RU2421930C2 - Способ передачи с использованием предварительного кодирования на основе фазового сдвига и устройство для его реализации в беспроводной системе связи - Google Patents

Способ передачи с использованием предварительного кодирования на основе фазового сдвига и устройство для его реализации в беспроводной системе связи Download PDF

Info

Publication number
RU2421930C2
RU2421930C2 RU2009114706/09A RU2009114706A RU2421930C2 RU 2421930 C2 RU2421930 C2 RU 2421930C2 RU 2009114706/09 A RU2009114706/09 A RU 2009114706/09A RU 2009114706 A RU2009114706 A RU 2009114706A RU 2421930 C2 RU2421930 C2 RU 2421930C2
Authority
RU
Russia
Prior art keywords
matrix
phase shift
precoding
precoding matrix
spatial multiplexing
Prior art date
Application number
RU2009114706/09A
Other languages
English (en)
Other versions
RU2009114706A (ru
Inventor
Моон Ил ЛИ (KR)
Моон Ил ЛИ
Бин Чул ИХМ (KR)
Бин Чул ИХМ
Воок Бонг ЛИ (KR)
Воок Бонг ЛИ
Сунг Хо ПАРК (KR)
Сунг Хо ПАРК
Дзае Ван КИМ (KR)
Дзае Ван КИМ
Original Assignee
ЭлДжи ЭЛЕКТРОНИКС ИНК.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ЭлДжи ЭЛЕКТРОНИКС ИНК. filed Critical ЭлДжи ЭЛЕКТРОНИКС ИНК.
Publication of RU2009114706A publication Critical patent/RU2009114706A/ru
Application granted granted Critical
Publication of RU2421930C2 publication Critical patent/RU2421930C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0667Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal
    • H04B7/0671Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal using different delays between antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/01Reducing phase shift
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03343Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1816Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of the same, encoded, message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03375Passband transmission
    • H04L2025/03414Multicarrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03426Arrangements for removing intersymbol interference characterised by the type of transmission transmission using multiple-input and multiple-output channels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/50Reducing energy consumption in communication networks in wire-line communication networks, e.g. low power modes or reduced link rate

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Power Engineering (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Изобретение относится к способу передачи и, в частности, к способу передачи с использованием предварительного кодирования на основе фазового сдвига и к устройству для его реализации в системе беспроводной связи. Технический результат заключается в уменьшении или минимизации помех между пользователями. Для этого принимают от мобильной станции (MS) информацию обратной связи, выполняют канальное кодирование и модуляцию пользовательских данных, используя принятую информацию обратной связи, определяют матрицу предварительного кодирования на основе фазового сдвига с использованием матрицы предварительного кодирования, выбранной из кодовой книги на основе коэффициента пространственного мультиплексирования, причем кодовая книга включает в себя первую матрицу предварительного кодирования с относительно более низким коэффициентом пространственного мультиплексирования и вторую матрицу предварительного кодирования с относительно более высоким коэффициентом пространственного мультиплексирования, выполняют в прекодоре предварительное кодирование пользовательских данных и передают выходные сигналы на мобильную станцию 2 н. и 12 з.п. ф-лы, 17 ил., 3 табл.

Description

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЯ
Настоящее изобретение относится к способу передачи и, в частности, к способу передачи с использованием предварительного кодирования на основе фазового сдвига и к устройству для его реализации в беспроводной системе связи.
УРОВЕНЬ ТЕХНИКИ
В области широкополосного множественного доступа с кодовым разделением (W-CDMA) проводятся исследования с применением множества антенн для увеличения пропускной способности системы, скорости передачи данных и надежности линии связи путем реализации различных схем, таких как формирование луча, передача с множеством входов и множеством выходов (MIMO) и разнесение передачи. В частности, схема MIMO обеспечивает высокую скорость передачи путем пространственного разнесения, аналогично технологии V-BLAST, которая принята Проектом партнерства третьего поколения (3GPP).
Сверх того, система с двумя антеннами, принятая в Выпуске 99 и Выпуске 4 и основанная на разнесении передачи, была усовершенствована до нового типа схемы разнесения, такого как управление скоростью по каждой антенне (PARC) или управление единой скоростью по каждому пользователю (PU2RC), согласно которым рассматривается работа с использованием более трех антенн.
Фиг.1A представляет собой схему, иллюстрирующую структуру PARC для одного пользователя. Фиг.1B представляет собой схему, иллюстрирующую структуру PARC для множества пользователей.
Что касается обычной технологии V-BLAST, то каждая передающая антенна может быть сконфигурирована, используя одну и ту же модуляцию и кодирование без информации обратной связи в форме информации качества канала (CQI). Тем не менее, как показано на Фиг.1A и 1B, технология PARC использует информацию обратной связи, относящуюся к состояниям канала, например схеме модуляции и кодирования (MCS) и/или подгруппе передающих антенн (TAS), и выбирает поток пользовательских данных, который должен быть передан каждой антенной.
Ссылаясь на Фиг.1A, выбирается какой-либо один из трех потоков пользовательских данных, поскольку в данном случае рассматривается пример иллюстрации PARC для одного пользователя. Согласно Фиг.1B выбираются, по меньшей мере, два из трех потоков пользовательских данных, поскольку в данном случае рассматривается пример иллюстрации PARC для множества пользователей.
Далее, модуляция и кодирование с использованием информации обратной связи, относящейся к состояниям канала, применяется к потокам пользовательских данных, хранимых в буфере после демультиплексирования. Далее, потоки пользовательских данных мультиплексируются, используя определенную схему (например, схему множественного доступа с ортогональным частотным разделением (OFDMA)), и передаются через каждую антенну.
