката.
Регламентирование содержания примесных элементов, особенно серы, обеспечивает высокую сопротивляемость стали динамическим нагрузкам при отрицательных температурах (ИПГ при минус 20).
Испытания листового проката, изготовленного по указанной технологии, показали, что предлагаемые режимы для заданного химического состава обеспечивают наряду с требуемой прочностью содержание волокнистой составляющей в изломе проб после испытания DWTT в толщинах до 40 мм.
Пример:
Сталь была выплавлена в кислородном конвертере и после внепечного рафинирования разлита в непрерывнолитые слябы сечением 250×1600 мм.
Химический состав выплавленной стали следующий, мас.%: углерод - 0,06, кремний - 0,27, марганец - 1,57, никель - 0,17, алюминий - 0,04, молибден - 0,09, титан - 0,015, сера - 0,002, фосфор - 0,009, ниобий - 0,051, ванадий - 0,030, железо - остальное, Сэкв=0,36, Pcm=0,16.
Согласно указанному способу заготовки подвергали аустенизации при температуре 1170°С в течение 7 часов.
Прокатку на листы толщиной 40 мм производили на одноклетьевом стане в реверсивном режиме. Предварительную деформацию проводили со строго регламентированными обжатиями 14-15-14-17-16-20% в диапазоне температур 940-990°С. Далее осуществляли охлаждение заготовки на 70°С до 900°С со скоростью 6°С/с и последующую выдержку в течение 6 минут на воздухе. Окончательную деформацию производили при температуре 830°С с суммарными обжатиями 46%, но не менее 12% за проход. После окончания деформации листы охлаждали в установке контролируемого охлаждения до температуры 530°С со скоростью 53°С/с. Замедленное охлаждение проводили в кессоне до температуры 150°С, окончательное охлаждение - на воздухе до температуры окружающей среды.
Механические свойства определяли на продольных и поперечных образцах. Испытания на статическое растяжение проводили на полнотолщинных образцах, а на ударный изгиб на образцах с V-образным надрезом (тип 11, ГОСТ 9454) при температурах -20 и -60°С. Испытание ИПГ проводили на полнотолщинных образцах в соответствии с API 5L 3.
Механические свойства прокатанных листов приведены в таблице 1. Определено содержание волокнистой составляющей в изломе пробы ИПГ, составившее 97% и 100%.
Figure 00000003

Claims (1)

  1. Способ производства штрипса для труб магистральных трубопроводов толщиной 24-40 мм, включающий получение заготовки из стали, нагрев заготовки выше Ас3, дробную деформацию и ступенчатое охлаждение готового штрипса в установке контролируемого ускоренного охлаждения (УКО) до температуры 550-400°С с последующим охлаждением в кессоне до 150°С и далее на воздухе, отличающийся тем, что заготовку получают из стали со следующим соотношением элементов, мас.%:
    углерод 0,03-0,10 марганец 1,20-1,85 кремний 0,15-0,35 никель 0,10-0,30 алюминий 0,02-0,06 молибден 0,01-0,3 ниобий 0,03-0,06 ванадий 0,01-0,03 титан 0,001-0,020 сера 0,001-0,003 фосфор 0,002-0,010 железо остальное

    при этом углеродный эквивалент Сэкв.≤0,40 мас.%, коэффициент трещиностойкости Pcm≤0,21 мас.%, перед деформацией заготовку нагревают до температуры 1150-1200°С в течение 7-8 ч, затем проводят предварительную деформацию с суммарной степенью обжатия 58-65% с регламентированными обжатиями 14-20% при температуре 940-990°С, далее осуществляют охлаждение полученной заготовки на 70-100°С со скоростью 4-12°С/с и последующую выдержку 3-5 с на мм сечения заготовки на воздухе, окончательную деформацию проводят при температуре 830-750°С с суммарной степенью обжатий не менее 43% и не менее 12% за проход.
RU2008149189/02A 2008-12-12 2008-12-12 Способ производства штрипса для труб магистральных трубопроводов RU2426800C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2008149189/02A RU2426800C2 (ru) 2008-12-12 2008-12-12 Способ производства штрипса для труб магистральных трубопроводов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2008149189/02A RU2426800C2 (ru) 2008-12-12 2008-12-12 Способ производства штрипса для труб магистральных трубопроводов

Publications (2)

Publication Number Publication Date
RU2008149189A RU2008149189A (ru) 2010-06-20
RU2426800C2 true RU2426800C2 (ru) 2011-08-20

Family

ID=42682359

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008149189/02A RU2426800C2 (ru) 2008-12-12 2008-12-12 Способ производства штрипса для труб магистральных трубопроводов

Country Status (1)

