RU2423657C2 - Реактор с улучшенным теплообменом - Google Patents

Реактор с улучшенным теплообменом Download PDF

Info

Publication number
RU2423657C2
RU2423657C2 RU2008107571/06A RU2008107571A RU2423657C2 RU 2423657 C2 RU2423657 C2 RU 2423657C2 RU 2008107571/06 A RU2008107571/06 A RU 2008107571/06A RU 2008107571 A RU2008107571 A RU 2008107571A RU 2423657 C2 RU2423657 C2 RU 2423657C2
Authority
RU
Russia
Prior art keywords
reactor
monolith
pipe
outer pipe
reactor according
Prior art date
Application number
RU2008107571/06A
Other languages
English (en)
Other versions
RU2008107571A (ru
Inventor
Уильям Э. УИТЕНБЕРГЕР (US)
Уильям Э. УИТЕНБЕРГЕР
Дейвид Э. БЕКЕР (US)
Дейвид Э. БЕКЕР
Судипта ЧАТТОПАДХЯЙ (US)
Судипта ЧАТТОПАДХЯЙ
Аманда Л. САФИКУЛ (US)
Аманда Л. САФИКУЛ
Original Assignee
Кэтасел Корп.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Кэтасел Корп. filed Critical Кэтасел Корп.
Publication of RU2008107571A publication Critical patent/RU2008107571A/ru
Application granted granted Critical
Publication of RU2423657C2 publication Critical patent/RU2423657C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J12/00Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
    • B01J12/007Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor in the presence of catalytically active bodies, e.g. porous plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/248Reactors comprising multiple separated flow channels
    • B01J19/2485Monolithic reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/32Packing elements in the form of grids or built-up elements for forming a unit or module inside the apparatus for mass or heat transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/32Packing elements in the form of grids or built-up elements for forming a unit or module inside the apparatus for mass or heat transfer
    • B01J19/325Attachment devices therefor, e.g. hooks, consoles, brackets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32279Tubes or cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/324Composition or microstructure of the elements
    • B01J2219/32408Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/324Composition or microstructure of the elements
    • B01J2219/32466Composition or microstructure of the elements comprising catalytically active material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/324Composition or microstructure of the elements
    • B01J2219/32466Composition or microstructure of the elements comprising catalytically active material
    • B01J2219/32475Composition or microstructure of the elements comprising catalytically active material involving heat exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/328Manufacturing aspects
    • B01J2219/3281Pleating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/1234Honeycomb, or with grain orientation or elongated elements in defined angular relationship in respective components [e.g., parallel, inter- secting, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24744Longitudinal or transverse tubular cavity or cell