Иначе говоря, базовая станция, применяющая схему PARC, использует информацию обратной связи, передаваемую от мобильной станции (MS), для того, чтобы выполнять планирование для оптимизации скорости передачи. Таким образом, одна или две или более мобильных станций могут одновременно совместно использовать частотные и временные ресурсы в области пространства. Более того, схема PARC предоставляет возможность увеличения усиления разнесения, поскольку увеличивается количество мобильных станций, планирование которых выполняет базовая станция.
Путем использования схемы PARC служебная информация обратной связи уменьшается, поскольку в качестве информации обратной связи используется только CQI. Исходя из меньшего или уменьшенного объема служебной информации, в течение процесса обратной связи вероятность возникновения ошибки будет относительно ниже, и может иметь место переключение с PARC для одного пользователя на PARC для множества пользователей. Тем не менее, в случае PARC для множества пользователей между пользователями могут возникнуть помехи, таким образом, влияя на эффективность передачи.
Фиг.2 представляет собой схему, иллюстрирующую структуру PU2RC. Схема PU2RC использует пространственное мультиплексирование для передачи потоков данных множества пользователей. По существу, выбирается множество потоков данных для передачи множеству пользователей. В схеме PU2RC для выполнения предварительного кодирования используется унитарная матрица, основанная на разложении матрицы MIMO-канала по сингулярным числам.
Более конкретно, унитарная матрица в передатчике представляет собой набор унитарных базовых векторов, выбранных всеми пользователями (или мобильными станциями). Если набор векторов фиксирован, что представляется посредством M, то один или более пользователей выбирают унитарные базовые векторы.
Сверх того, схема PU2RC может быть использована, чтобы уменьшить межпользовательские помехи и достичь высокой эффективности усиления. Тем не менее, объем информации обратной связи может быть достаточно большим, поскольку информация может включать в себя предпочтительный индекс матрицы в добавление к предпочтительному вектору в матрице, в результате чего увеличивается вероятность ошибки передачи из-за большого объема информации обратной связи.
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ
ТЕХНИЧЕСКОЕ РЕШЕНИЕ
Соответственно, настоящее изобретение направлено на способ передачи с использованием предварительного кодирования на основе фазового сдвига и устройство для реализации того же в беспроводной системе связи, благодаря которым существенно смягчаются одна или более проблем, связанных с ограничениями и недостатками существующего уровня техники.
Целью настоящего изобретения является предоставление способа передачи данных с использованием множества поднесущих в беспроводной системе связи с множеством антенн.
Еще одной целью настоящего изобретения является предоставление передающего и принимающего устройства в MIMO-системе связи, использующей множество поднесущих.
Дополнительные преимущества, цели и признаки настоящего изобретения частично изложены в следующем описании и частично будут очевидны специалистам в данной области техники при рассмотрении следующего описания или могут быть изучены путем практической реализации настоящего изобретения. Цели и другие преимущества настоящего изобретения будут понятны и достигнуты с помощью структуры, выделенной в письменном описании и формуле изобретения, а также в прилагаемых чертежах.
Для достижения этих целей и других преимуществ и в соответствии с целью настоящего изобретения, как осуществлено и подробно описано в настоящем документе, способ передачи данных с использованием множества поднесущих в беспроводной системе передачи данных с множеством антенн включает в себя этапы, на которых принимают от мобильной станции (MS) информацию обратной связи, независимо выполняют канальное кодирование и модуляцию пользовательских данных, которые требуется передать каждой антенной, используя принятую информацию обратной связи, определяют матрицу предварительного кодирования на основе фазового сдвига для увеличения фазового угла пользовательских данных на фиксированную величину и выполняют предварительное кодирование, применяя к пользовательским данным определенную матрицу предварительного кодирования на основе фазового сдвига.
В еще одном аспекте настоящего изобретения передающее и принимающее устройство в многопользовательской системе связи с множеством антенн, в которой используются множество поднесущих, включает в себя канальный кодер и модулятор, сконфигурированные так, чтобы независимо выполнять канальное кодирование и модуляцию пользовательских данных для каждой антенны, используя информацию обратной связи от принимающего устройства, и первый прекодер, сконфигурированный так, чтобы определять матрицу предварительного кодирования на основе фазового сдвига и выполнять предварительное кодирование пользовательских данных, используя определенную матрицу предварительного кодирования на основе фазового сдвига, причем матрица предварительного кодирования на основе фазового сдвига определяется на основании увеличения угла фазы пользовательских данных для каждой антенны на фиксированную величину.
Следует понимать, что как вышеизложенное общее описание, так и следующее подробное описание настоящего изобретения являются примерными и пояснительными, и они предназначены для предоставления дополнительного объяснения настоящего изобретения согласно формуле изобретения.