Country Link
RU (1) RU2426800C2 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2675891C1 (ru) * 2018-05-22 2018-12-25 Публичное акционерное общество "Северсталь" Способ производства горячекатаных листов из низколегированной стали класса прочности К60 толщиной до 40 мм
RU2688077C1 (ru) * 2018-08-17 2019-05-17 Федеральное Государственное Унитарное Предприятие "Центральный научно-исследовательский институт черной металлургии им. И.П. Бардина" (ФГУП "ЦНИИчермет им. И.П. Бардина") Способ производства низколегированного хладостойкого листового проката
RU2690076C1 (ru) * 2018-12-18 2019-05-30 Публичное акционерное общество "Северсталь" Листовой прокат и способ его получения
RU2690398C1 (ru) * 2018-08-17 2019-06-03 Федеральное Государственное Унитарное Предприятие "Центральный научно-исследовательский институт черной металлургии им. И.П. Бардина" (ФГУП "ЦНИИчермет им. И.П. Бардина") Способ производства низколегированного хладостойкого свариваемого листового проката
RU2696920C1 (ru) * 2018-07-30 2019-08-07 Акционерное общество "Выксунский металлургический завод" Способ производства проката для труб магистральных трубопроводов с одновременным обеспечением равномерного удлинения и хладостойкости

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2675891C1 (ru) * 2018-05-22 2018-12-25 Публичное акционерное общество "Северсталь" Способ производства горячекатаных листов из низколегированной стали класса прочности К60 толщиной до 40 мм
RU2696920C1 (ru) * 2018-07-30 2019-08-07 Акционерное общество "Выксунский металлургический завод" Способ производства проката для труб магистральных трубопроводов с одновременным обеспечением равномерного удлинения и хладостойкости
RU2688077C1 (ru) * 2018-08-17 2019-05-17 Федеральное Государственное Унитарное Предприятие "Центральный научно-исследовательский институт черной металлургии им. И.П. Бардина" (ФГУП "ЦНИИчермет им. И.П. Бардина") Способ производства низколегированного хладостойкого листового проката
RU2690398C1 (ru) * 2018-08-17 2019-06-03 Федеральное Государственное Унитарное Предприятие "Центральный научно-исследовательский институт черной металлургии им. И.П. Бардина" (ФГУП "ЦНИИчермет им. И.П. Бардина") Способ производства низколегированного хладостойкого свариваемого листового проката
RU2690076C1 (ru) * 2018-12-18 2019-05-30 Публичное акционерное общество "Северсталь" Листовой прокат и способ его получения

Also Published As

Publication number Publication date
RU2008149189A (ru) 2010-06-20

Similar Documents

Publication Publication Date Title
JP5277648B2 (ja) 耐遅れ破壊特性に優れた高張力鋼板並びにその製造方法
JP5776398B2 (ja) 低温靭性に優れた低降伏比高強度熱延鋼板およびその製造方法
US9708681B2 (en) High-strength seamless steel pipe for oil well use having excellent resistance to sulfide stress cracking
KR100799421B1 (ko) 용접성이 우수한 490MPa급 저항복비 냉간성형강관 및 그제조방법
KR101706485B1 (ko) 고강도 냉연 강판 및 그 제조 방법
KR101388334B1 (ko) 내지연 파괴 특성이 우수한 고장력 강재 그리고 그 제조 방법
JP4324225B1 (ja) 伸びフランジ性に優れた高強度冷延鋼板
EP2264205A1 (en) High-strength steel plate excellent in low-temperature toughness, steel pipe, and processes for production of both
JP5126399B2 (ja) 伸びフランジ性に優れた高強度冷延鋼板およびその製造方法
WO2011142285A1 (ja) 高強度鋼板とその製造方法
MXPA97008775A (en) Process to produce steel pipe without seams of great strength having excellent resistance to the fissure by tensions by sulf
JP5277672B2 (ja) 耐遅れ破壊特性に優れた高張力鋼板ならびにその製造方法
JP6047983B2 (ja) 伸びおよび伸びフランジ性に優れる高強度冷延鋼板の製造方法
JP5640931B2 (ja) 加工性及び焼入性に優れた中炭素冷延鋼板とその製造方法
JP5862052B2 (ja) 伸びおよび伸びフランジ性に優れる高強度冷延鋼板ならびにその製造方法
JP2011001620A (ja) 優れた生産性と溶接性を兼ね備えた、pwht後の落重特性に優れた高強度厚鋼板およびその製造方法
RU2426800C2 (ru) Способ производства штрипса для труб магистральных трубопроводов
JP5302840B2 (ja) 伸びと伸びフランジ性のバランスに優れた高強度冷延鋼板
RU2345149C2 (ru) Способ производства хладостойкого листового проката (варианты)
JP2017214618A (ja) 低温靭性に優れた低降伏比高強度熱延鋼板の製造方法
CN111542621B (zh) 高强度高韧性的热轧钢板及其制造方法
JP2012224884A (ja) 強度、延性及びエネルギー吸収能に優れた高強度鋼材とその製造方法
JP2010126808A (ja) 冷延鋼板およびその製造方法
RU2383633C1 (ru) Способ производства штрипса для труб магистральных трубопроводов
RU2615667C1 (ru) Способ производства горячекатаных листов из низколегированной стали класса прочности к65 для электросварных прямошовных труб