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

Изобретение относится к энергетике и может использоваться в каталитических реакторах. Каталитический реактор или теплообменник включает монолит, образованный большим количеством тонких листов, при этом монолит имеет в целом кольцевое поперечное сечение. Монолит размещен внутри в целом цилиндрической внешней трубы и охватывает гофрированную внутреннюю трубу. Реактор снабжен средствами для воздействия на монолит в радиальном направлении наружу с тем, чтобы поддерживать контакт между монолитом и внешней трубой. Такие средства могут включать коническое кольцо или согнутый щиток, который выполнен заодно с внутренней трубой. В любом случае реактор компенсирует текучесть металла и практически обеспечивает непрерывный контакт между монолитом и внешней трубой. 9 з.п. ф-лы, 6 ил.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к области каталитических реакций, проходящих на поверхности, и/или к теплообменнику. Изобретение относится к реактору, который установлен внутри внешней цилиндрической трубы и эффективно передает теплоту, подводимую извне, от внешней трубы к реактору или от реактора к внешней трубе.
Уровень техники
Реактор согласно настоящему изобретению решает те же задачи, что и носители катализатора, описанные в родственных заявках на выдачу патента США: регистрационный номер 11/132691, дата подачи 19.05.2005; регистрационный номер 10/896302, дата подачи 21.07.2004 и регистрационный номер 11/105973, дата подачи 14.04.2005. Раскрытие сведений, содержащихся в вышеупомянутых заявках, включено в настоящее описание в качестве ссылки.
Одна из задач реакторов, раскрытых в вышеупомянутых заявках, заключается в том, чтобы избежать проблем, связанных с применением керамических материалов при изготовлении и использовании каталитических реакторов. Уложенные слои катализатора имеют недостаток, который заключается в их низкой теплопроводности, что затрудняет передачу теплоты от периферии реактора внутрь или наоборот. Кроме того, несоответствие тепловых характеристик металлических и керамических элементов, используемых в известных в уровне техники реакторах, с течением времени приводит к измельчению (крошению) керамического материала, ограничивая тем самым срок службы реактора. Подобно устройствам, раскрытым в вышеупомянутых заявках, настоящее изобретение также предусматривает использование полностью металлической конструкции, которая заведомо позволяет избежать необходимость решения указанных проблем.
Реактор, содержащий радиально расположенные тонкие листы металла, описанный в заявке с регистрационным номером 11/132691, характеризуется хорошей теплопередачей и, следовательно, хорошей общей производительностью, причем не только при моделировании в компьютерной модели, но также по результатам оценки возможности его использования в качестве опытного образца в устройстве для теплообмена. Однако оказалось, что такой опытный образец трудно изготовить и поэтому с точки зрения легкости изготовления упомянутую конструкцию не считают оптимальным решением.
Реакторы, представленные в вышеуказанных заявках, и другие известные в уровне техники реакторы занимают по существу весь объем внутри внешней цилиндрической трубы. Проблема, присущая реакторам этого типа, заключается в том, что они, в частности, не выполняют свои функции достаточно хорошо вблизи центра реактора. Было установлено, что большая часть каталитических реакций проходит вблизи внешних участков реактора, т.е. вблизи внешней трубы. Эта проблема обуславливает снижение эффективности реактора и приводит к тому, что очень трудно или невозможно достигнуть желательного уровня конверсии.
Настоящее изобретение обеспечивает конструкцию реактора, которая решает вышеупомянутую проблему. Реактор согласно настоящему изобретению в целом является более эффективным по сравнению с реакторами, известными в уровне техники, и, кроме того, он относительно легок в изготовлении.
Другая проблема, которая встречается в реакторах, установленных внутри цилиндрических труб, заключается в пластической деформации металла. Реакторы, описанные в вышеупомянутых заявках, как и реактор, соответствующий настоящему изобретению, предназначены для установки внутри больших металлических внешних труб и функционирования при высоких температурах (в интервале 850-900°С) и высоких давлениях (в интервале 20-30 бар). Давление создает высокие растягивающие напряжения, которые при высокой температуре материалу трубы трудно выдерживать. По истечении периода времени, исчисляемого годами, пластическая деформация, происходящая во внешней металлической трубе, приводит к тому, что диаметр трубы увеличивается. Следует отметить, что увеличение диаметра трубы даже на несколько миллиметров создает нежелательный зазор между реактором и окружающей его трубой. Типичный реактор, который был установлен внутри новой трубы и первоначально находился в хорошем контакте с трубой, будет терять контакт с этой трубой, если она в течение ряда лет подвержена действию эффекта текучести. Эта текучесть приведет к значительному снижению производительности реактора.
Настоящее изобретение обеспечивает такую конструкцию, которая позволяет решить вышеуказанную проблему. В соответствии с изобретением предложены средства, которые непрерывно компенсируют явление текучести, обеспечивая надлежащий контакт между реактором и окружающей его внешней трубой.
Реактор в соответствии с настоящим изобретением может быть использован, например, в области проведения каталитического риформинга топлива с получением водорода, который затем используют для выработки электрической энергии с помощью топливного элемента или в других технологических процессах, таких как переработка нефти или газа, производство аммиака и удобрения, гидрогенизация масел и химикатов и восстановление железной руды. Реактор мог бы быть использован в качестве каталитической или не каталитической камеры сгорания, или как обычный теплообменник.
Сущность изобретения
Предложен реактор, содержащий внешнюю трубу и монолит, включающий множество металлических листов, имеющий кольцевое поперечное сечение и расположенный внутри внешней трубы вблизи внутренней поверхности внешней трубы, а также содержащий средства для воздействия на листы в радиальном направлении наружу с тем, чтобы поддерживать контакт между, по меньшей мере, некоторыми листами и внешней трубой.
Кроме того, реактор содержит внутреннюю трубу, при этом монолит размещен между внутренней трубой и внешней трубой, указанные средства воздействия включают, по меньшей мере, одно коническое кольцо. Одно коническое кольцо может быть расположено с возможностью оказывать давление на внутреннюю трубу, действующее в радиальном направлении наружу. Внутренняя труба может быть выполнена с согнутым щитком, при этом указанные средства воздействия включают указанный щиток. Реактор может содержать стойку, установленную вдоль продольной оси внешней трубы, причем указанные средства воздействия связаны с указанной стойкой. Указанные средства воздействия контактируют с внутренней трубой вблизи верхней части монолита и контактируют с внутренней трубой вблизи нижней части монолита. Реактор может содержать множество монолитов, размещенных во внешней трубе, внутренняя труба представляет собой растяжимую гофрированную внутреннюю трубу, предотвращающую попадание газа, поступающего в реактор, в центральную область монолита, внешняя труба выполнена практически цилиндрической.