ОПИСАНИЕ ЧЕРТЕЖЕЙ
Прилагаемые чертежи, которые включены в состав данного документа для предоставления дополнительного разъяснения изобретения и которые представляют часть этой заявки, иллюстрируют вариант(ы) осуществления настоящего изобретения и вместе с описанием служат для разъяснения принципов настоящего изобретения. На чертежах:
Фиг.1A - схема, иллюстрирующая структуру PARC для одного пользователя;
Фиг.2 - схема, иллюстрирующая структуру PU2RC;
Фиг.3A - схема, иллюстрирующая передатчик системы связи согласно первому варианту осуществления;
Фиг.3B и 3C - схемы, иллюстрирующие процессы или процедуры прекодера передатчика с Фиг.3A;
Фиг.4 - схема, иллюстрирующая предварительное кодирование на основе фазового сдвига;
Фиг.5 - схема, иллюстрирующая изменение размера канала в результате циклической задержки;
Фиг.6 - схема, иллюстрирующая систему с четырьмя (4) антеннами и скоростью передачи 2, к которой применяются обычные схемы пространственного мультиплексирования и разнесения циклической задержки;
Фиг.7 - схема системы с множеством антенн, к которой применяется матрица предварительного кодирования на основе фазового сдвига согласно Уравнению 10;
Фиг.8 - схема системы с четырьмя антеннами, где выбрана конкретная часть матрицы предварительного кодирования;
Фиг.9 - схема, иллюстрирующая передатчик согласно второму варианту осуществления;
Фиг.10 - схема, иллюстрирующая процесс передатчика и приемника в системе с множеством антенн, которая поддерживает предварительное кодирование на основе кодовой книги;
Фиг.11A - схема, иллюстрирующая сравнение между обычной схемой PARC и способом настоящего изобретения в среде, где в канале ITU PedA отсутствует пространственная корреляция;
Фиг.11B - схема, иллюстрирующая сравнение между обычной схемой PARC и способом настоящего изобретения в среде, где пространственная корреляция составляет 70%;
Фиг.12A - схема, иллюстрирующая сравнение между обычной схемой PARC и способом настоящего изобретения в канале TU с высокочастотной селекцией; и
Фиг.12B - еще одна схема, иллюстрирующая сравнение между обычной схемой PARC и способом настоящего изобретения в канале TU с высокочастотной селекцией.
ЛУЧШИЙ ВАРИАНТ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ
Ниже следует подробное описание предпочтительных вариантов осуществления настоящего изобретения, примеры которых проиллюстрированы в прилагаемых чертежах. Где это возможно, для обозначения одинаковых или схожих элементов используются одинаковые ссылочные позиции.
Идеи, связанные с настоящим изобретением, могут быть применены к различным беспроводным системам связи. Беспроводная система связи может использоваться для предоставления услуг, связанных с передачей голоса, аудиосигналов, пакетных данных и т.п. Более того, нижеизложенные идеи могут быть использованы в передачах как по нисходящей линии связи, так и по восходящей линии связи. Так, передача по нисходящей линии связи относится к передаче от базовой станции к мобильной станции, а передача по восходящей линии связи относится к передаче от мобильной станции к базовой станции.
Базовая станция обычно также упоминается как стационарная станция или Узел B (Node B), базовая приемопередающая система (BTS), точка доступа (AP), сеть, обслуживающая станция и т.п. Мобильная станция может быть мобильной и/или стационарной и может упоминаться как пользовательское оборудование (UE), пользовательский терминал (UT), абонентская станция (SS), мобильная абонентская станция (MSS), мобильный терминал (MT), беспроводное устройство и т.п.
Идеи, связанные с настоящим изобретением, могут быть применены к системе связи с одной несущей или множеством несущих. Система с множеством несущих может использовать различные схемы модуляции, такие как мультиплексирование с ортогональным частотным разделением (OFDM) и множественный доступ с ортогональным частотным разделением (OFDMA). OFDM/OFDMA является схемой, в которой полосы всей системы разделяются на множество поднесущих, которые ортогональны друг другу. Поднесущие также могут упоминаться как поддиапазон или тон. Альтернативно, система с одной несущей может использовать различные схемы модуляции, включающие в себя множественный доступ с частотным разделением с одной несущей (SC-CDMA) или множественный доступ с кодовым разделением (CDMA).
Обычно система связи содержит передатчик и приемник. Блок или модуль, который может выполнять функции передатчика и приемника, может упоминаться как приемопередатчик. Тем не менее, для целей описания информации обратной связи в настоящем документе передатчик и приемник могут быть использованы независимым образом.
В направлении нисходящей линии связи передатчик может быть частью базовой станции, а приемник может быть частью мобильной станции. Альтернативно, передатчик может быть частью мобильной станции, тогда как приемник может быть частью базовой станции. Базовая станция может включать в себя множество передатчиков и/или приемников. Аналогично, мобильная станция может включать в себя множество передатчиков и/или приемников.
ПЕРВЫЙ ВАРИАНТ ОСУЩЕСТВЛЕНИЯ
Этот вариант осуществления относится к оптимизации эффективности передачи путем независимой конфигурации модуляции и кодирования каждой передающей антенны в многопользовательской системе с множеством антенн. В данном случае предварительное кодирование на основе фазового сдвига может быть применено, чтобы минимизировать или уменьшить помехи между пользователями.
Фиг.3A представляет собой схему, иллюстрирующую передатчик системы связи согласно первому варианту осуществления. Ссылаясь на Фиг.3A, передатчик 100 содержит планировщик/мультиплексор 110, множество канальных кодеров/модуляторов (120-1 ~ 120-N), предварительный кодер (прекодер) 130, множество последовательно-параллельных преобразователей S/P (140-1 ~ 140-Nt) и множество модуляторов (150-1 ~ 150-Nt).
Фиг.3B и 3C представляют собой схемы, иллюстрирующие процессы или процедуры прекодера передатчика с Фиг.3A.
На Фиг.3A планировщик/мультиплексор 110 может быть сконфигурирован так, чтобы выполнять планирование пользователя (или мобильной станции), когда потоки информационных битов вводятся каждым пользователем. Из всех запланированных пользователей может быть выбран действительный пользователь для передачи, и выбранные информационные биты могут быть мультиплексированы.
Множество кодеров/модуляторов (120-1 ~ 120-N) канала могут быть сконфигурированы так, чтобы выводить кодированные данные путем кодирования мультиплексированных информационных битов согласно предписанной схеме(-ам) кодирования. Далее, кодированные данные могут быть модулированы посредством предписанной схемы модуляции. Информационные биты могут включать в себя текст, аудио, видео или другие типы данных.