В соответствии с изложенным основная задача настоящего изобретения заключается в том, чтобы обеспечить металлическую конструкцию каталитического реактора или теплообменника.
Другая задача изобретения заключается в повышении эффективности каталитического реактора или теплообменника за счет выполнения реактора с монолитом, имеющим кольцевое поперечное сечение.
Следующая задача изобретения состоит в обеспечении каталитического реактора или теплообменника, который может быть относительно легко изготовлен.
Еще одной задачей изобретения является предотвращение образования зазора между реактором или теплообменником и внешней трубой, внутри которой он размещен.
Задача изобретения заключается также в том, чтобы увеличить срок полезного использования каталитического реактора или теплообменника.
Еще одна задача изобретения состоит в обеспечении эффективного реактора, который выполнен цельнометаллическим и может быть легко изготовлен.
Специалисту в данной области техники из приведенных ниже краткого описания чертежей, подробного описания изобретения и приложенных пунктов формулы будут очевидны и другие задачи и преимущества настоящего изобретения.
Краткое описание чертежей
Фиг.1 - кольцеобразный монолит и соединенная с ним внутренняя гофрированная труба, которые образуют основную часть реактора, выполненного в соответствии с настоящим изобретением, вид с торца.
Фиг.2 - вид, подобный представленному на фиг.1, в котором тонкая полоса, используемая для образования реактора, в одних местах выполнена гофрированной, а в других - не гофрированной.
Фиг.3 - реактор согласно настоящему изобретению, установленный внутри внешней трубы, вид в поперечном разрезе по линии 3-3.
Фиг.4 - фрагментарный вид в поперечном разрезе реактора, соответствующего настоящему изобретению, иллюстрирующий конические кольца, которые предотвращают образование зазора между тонкими листами монолита реактора и внешней трубой.
Фиг.5 и фиг.6 - альтернативное воплощение, в котором внутренняя гофрированная труба в соответствии с настоящим изобретением выполнена заодно со щитками, выполняющими ту же функцию, что и конические кольца, виды в перспективе.
Осуществление изобретения
Реактор в соответствии с настоящим изобретением включает носитель для катализатора, предпочтительно изготовленный из металлической фольги, при этом металлическая фольга включает в себя большое количество тонких листов или пластин, которые образуют относительно большую поверхность для проведения процесса каталитического сжигания или теплообмена. В предпочтительном воплощении эти тонкие листы образованы путем последовательного сгибания металлической фольги в одну и затем в другую сторону с формированием монолита. Термин "тонкий лист" или "тонкая пластина" используется в этом описании взаимозаменяемым образом. Если монолит используют для каталитических реакций, его поверхности покрывают подходящим катализатором.
В одном аспекте изобретения реактор имеет форму кольца. То есть реактор содержит тонкую полосу из металлической фольги, которая многократно согнута в одну и затем в другую сторону с образованием складок, при этом согнутая указанным образом полоса образует в поперечном сечении в целом кольцо, если смотреть в направлении течения потока газа через реактор. Реактор вводят внутрь цилиндрической внешней трубы, при этом другая сторона реактора ограничена растяжимой гофрированной внутренней трубой. Таким образом, реактор занимает объем, который главным образом находится вблизи внутренней поверхности внешней трубы и не занимает объем около центральной оси внешней трубы. Преимущество такой кольцевой конструкции заключается в том, что тонкие листы, образующие реактор, размещены все в определенной зоне, которая находится ближе всего к внешней трубе. Следовательно, теплота, подводимая к внешней трубе снаружи, легко передается по существу ко всему реактору. В отличие от известных аналогов отсутствует необходимость обеспечивать прохождение теплоты, подводимой снаружи внешней трубы, через весь объем, образованный внутри внешней трубы. Внешняя труба предотвращает прохождение газа, поступающего в реактор, в центральную зону конструкции.
Вышеизложенная концепция конструкции была сначала проверена на компьютерной модели, в которой тонкие листы были размещены только в пределах кольца, ограниченного внутренним диаметром, равным 7,6 мм, и внешним диаметром, равным 10,1 мм. Данные размеры приведены здесь для примера и не должны рассматриваться как ограничивающие объем изобретения. В рассматриваемой модели тонкие листы занимали площадь поперечного сечения, которая составляла приблизительно 43,75% от общей площади поперечного сечения внешней трубы. Ожидалось небольшое улучшение производительности, однако улучшение, которое было получено в действительности, оказалось неожиданно большим. В частности, в известном реакторе при типичных условиях подачи исходного материала в трубе длиной, равной 12 м, было трудно или невозможно достигнуть 98% конверсии. Но при использовании описанной выше кольцеобразной конструкции для определенной области геометрических параметров легко было достигнуть степени конверсии в 99% или больше.
Основа конструкции реактора согласно настоящему изобретению представлена на фиг.1. Как показано на этой фигуре, из полосы металлической фольги, которая последовательно согнута в одну и затем в другую стороны, образован кольцеобразный монолит 1. Полученные складки фольги включают тонкие пластины или листы и средства для теплообмена. Образованная из фольги складчатая структура поставляется на рынок фирмой Robinson Fin Machines, Inc. of Kenton, Ohio. Таким образом, можно легко получить предварительно изготовленную из фольги складчатую структуру и свернуть ее в кольцо, показанное на фиг.1. Весь реактор размещен внутри внешней трубы (на фиг.1 и фиг.2 не показана).
Направление течения газа на фиг.1-3 перпендикулярно плоскости чертежа и, следовательно, в целом параллельно поверхностям тонких листов или пластин. Конические кольца препятствуют движению потока к центральной зоне и обеспечивают протекание газа только через кольцевую зону, а внутренняя труба предотвращает втекание газа, поступающего в кольцевую зону, в не занятую центральную зону.
Фольга на фиг.1 может быть или плоской или гофрированной. В гофрированной заготовке из фольги, также поставляемой на рынок фирмой Robinson Fin Machines, Inc., каждый образованный слой заготовки имеет гофры. Соответственно, каждый слой заготовки из фольги образует тонкий лист или тонкую пластину, при этом кривизна каждой пластины меняется по ее длине. Фиг.1 предусматривает возможность выполнения пластины как плоской, так и гофрированной. Гофрированная пластина по сравнению с плоской пластиной, вероятно, дает дополнительную выгоду с точки зрения производительности.
На фиг.2 представлено другое воплощение, подобное фиг.1, в котором фольга включает плоские (не гофрированные) участки, чередующиеся с гофрированными участками. Когда фольга согнута в одну и затем в другую сторону с образованием складок, каждый плоский участок оказывается заключенным между примыкающими к нему гофрированными участками так, что эти плоские участки предотвращают совмещение поверхностей гофрированных участков. Внутренняя гофрированная труба 10 выполнена такой же, как и на фиг.1. Был испытан опытный образец реактора, использующий конструкцию, показанную на фиг.2, и, как было установлено, он обеспечивал лучшую теплопередачу, чем была достигнута в реакторах, известных в уровне техники, представленных в вышеуказанных заявках.
Изобретение не следует рассматривать как ограниченное конкретными конфигурациями листов или пластин, показанными на фиг.1 и фиг.2. Изобретение включает и другие конфигурации пластин, при условии, что поперечное сечение реактора имеет форму кольца.
На фиг.3 показан реактор, образованный монолитом 5, предпочтительно сформированным из металлической фольги, подобным показанному на фиг.1, введенным внутрь внешней трубы 7 и охватывающим внутреннюю трубу 10. На центральной оси цилиндрической конструкции установлен держатель или стойка 9. Реактор имеет кольцевое поперечное сечение, и эта кольцеобразная конструкция расположена вблизи внутренней поверхности трубы 7, как это показано на фиг.3. Монолит в качестве альтернативы может иметь конструкцию, представленную на фиг.2, или какую-либо другую конструкцию, которая может быть выполнена с кольцевым поперечным сечением.
Помимо повышения производительности, достигаемого за счет кольцеобразной конструкции, реактор в соответствии с настоящим изобретением имеет еще одно преимущество в том, что он более легко расширяется или сжимается в радиальном направлении. Относительно большая не используемая область в центре реактора обеспечивает наличие объема, внутри которого размещаются элементы конструкции, способствующие расширению или сжатию реактора, о чем более подробно будет сказано ниже.
Как было отмечено выше, текучесть металла, образующего внешнюю труб, приводит к тому, что диаметр этой трубы со временем увеличивается. В результате явления текучести между фольгой монолита и внешней трубой образуется зазор, обозначенный на фиг.3 позицией 11. На фиг.3 этот зазор показан только в целях иллюстрации. На практике какой-либо зазор нежелателен, поскольку он снижает теплообмен между внешней трубой и реактором. Чем больше величина зазора, тем более нежелательна такая конструкция. В идеальном случае монолит всегда будет касаться внешней поверхности внешней трубы.
Фиг.4 иллюстрирует решение проблемы, создаваемой наличием зазора. Эта фигура отображает, во фрагментарном виде, несколько монолитов 5, установленных один над другим внутри трубы 7. Монолиты 5 соединены с держателем или стойкой 9 коническими кольцами 13 (типа колец Bellville). Как показано на фиг.4, конические кольца контактируют с внутренней трубой 10, имеющей гофрированную поверхность, в непосредственной близости от верхней и нижней частей каждого реактора, установлены в канавках 15, выполненных в держателе или стойке 9 и опираются на поверхность этих канавок. Держатель является несущим элементом веса конструкции.
Когда внешняя труба 7 вследствие текучести металла расширяется с удалением от пластин реактора, зазор 11 увеличивается. Веса монолитов, расширяющейся внешней трубы и конических колец плюс перепад давления, созданный при нисходящем течении потока газа, действуют совместно так, что относительно слабые конические кольца искривляются до меньшего угла относительно горизонтали. Под действием силы, действующей на конические кольца, они занимают положение, более близкое к горизонтальному, и при этом расширяют внутреннюю трубу 10, оказывая давление на тонкие листы монолита в радиальном направлении наружу, в результате чего листы монолитов остаются в контакте с внешней трубой. Следовательно, конические кольца представляют собой средства, действующие на тонкие листы в радиальном направлении наружу таким образом, чтобы между этими листами и внешней трубой сохранялся контакт.
Таким образом, в соответствии с настоящим изобретением возможность образования зазора, такого как зазор 11, практически отсутствует. В том случае, если очень быстро образуется некоторый зазор, вес монолитов создает силу, действующую на конические кольца вниз, вынуждая их принимать более горизонтальное положение и при этом оказывать на монолиты давление в радиальном направлении наружу, в результате чего монолиты контактируют с внешней трубой. Гофрированная стенка внутренней трубы 10 позволяет внутренней трубе расширяться при воздействии на нее колец вышеуказанным образом. Следовательно, до тех пор, пока конические кольца сохраняют наклон относительно горизонтали, предложенная конструкция является по сути саморегулирующейся.
Держатель 9 выполняет функции центральной стойки, которая служит опорой для всей системы (монолиты и трубы). В самой нижней части этой системы должна быть установлена опора или обеспечена горизонтальная площадка (не показано) для поддерживания всей стойки. Соответственно, каждая стойка выбранной секции опирается на стойку нижерасположенной секции. Фиг.4 отображает только два полностью смонтированных готовых реактора, которые, как правило, имеют длину, приблизительно равную 152 мм, но на практике эта длина может быть много больше и составлять примерно 254 мм или более. В верхней части стойки каждой секции может быть установлена ручка или подобный элемент конструкции (не показан) для обеспечения захвата стойки в процессе установки и извлечения секции из внешней трубы.
Стойка на фиг.4 показана как деталь машинной обработки. Вероятно, менее дорогостоящим является использование центральной стойки не машинной обработки, охваченной снаружи короткими отрезками трубы, промежутки между которыми будут выполнять функции канавок. В этом случае внутренний диаметр такого отрезка трубы (не показан) может быть лишь немного меньше внешнего диаметра стойки.
Коническое кольцо 13 должно быть сконструировано надлежащим образом с выбором соответствующих толщины, геометрии и материала с тем, чтобы оно точно реагировало на вес элементов конструкции и в то же время сохраняло свою целостность. Это кольцо может быть штампованным (или выдавленным) коническим кольцом или быть изготовленным из гофрированного материала.
На фиг.5 и фиг.6 представлено альтернативное воплощение. В этом воплощении внутреннюю гофрированную трубу 21 и конические кольца изготавливают из одной заготовки гофрированного материала. Гофрированный металл сгибают "поперек длины" с образованием кольцевых щитков, обозначенных на фигурах позициями 20 и 22. Края заготовки сгибают и соединяют вместе, в результате чего металл приобретает цилиндрическую форму. Изготовление всего элемента завершают затем с помощью точечной сварки концов, соединенных друг с другом. В этом воплощении щитки 20 и 22 функционируют по существу так же, как и кольца, показанные на фиг.4. Щитки, таким образом, представляют собой гофрированные конические профили, которые расширяются в радиальном направлении под действием сил тяжести при высоких температуре и давлении.
Металл, используемый для изготовления внутренней гофрированной трубы, предпочтительно представляет собой фольгу, подобную используемой для изготовления монолита.
Изобретение может быть модифицировано различными путями в пределах раскрытия предмета изобретения. Например, может быть изменена конфигурация фольги, используемой для изготовления реактора. Может быть изменено конструктивное выполнение конических колец. Вместо конических колец, для воздействия на тонкие листы реактора с целью обеспечения их контакта с внешней трубой, могут быть использованы и другие средства. Могут быть изменены геометрические размеры монолитов и количество монолитов, введенных внутрь внешней трубы. Эти и другие модификации, которые будут очевидны для специалиста в данной области техники, должны быть приняты во внимание в пределах объема и сущности изобретения, раскрытых в изложенных ниже пунктах формулы изобретения.