Сверх того, множество кодеров/модуляторов (120-1 ~ 120-N) канала могут присоединять или добавлять биты обнаружения ошибок (например, контроль при помощи циклического избыточного кода, CRC)) к информационным битам и добавлять дополнительные коды для коррекции ошибок. Некоторые примеры кодов коррекции ошибок включают в себя турбо-коды, коды с контролем четности низкой плотности (LDPC) и сверточный код.
Множество кодеров/модуляторов (120-1 ~ 120-N) канала могут быть сконфигурированы так, чтобы сопоставлять (или назначать) кодированные данные символам в совокупности амплитуд и фаз. Применимые схемы модуляции не ограничены какими-либо конкретными схемами и могут варьироваться, и эти схемы могут представлять собой схему m-квадратурной фазовой манипуляции (m-PSK) или схему m-квадратурной амплитудной модуляции (m-QAM). Например, схема m-PSK включает в себя двоичную фазовую манипуляцию (BPSK), квадратурную фазовую манипуляцию (QPSK) или 8-PSK. Кроме того, m-QAM включает в себя 16-QAM, 64-QAM или 256-QAM.
Прекодер 130 может быть сконфигурирован так, чтобы применять к сопоставленным символам предварительное кодирование на основе фазового сдвига. Так, прекодер 130 может вывести символ передачи, который представляет собой набор символов, передаваемых в течение одного периода передачи или одного временного слота. Детали выполняемого прекодером 130 предварительного кодирования на основе фазового сдвига описаны ниже.
Множество последовательно-параллельных преобразователей (140-1 ~ 140-Nt) могут быть сконфигурированы так, чтобы параллельно выводить предварительно кодированные символы передачи во множество модуляторов (150-1 ~ 150-Nt). Множество модуляторов (150-1 ~ 150-Nt) могут быть сконфигурированы так, чтобы модулировать каждый символ передачи, принимаемый от последовательно-параллельных преобразователей (140-1 ~ 140-Nt), согласно схеме модуляции множественного доступа. Схемы модуляции множественного доступа, которые можно применять, не ограничены какими-либо конкретными схемами. Эти схемы могут представлять собой схему модуляции по одной несущей (например, CDMA) или схему модуляции по множеству несущих (например, OFDMA).
В нижеописанном примере рассматривается схема предварительного кодирования на основе фазового сдвига, применяемая в системе с двумя антеннами и/или системе с четырьмя антеннами посредством схемы модуляции OFDM по множеству несущих. Кроме того, нижеизложенное описание относится к применению предварительного кодирования на основе фазового сдвига к системе с множеством антенн, где количество антенн составляет Nt. Более конкретно, нижеизложенное описание может быть основано на структуре общей матрицы предварительного кодирования на основе фазового сдвига, которая может быть применена для усовершенствования системы с множеством антенн, где количество антенн составляет Nt.
Схема предварительного кодирования на основе фазового сдвига
Фиг.4 представляет собой схему, иллюстрирующую предварительное кодирование на основе фазового сдвига. Предварительное кодирование на основе фазового сдвига может быть определено как схема, согласно которой потоки данных передаются через все антенны, но они перемножаются с различными (или независимыми) последовательностями фаз. Обычно, если для генерации последовательности фаз может быть использована небольшая циклическая задержка, то частотный выбор канала предоставляется со стороны приемника (например, мобильной станции), и размер канала может увеличиться или уменьшиться в зависимости от частотной области.
Фиг.5 представляет собой схему, иллюстрирующую изменение размера канала в результате циклической задержки. Согласно Фиг.5 передатчик 100 может реализовать частотное разнесение путем назначения пользователей (или мобильных станций) интервалам частоты, где состояние канала улучшается из-за повышения частоты в частотной области. Так, определенные участки частотной области имеют широкую полосу частот, и они менее подвержены флуктуациям, вызываемым относительно малыми значениями циклической задержки. Для применения к каждой антенне значений циклической задержки, которые равномерно увеличиваются или уменьшаются, может быть применена матрица P предварительного кодирования на основе фазового сдвига, согласно уравнению (1).
[Уравнение 1]
Figure 00000001
В уравнении (1) k обозначает индекс поднесущих или индекс частотного ресурса, в котором конкретная частотная полоса назначается для каждого ресурса, а
Figure 00000002
(i=1,..., Nt, j=1, 1,..., R) обозначает комплексный вес, определенный согласно k. Кроме того, Nt обозначает количество передающих антенн или виртуальных антенн (например, число коэффициентов пространственного мультиплексирования), и R обозначает коэффициент пространственного мультиплексирования. В данном случае величина комплексного веса может варьироваться в соответствии с индексом OFDM-символов и соответствующих поднесущих, перемноженных на антенны. Кроме того, величина комплексного веса может быть определена состоянием канала и/или информацией обратной связи. Предпочтительно матрица P предварительного кодирования из уравнения (1) конфигурируется, используя унитарную матрицу, чтобы уменьшить потери пропускной способности канала системы с множеством антенн.
Для выражения пропускной способности канала системы с множеством антенн и разомкнутым контуром может использоваться следующее уравнение, чтобы определять элементы (или компоненты) унитарной матрицы.
[Уравнение 2]
Figure 00000003
В уравнении (2) H обозначает матрицу канала с множеством антенн размерности Nr×Nt, а Nr обозначает количество приемных антенн. Если уравнение (2) применить к матрице P предварительного кодирования на основе фазового сдвига, то результат может быть выражен согласно уравнению (3).
[Уравнение 3]
Figure 00000004
Согласно уравнению (3) для того чтобы минимизировать или устранить потери пропускной способности канала, матрица PPH должна быть единичной матрицей. По существу, матрица P предварительного кодирования на основе фазового сдвига должна удовлетворять следующему условию уравнения (4).