Claims (10)

1. Реактор, содержащий внешнюю трубу и монолит, включающий множество металлических листов, имеющий кольцевое поперечное сечение и расположенный внутри внешней трубы вблизи внутренней поверхности внешней трубы, а также содержащий средства для воздействия на листы в радиальном направлении наружу с тем, чтобы поддерживать контакт между, по меньшей мере, некоторыми листами и внешней трубой.
2. Реактор по п.1, содержащий внутреннюю трубу, при этом монолит размещен между внутренней трубой и внешней трубой.
3. Реактор по п.1, в котором указанные средства воздействия включают, по меньшей мере, одно коническое кольцо
4. Реактор по п.2, в котором указанные средства воздействия включают, по меньшей мере, одно коническое кольцо, расположенное с возможностью оказывать давление на внутреннюю трубу, действующее в радиальном направлении наружу.
5. Реактор по п.2, в котором внутренняя труба выполнена с согнутым щитком, при этом указанные средства воздействия включают указанный щиток.
6. Реактор по любому одному из пп.1-5, содержащий стойку, установленную вдоль продольной оси внешней трубы, причем указанные средства воздействия связаны с указанной стойкой.
7. Реактор по любому одному из пп.2-5, в котором указанные средства воздействия контактируют с внутренней трубой вблизи верхней части монолита и контактируют с внутренней трубой вблизи нижней части монолита.
8. Реактор по любому одному из пп.1-5, содержащий множество монолитов, размещенных во внешней трубе.
9. Реактор по любому одному из пп.2-5, в котором внутренняя труба представляет собой растяжимую гофрированную внутреннюю трубу, предотвращающую попадание газа, поступающего в реактор, в центральную область монолита.
10. Реактор по любому одному из пп.1-5, в котором внешняя труба выполнена практически цилиндрической.
RU2008107571/06A 2005-07-28 2006-07-21 Реактор с улучшенным теплообменом RU2423657C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/191,683 2005-07-28
US11/191,683 US7501102B2 (en) 2005-07-28 2005-07-28 Reactor having improved heat transfer

Publications (2)

Publication Number Publication Date
RU2008107571A RU2008107571A (ru) 2009-09-10
RU2423657C2 true RU2423657C2 (ru) 2011-07-10

Family

ID=37694501

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008107571/06A RU2423657C2 (ru) 2005-07-28 2006-07-21 Реактор с улучшенным теплообменом

Country Status (8)

Country Link
US (1) US7501102B2 (ru)
EP (1) EP1910765B1 (ru)
CA (1) CA2616731C (ru)
DK (1) DK1910765T3 (ru)
ES (1) ES2420108T3 (ru)
PL (1) PL1910765T3 (ru)
RU (1) RU2423657C2 (ru)
WO (1) WO2007015969A2 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013151885A1 (en) * 2012-04-02 2013-10-10 Catacel Corp. Wire standoffs for stackable structural reactors
WO2013151889A1 (en) * 2012-04-03 2013-10-10 Catacel Corp. Expanding centers for stackable structural reactors
RU2570004C2 (ru) * 2011-01-28 2015-12-10 Джонсон Мэттей Паблик Лимитед Компани Реактор вертикально-наборной конструкции
RU2673839C2 (ru) * 2014-03-04 2018-11-30 Джонсон Мэтти Паблик Лимитед Компани Каталитическая установка
RU2738288C2 (ru) * 2016-05-23 2020-12-11 Джонсон Мэтти Паблик Лимитед Компани Расширяемое центральное устройство