[Уравнение 4]
Figure 00000005
Для того чтобы матрица P предварительного кодирования на основе фазового сдвига преобразовалась в единичную матрицу, необходимо обеспечить выполнение двух условий. То есть одновременно должны быть удовлетворены условие ограничения мощности и условие ограничения ортогональности. Условие ограничения мощности относится к изменению размера каждого столбца матрицы до 1. Кроме того, условие ограничения ортогональности относится к обеспечению ортогональности каждого столбца (или чтобы столбцы были ортогональны друг другу).
Уравнение (5) и уравнение (6) являются примерами этих условий.
[Уравнение 5]
Figure 00000006
[Уравнение 6]
Figure 00000007
Вышеизложенное описание в привязке к уравнениям (2)~(6) относится к унитарной матрице. Следующее описание унитарной матрицы относится к матрице предварительного кодирования на основе фазового сдвига с размерностью 2×2.
Уравнение (7) представляет общую матрицу предварительного кодирования на основе фазового сдвига, которая применяется в системе с двумя передающими антеннами и коэффициентом пространственного мультиплексирования, равным 2.
[Уравнение 7]
Figure 00000008
В уравнении (7) αi, βi,(i=1, 2) представляют действительные числа, θi(i=1, 2, 3, 4) обозначает значение фазы, а k обозначает индекс поднесущей или индекс ресурса OFDM-сигналов.
Для преобразования матрицы предварительного кодирования (например, уравнение (7)) в единичную матрицу должно быть удовлетворено условие ограничения мощности по уравнению (8) и условие ограничения ортогональности по уравнению (9).
[Уравнение 8]
Figure 00000009
[Уравнение 9]
Figure 00000010
В уравнениях (8) и (9) символ * обозначает комплексно-сопряженное число. Если матрица предварительного кодирования на основе фазового сдвига с размерностью 2×2 удовлетворяет уравнениям (7)~(9), то подобная матрица может быть выражена согласно уравнению (10).
[Уравнение 10]
Figure 00000011
Согласно Фиг.10 θ2 и θ3 сохраняют ортогональное отношение на основании удовлетворения условию ограничения ортогональности. Это может быть выражено, как показано в уравнении (11).
[Уравнение 11]
Figure 00000012
Матрица предварительного кодирования может храниться в передатчике и приемнике в форме кодовой книги. Кодовая книга может включать в себя различные матрицы предварительного кодирования, сгенерированные посредством определенного количества различных значений θ2. Так, значение θ2 может быть сконфигурировано на основании состояний канала и того, предоставлена ли информация обратной связи. Если информация обратной связи предоставлена (или используется), то значение θ2 может быть установлено равным малой величине. Если же информация обратной связи не предоставлена (или не используется), то значение θ2 может быть установлено равным большой величине, чтобы обеспечить большое усиление частотного разнесения.
Даже если генерируется матрица на основе фазового сдвига, аналогично уравнению (7), может потребоваться установить коэффициент R мультиплексирования на низкий уровень, ввиду действительного количества антенн из-за состояния канала. В подобном случае из сгенерированной матрицы предварительного кодирования на основе фазового сдвига может быть выбрано определенное количество столбцов, соответствующих текущему коэффициенту пространственного мультиплексирования (например, пониженному коэффициенту пространственного мультиплексирования), чтобы реконфигурировать матрицу предварительного кодирования на основе фазового сдвига. Иначе говоря, новая матрица предварительного кодирования, которая должна быть применена к соответствующей системе, не генерируется заново при каждом изменении коэффициента пространственного мультиплексирования. Вместо этого исходную (или сгенерированную в начале) матрицу предварительного кодирования на основе фазового сдвига можно продолжать использовать, и специфицированный столбец соответствующей матрицы предварительного кодирования может быть выбран, чтобы реконфигурировать матрицу предварительного кодирования.
Например, согласно уравнению (10) система связи содержит две передающие антенны, и коэффициент пространственного мультиплексирования составляет 2. Тем не менее, коэффициент пространственного мультиплексирования может измениться и быть уменьшен до 1. В подобном случае может быть выбран столбец из матрицы предварительного кодирования уравнения (10), и выбранный столбец может быть использован для предварительного кодирования.
Например, если выбирается второй столбец, то матрица предварительного кодирования на основе фазового сдвига может быть выражена согласно уравнению (12). Более того, эта форма уравнения аналогична форме, где схема разнесения циклической задержки применяется в системе с двумя передающими антеннами.
[Уравнение 12]
Figure 00000013
Уравнение (12) иллюстрирует систему с двумя передающими антеннами. Тем не менее, это уравнение также может быть применено к системе с четырьмя передающими антеннами. Иначе говоря, в системе с четырьмя передающими антеннами после того, как генерируется матрица предварительного кодирования на основе фазового сдвига, конкретный столбец выбирается согласно изменению коэффициента пространственного мультиплексирования (например, коэффициент пространственного мультиплексирования изменяется с 2 на 1) и выбранный конкретный столбец может использоваться для предварительного кодирования.
Фиг.6 представляет собой схему, иллюстрирующую систему с четырьмя передающими антеннами и скоростью передачи 2, к которой применяются обычные схемы пространственного мультиплексирования и разнесения циклической задержки. Фиг.7 представляет собой схему системы с множеством антенн, к которой применяется матрица предварительного кодирования на основе фазового сдвига согласно уравнению (10).
Согласно Фиг.6 первая последовательность S1 и вторая последовательность S2 передаются на первую антенну (например, антенну 1) и третью антенну (антенну 3), соответственно. Кроме того, первая последовательность
Figure 00000014
с фазовым сдвигом и вторая последовательность
Figure 00000015
с фазовым сдвигом передаются на вторую антенну (например, антенну 2) и четвертую антенну (например, антенну 4), соответственно. Исходя из подобной конфигурации можно отметить, что коэффициент пространственного мультиплексирования составляет 2.
Согласно Фиг.7 последовательность
Figure 00000016
передается на первую антенну (например, антенну 1), последовательность
Figure 00000017
передается на третью антенну (например, антенну 3), последовательность
Figure 00000018
передается на вторую антенну (например, антенну 2), а последовательность
Figure 00000019
передается на четвертую антенну (например, антенну 4).
По сравнению с системой по Фиг.6, система по Фиг.7 использует унитарную матрицу предварительного кодирования, чтобы выполнять циклическую задержку (или фазовый сдвиг) на четырех (4) антеннах, чтобы использовать преимущество схемы разнесения циклической задержки.
Соответствие матрицы предварительного кодирования на основе фазового сдвига с коэффициентом пространственного мультиплексирования в системе с двумя антеннами и в системе с четырьмя антеннами может быть организовано следующим образом.
Таблица 1
Система с двумя антеннами Система с четырьмя антеннами
Коэффициент 1 пространственного мультиплексирования Коэффициент 2 пространственного мультиплексирования Коэффициент 1 пространственного мультиплексирования Коэффициент 2 пространственного мультиплексирования
Figure 00000020
Figure 00000021
Figure 00000022
Figure 00000023
В Таблице 1 θi(i=1,2,3) обозначает величину циклической задержки согласно фазовым углам, а k обозначает индекс поднесущих OFDM или индекс ресурса. Каждый из четырех типов матриц предварительного кодирования, показанных в Таблице 1, может быть получен путем выбора определенной части матрицы предварительного кодирования из системы с четырьмя антеннами с коэффициентом 2 пространственного мультиплексирования. Это проиллюстрировано на Фиг.8, которая представляет собой схему системы с четырьмя антеннами, где выбрана конкретная часть матрицы предварительного кодирования.
Кроме того, можно сэкономить объем хранилища или памяти передатчика и приемника, поскольку нет необходимости в отдельности или независимым образом предоставлять в кодовой книге каждую из четырех матриц предварительного кодирования, показанных в Таблице 1. Сверх того, как описано выше, на основании той же логики матрица предварительного кодирования на основе фазового сдвига может быть применена к системе с М антеннами и коэффициентом N мультиплексирования (N<M).
Первый прекодер для реализации схемы предварительного кодирования на основе фазового сдвига
Первый прекодер 130 содержит модуль 131-1 генерации матрицы предварительного кодирования, модуль 133-1 реконфигурации матрицы и модуль 134-1 предварительного кодирования. Более конкретно, модуль 131-1 генерации матрицы предварительного кодирования может быть сконфигурирован так, чтобы определять опорную строку, соответствующую первой поднесущей из предписанной матрицы предварительного кодирования, и чтобы выполнять фазовый сдвиг для определения остальных строк. В данном случае фазовый сдвиг основан на увеличении фазового угла опорной строки на постоянную или одинаковую величину.
В настоящем изобретении предварительное кодирование может быть выполнено, используя унитарную матрицу с определенным размером (например, (количество передающих антенн) × (коэффициент пространственного мультиплексирования)). Унитарная матрица может быть предоставлена индексу каждой поднесущей или индексу ресурса, и унитарная матрица для первого индекса может быть сдвинута по фазе, чтобы можно было определить унитарную матрицу для остальных индексов.
Модуль 131-1 генерации матрицы предварительного кодирования может выбрать произвольную первую матрицу предварительного кодирования из кодовой книги, хранимой в памяти. Вторая матрица предварительного кодирования для поднесущих второго индекса может быть сгенерирована путем применения малого фазового сдвига к первой матрице предварительного кодирования. В данном случае величина фазового сдвига может быть определена на основании состояния канала и/или того, принята ли информация обратной связи.
Кроме того, третья матрица предварительного кодирования для поднесущих третьего индекса может быть сгенерирована путем применения малого фазового сдвига ко второй матрице предварительного кодирования. Аналогичным образом могут быть сгенерированы все остальные матрицы предварительного кодирования согласно процессам, описанным выше.
Модуль 133-1 реконфигурации матрицы может быть сконфигурирован так, чтобы выбирать определенное количество столбцов, соответствующих коэффициентам пространственного мультиплексирования (например, 1 или 2) каждой матрицы предварительного кодирования, сгенерированной из модуля 131-1 генерации матрицы предварительного кодирования, и чтобы игнорировать остальные (или невыбранные) столбцы при реконфигурировании матрицы предварительного кодирования. В данном случае матрица предварительного кодирования может быть сгенерирована на основе только выбранного столбца. Сверх того, в качестве определенного столбца из матрицы предварительного кодирования может быть выбран произвольный столбец, или определенный столбец может быть выбран согласно предписанной схеме.
В заключение, модуль 134-1 предварительного кодирования может быть сконфигурирован так, чтобы выполнять предварительное кодирование путем замены или назначения OFDM-символов, соответствующих этим поднесущим, каждой определенной матрице предварительного кодирования.
Общая схема предварительного кодирования на основе фазового сдвига
Вышеприведенное описание относительно конфигурирования матрицы предварительного кодирования на основе фазового сдвига было основано на системе с четырьмя передающими антеннами и коэффициентом пространственного мультиплексирования, равным 2. Как упоминалось, вышеприведенное описание также может быть применено к системе с Nt антеннами (где Nt больше или равно 2 и является натуральным числом) и коэффициентом пространственного мультиплексирования, равным R (где R>1 и является натуральным числом). Подобное применение может быть реализовано, используя вышеописанные процессы, и может быть обобщено посредством уравнения (13).
[Уравнение 13]
Figure 00000024
В уравнении (13) матрица справа от знака равенства ('=') представляет унитарную матрицу для фазового сдвига, причем матрица U представляет собой унитарную матрицу для особой цели, которая удовлетворяет условию
Figure 00000025
.