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7906079B2 (en) 2006-12-14 2011-03-15 Catacel Corp. Stackable structural reactor
US20100254864A1 (en) * 2008-01-08 2010-10-07 Hisayuki Itsuki Cylindrical steam reformer
US8495814B1 (en) 2008-01-28 2013-07-30 Catacel Corp. Reactor installation and removal tools
US8178075B2 (en) * 2008-08-13 2012-05-15 Air Products And Chemicals, Inc. Tubular reactor with jet impingement heat transfer
US8409521B2 (en) * 2008-08-13 2013-04-02 Air Products And Chemicals, Inc. Tubular reactor with jet impingement heat transfer
US20100050874A1 (en) * 2008-08-29 2010-03-04 Walter Cullen Lucas Exhaust after treatment system and method
US8932536B2 (en) 2011-05-10 2015-01-13 Zoneflow Reactor Technologies, LLC Reactor packing
US9901905B2 (en) 2012-01-03 2018-02-27 Johnson Matthey Public Limited Company Monolith with catalytic or sorbent beads
CN109954450B (zh) * 2012-04-02 2022-06-17 庄信万丰股份有限公司 用于可堆叠结构反应器的线材支座
WO2014093918A1 (en) * 2012-12-13 2014-06-19 Warsaw Orthopedic, Inc. Compositions and methods comprising polyethylene glycol and magnesium for treatment of neuronal injury
US9643150B2 (en) 2013-05-06 2017-05-09 Johnson Matthey Public Limited Company Tools for installing reactor components
DK3007820T3 (en) * 2013-05-31 2018-10-22 Johnson Matthey Plc Structured catalytic converter assembly tool
US9958211B2 (en) 2015-03-12 2018-05-01 Bayotech, Inc. Nested-flow heat exchangers and chemical reactors
US20230416085A1 (en) 2020-11-13 2023-12-28 Technip Energies France A process for producing a hydrogen-comprising product gas from a hydrocarbon
EP4105170A1 (en) 2021-06-18 2022-12-21 Technip Energies France Process and plant for flexible production of syngas from hydrocarbons
EP4279446B1 (en) 2022-05-17 2024-04-17 Technip Energies France Plant and process for producing hydrogen from hydrocarbons
EP4279445B1 (en) 2022-05-17 2024-04-17 Technip Energies France Plant and process for producing and separating syngas

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1008667A (en) 1972-06-30 1977-04-19 Foster Wheeler Corporation Catalytic steam reforming
US4162290A (en) 1976-11-19 1979-07-24 Pullman Incorporated Parallel steam reformers to provide low energy process
US4316499A (en) 1980-04-16 1982-02-23 Svenska Rotor Maskiner Aktiebolag Rotary, regenerative heat exchanger having floating sealing rings
US4844837A (en) 1982-09-30 1989-07-04 Engelhard Corporation Catalytic partial oxidation process
US5039510A (en) 1983-03-25 1991-08-13 Imperial Chemical Industries Plc Steam reforming
GB8308343D0 (en) 1983-03-25 1983-05-05 Ici Plc Steam reforming
DE3424208A1 (de) 1984-06-30 1986-01-16 Kernforschungsanlage Jülich GmbH, 5170 Jülich Verfahren und vorrichtung zur umsatzsteigerung von mit wasserstoffbildung ablaufenden gasreaktionen
DK165946C (da) 1985-03-21 1993-07-05 Haldor Topsoe As Reformingproces under varmeudveksling og reaktor dertil
ES2010201B3 (es) 1986-05-12 1989-11-01 Interatom Ges Mit Beschrankter Haftung Cuerpo alveolado, especialmente cuerpo portante de catalizador, con capas de chapa metalica entrelazadas en sentidos opuestos y procedimiento para su fabricacion.
JPH0352672Y2 (ru) * 1987-08-03 1991-11-15
WO1990003220A1 (de) 1988-09-22 1990-04-05 Emitec Gesellschaft Für Emissionstechnologie Mbh Wabenkörper, insbesondere katalysator-trägerkörper, aus einer mehrzahl verschlungener blechstapel
US5135794A (en) 1988-09-22 1992-08-04 Emitec Gesellschaft Fur Emissionstechnologie Mbh Honeycomb body, in particular catalyst carrier body, formed of a plurality of entwined bundles of sheet metal
GB9000389D0 (en) 1990-01-08 1990-03-07 Ici Plc Steam reforming
DE4016276C1 (ru) 1990-05-21 1991-06-20 Behr Gmbh & Co
US6274113B1 (en) 1994-01-04 2001-08-14 Chevron Phillips Chemical Company Lp Increasing production in hydrocarbon conversion processes
NL1000146C2 (nl) 1995-04-13 1996-10-15 Gastec Nv Werkwijze voor het uitvoeren van een chemische reactie.
US5676911A (en) 1995-12-14 1997-10-14 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence Of Her Majesty's Canadian Government Radial flow fuel processor
ATE194816T1 (de) 1996-10-04 2000-08-15 Haldor Topsoe As Dampfreformierungsverfahren
EP0855366B1 (en) 1997-01-22 2001-05-02 Haldor Topsoe A/S Synthesis gas production by steam reforming using catalyzed hardware
DK173052B1 (da) 1997-05-05 1999-12-06 Topsoe Haldor As Fremgangsmåde til fremstilling af ammoniak syntesegas
DK173496B1 (da) 1998-07-16 2001-01-02 Topsoe Haldor As Fremgangsmåde til fremstilling af syntesegas ved vanddampreformering under anvendelse af en katalyseret metaloverflade
SK285118B6 (sk) 1998-07-21 2006-06-01 Haldor Topsoe A/S Spôsob výroby syntézneho plynu pomocou parného reformingu
ATE340644T1 (de) 1998-11-18 2006-10-15 Haldor Topsoe As Verfahren zur herstellung eines gegenstandes mit katalytischer oberflächenschicht
EP1055637B1 (en) 1999-05-27 2005-11-02 Haldor Topsoe A/S Synthesis gas production by steam reforming
US20030044331A1 (en) 2001-08-31 2003-03-06 Mcdermott Technology, Inc. Annular heat exchanging reactor system
US20050061493A1 (en) 2003-09-19 2005-03-24 Holtzapple Mark T. Heat exchanger system and method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2570004C2 (ru) * 2011-01-28 2015-12-10 Джонсон Мэттей Паблик Лимитед Компани Реактор вертикально-наборной конструкции
WO2013151885A1 (en) * 2012-04-02 2013-10-10 Catacel Corp. Wire standoffs for stackable structural reactors
US9403138B2 (en) 2012-04-02 2016-08-02 Johnson Matthey Public Limited Company Wire standoffs for stackable structural reactors
RU2621852C2 (ru) * 2012-04-02 2017-06-07 Джонсон Мэтти Паблик Лимитед Компани Проволочные проставки для наращиваемых структурных реакторов
WO2013151889A1 (en) * 2012-04-03 2013-10-10 Catacel Corp. Expanding centers for stackable structural reactors
RU2621853C2 (ru) * 2012-04-03 2017-06-07 Джонсон Мэтти Паблик Лимитед Компани Расширяющиеся центральные части для наращиваемых структурных реакторов
RU2673839C2 (ru) * 2014-03-04 2018-11-30 Джонсон Мэтти Паблик Лимитед Компани Каталитическая установка
RU2738288C2 (ru) * 2016-05-23 2020-12-11 Джонсон Мэтти Паблик Лимитед Компани Расширяемое центральное устройство