Сверх того, если система имеет две передающие антенны и использует 1-битную кодовую книгу, то матрица предварительного кодирования на основе фазового сдвига может быть выражена согласно уравнению (14).
Figure 00000026
Согласно уравнению (14) поскольку β может быть легко определено после определения α, то α может быть предварительно установлено согласно двум значениям, и информация относительно предварительно установленных значений может быть передана обратно в форме индекса кодовой книги. Например, если индекс кодовой книги обратной связи равен 0, то α может быть равно 0,2, а если индекс кодовой книги обратной связи равен 1, то α может быть равно 0,8. Подобные значения могут быть предварительно определены и могут совместно использоваться передатчиком и приемником. Кроме того, каждый столбец может быть назначен различному пользователю (пользователям).
Как пример матрицы U, предписанная матрица предварительного кодирования может быть использована для достижения выигрыша в отношении сигнал/шум от разнесения. Для этой цели, если используется код Уолша, то матрица P предварительного кодирования на основе фазового сдвига может быть выражена согласно уравнению (15).
[Уравнение 15]
Figure 00000027
Уравнение (15) основано на системе с четырьмя передающими антеннами и коэффициентом пространственного мультиплексирования, равным 4. В данном случае, вторая матрица справа от знака равенства (то есть содержащая единицы со знаком + или -) может быть реконфигурирована, чтобы выбрать конкретную антенну (то есть выбор антенны) и/или отрегулировать коэффициент пространственного мультиплексирования (то есть настройка коэффициента).
Уравнение (16) представляет реконфигурированную единичную матрицу для выбора двух антенн в системе с четырьмя передающими или виртуальными антеннами.
[Уравнение 16]
Figure 00000028
Как описано выше, коэффициент пространственного мультиплексирования может меняться или варьироваться из-за различных факторов, включающих в себя изменения во времени и/или состоянии канала. Нижеприведенная Таблица 2 иллюстрирует способ реконфигурирования второй матрицы справа от знака равенства (то есть представленной нулями и единицами со знаком + или -), для ее приведения в соответствие с измененным (или изменяющимся) коэффициентом пространственного кодирования.
Figure 00000029
В Таблице 2, первый столбец, первый и второй столбцы и/или столбцы с первого по четвертый могут быть выбраны в соответствии с коэффициентом мультиплексирования (например, коэффициентом мультиплексирования, равным 1, 2 или 4). Однако коэффициент мультиплексирования (или выбор столбцов) не ограничен примером из Таблицы 2, и коэффициент мультиплексирования может быть равен одному (1), и может быть выбран любой один из четырех столбцов. Более того, если коэффициент мультиплексирования равен двум (2), то могут быть выбраны любые два из четырех столбцов (например, 1-2, 2-3, 3-4 или 4-1).
Кроме того, один или более столбцов в матрице в Таблице 2 могут быть назначены различным пользователям, чтобы разделять ресурсы пространственной области.
В добавление, вторая матрица может быть предоставлена передатчику и приемнику в форме кодовой книги. В таком случае передатчик может получить от приемника информацию индекса кодовой книги. Далее, передатчик может выбрать унитарную матрицу (то есть вторую матрицу) соответствующего индекса из кодовой книги и использовать уравнение (13), чтобы конфигурировать матрицу предварительного кодирования на основе фазового сдвига.
Кроме того, величина циклической задержки для матрицы предварительного кодирования на основе фазового сдвига может быть предварительно определена в передатчике и в приемнике. Альтернативно, эта величина может быть величиной, которая предоставляется передатчику посредством информации обратной связи. Более того, коэффициент R пространственного мультиплексирования может представлять собой предопределенное значение в передатчике и приемнике. Тем не менее, коэффициент R пространственного мультиплексирования может быть предоставлен приемником передатчику в качестве информации обратной связи после того, как приемник вычислит коэффициент пространственного мультиплексирования при периодическом измерении состояний канала. В данном случае передатчик может использовать информацию канала, переданную обратно от приемника, чтобы вычислить и/или манипулировать коэффициентом пространственного мультиплексирования.
Дополнительное описание и/или подробности относительно вариантов осуществления настоящего изобретения можно найти в корейской патентной заявке №2006-97216, поданной 2 октября 2006 г., и корейской патентной заявке №2007-37008, поданной 16 апреля 2007 г., которые включены в настоящий документ посредством ссылки.
Первый прекодер для реализации общей схемы предварительного кодирования на основе фазового сдвига
Первый прекодер 130 содержит модуль 131-2 определения матрицы предварительного кодирования, модуль 132 выбора антенны, модуль 133-2 реконфигурации матрицы и модуль 134-2 предварительного кодирования.
Более конкретно, модуль 131-2 определения матрицы предварительного кодирования может быть сконфигурирован так, чтобы определять матрицы предварительного кодирования на основе фазового сдвига путем перемножения второй матрицы, которая удовлетворяет условиям, связанным с первой матрицей (например, уравнению (13)), и унитарной матрицы.
Модуль 132 выбора антенны может быть сконфигурирован так, чтобы выбирать из второй матрицы, по меньшей мере, одну частичную матрицу с размером n×n (0<n<N), соответствующую конкретной антенне (например, уравнение (16)), и выбирать конкретную антенну, которая должна быть использована для передачи данных, путем конфигурирования всех элементов, отличных от выбранного элемента, в ноль (0).
Модуль 133-2 реконфигурации матрицы может быть сконфигурирован так, чтобы выбирать во второй матрице некоторое количество столбцов, соответствующих коэффициенту пространственного мультиплексирования (например, Таблица 2), и чтобы реконфигурировать вторую матрицу, используя только выбранные столбцы.