Also Published As

Publication number Publication date
PL1910765T3 (pl) 2013-09-30
CA2616731A1 (en) 2007-02-08
EP1910765B1 (en) 2013-05-08
EP1910765A2 (en) 2008-04-16
ES2420108T3 (es) 2013-08-22
EP1910765A4 (en) 2011-09-07
US20070025893A1 (en) 2007-02-01
CA2616731C (en) 2013-09-17
WO2007015969A3 (en) 2007-10-04
US7501102B2 (en) 2009-03-10
RU2008107571A (ru) 2009-09-10
WO2007015969A2 (en) 2007-02-08
DK1910765T3 (da) 2013-06-24

Similar Documents

Publication Publication Date Title
RU2423657C2 (ru) Реактор с улучшенным теплообменом
US7761994B2 (en) Reactor with expandable structure providing improved heat transfer
US7320778B2 (en) High-performance catalyst support
US9751073B2 (en) Stackable structural reactors
US7871579B2 (en) Tubular reactor with expandable insert
AU655395B2 (en) Lined reformer tubes for high pressure reformer reactors
KR20140005752A (ko) 모놀리스형 반응기
US20110268631A1 (en) Multi-tube chemical reactor with tessellated heat transfer fins
US7682580B2 (en) Catalytic reactor having radial leaves
BRPI0708113A2 (pt) estrutura de catalisador, método para fabricar a mesma, e, reator catalìtico compacto
EP2695854A1 (en) Cylindrical steam reformer
US10974964B2 (en) Modular catalyst monoliths
JP2012521960A (ja) 受動熱流束制御要素を伴う蒸気改質器
AU2012306722B2 (en) Apparatus for minimizing bypass in ammonia oxidation burners of industrial plants with burner diameters of 2-7 m in natural- or forced-circulation boilers
KR101278115B1 (ko) 촉매 변환 반응을 위한 반응기
EP2522624A1 (en) Fuel treatment device
RU2516998C2 (ru) Кожухотрубный теплообменник
JP4731943B2 (ja) 環状反応器、その作製方法及びシール方法
JP3359061B2 (ja) 排気ガス浄化用ハニカム担体
JPH05186201A (ja) 燃料改質器
JPH02253826A (ja) 排気ガス浄化装置
JPH10235205A (ja) 金属製触媒コンバータおよびその製造方法
JPH0780324A (ja) メタル担体
JP2005272221A (ja) 水蒸気改質器
NZ612924B2 (en) Improved stackable structural reactors

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
PC41 Official registration of the transfer of exclusive right

Effective date: 20150219