Хотя не описано выше, но для работы могут потребоваться некоторые другие компоненты передатчика. Так, например, память (не показана) может быть использована для хранения различной информации, схема приемника (не показана) может быть использована для приема информации обратной связи, и контроллер (не показан) может быть использован для управления различными компонентами передатчика.
Память может хранить в себе кодовую книгу для матрицы предварительного кодирования на основе фазового сдвига и/или справочную таблицу схемы модуляции и кодирования (MCS) для поддержки схемы адаптивного канального кодирования и модуляции (AMC). Кодовая книга может включать в себя, по меньшей мере, один элемент, связанный с матрицей предварительного кодирования на основе фазового сдвига, и, по меньшей мере, один элемент, связанный к каждым индексом матрицы. Более того, справочная таблица MCS может включать в себя, по меньшей мере, один элемент, связанный со скоростью кодирования, которая должна быть применена к введенным информационным битам; по меньшей мере, один элемент, связанный со схемой модуляции; и, по меньшей мере, один элемент, связанный с индексом уровня MCS.
Схема приемника может принимать передаваемые от приемника сигналы через антенну, преобразовывать принятые сигналы в цифровой сигнал и передавать оцифрованные сигналы в контроллер. Принятые сигналы могут включать в себя информацию, такую как информация качества канала (CQI). CQI может быть включена в состав информации обратной связи, и она может быть использована для предоставления информации, относящейся к состоянию канала, схеме (схемам) кодирования и/или схеме (схемам) модуляции. Более конкретно, CQI может быть связана с индексом для матрицы предварительного кодирования на основе фазового сдвига, индексом для конкретной скорости кодирования и/или схемы модуляции или размера модуляции. В качестве информации индекса может использоваться индекс уровня MCS.
ВТОРОЙ ВАРИАНТ ОСУЩЕСТВЛЕНИЯ
В еще одном варианте осуществления настоящего изобретения для более эффективного планирования мощности передачи может использоваться предварительное кодирование на основе кодовой книги, чтобы увеличить надежность передачи, а также пропускную способность передачи. Более того, подобный способ может быть реализован в передатчике и приемнике.
Фиг.9 представляет собой схему, иллюстрирующую передатчик согласно второму варианту осуществления. Ссылаясь на первый вариант осуществления, передатчик 100 содержит планировщик/мультиплексор 110, множество канальных кодеров/модуляторов (120-1 ~ 120-N), прекодер 130, множество последовательно-параллельных преобразователей (140-1 ~ 140-Nt) и множество модуляторов (150-1 ~ 150-Nt).
Ссылаясь на Фиг.9, передатчик 200 содержит планировщик/мультиплексор 210, множество канальных кодеров/модуляторов (220-1 ~ 220-N), прекодер 240, множество последовательно-параллельных преобразователей S/P (250-1 ~ 250- Nt) и множество модуляторов (260-1 ~ 260-Nt). В добавление, в состав также включен прекодер, основанный на кодовой книге 230.
Для того чтобы отличить выполняемое прекодером 240 предварительное кодирование на основе кодовой книги от предварительного кодирования на основе фазового сдвига, выполняемого прекодером 130 (упоминаемого как первое предварительное кодирование), предварительное кодирование на основе кодовой книги обозначается как второе предварительное кодирование. Второе предварительное кодирование относится к схеме, согласно которой выигрыш по SNR может быть достигнут путем получения от приемника в качестве обратной связи индекса матрицы предварительного кодирования, который известен как передатчику, так и приемнику.
Фиг.10 представляет собой схему, иллюстрирующую процесс передатчика и приемника в системе с множеством антенн, которая поддерживает предварительное кодирование на основе кодовой книги. Согласно Фиг.10, каждый из передатчика и приемника имеет фиксированную матрицу (Pl~PL) предварительного кодирования. Приемник может использовать информацию канала, чтобы передавать передатчику в качестве обратной связи оптимальный индекс l матрицы предварительного кодирования. После получения информации обратной связи прекодер 240 передатчика может применить матрицу предварительного кодирования, соответствующую индексу передаваемых данных (Xl~XMt).
Таблица 3 иллюстрирует пример кодовой книги, которая может быть применена в системе с двумя передающими антеннами с коэффициентом пространственного мультиплексирования, равным 2, причем данная система использует 3-битную информацию обратной связи.
Таблица 3
Индекс матрицы (бинарный) Столбец 1 Столбец 2 Индекс матрицы (бинарный) Столбец 1 Столбец 2
000 1 0 100 0,7941 0,6038-j0,0689
0 1 0,6038+j0,0689 -0,7941
001 0,7940 -0,581-j0,1818 101 0,3289 0,6614-j0,6740
-0,5801+j0,1818 -0,7940 0,6614+j0,6740 -0,3289
010 0,7940 0,0576-j0,6051 110 0,5112 0,4754+j0,7160
0,0576+j0,6051 -0,7940 0,4754-j0,7160 -0,5115
011 0,7941 -0,2978+j0,5298 111 0,3289 -0,8779+j0,3481
-0,2978-j0,5298 -0,7941 -0,8779-j0,3481 -0,3289
Если предварительное кодирование на основе кодовой книги и предварительное кодирование на основе фазового сдвига применяются совместно, то передатчик может периодически принимать информацию о предпочтительном индексе предварительного кодирования приемника, CQI и частотную полосу с наилучшим или приемлемым состоянием канала. Используя подобную информацию обратной связи в качестве основания, передатчик может использовать один и тот же индекс предварительного кодирования и может выполнять планирование предпочтительного потока (потоков) данных, передаваемого различным приемникам (например, мобильным станциям) на одной и той же частоте и в одном и том же временном кадре.
Кроме того, по сравнению с первым вариантом осуществления память (не показана) второго варианта осуществления может включать в себя кодовые книги для предварительного кодирования. Более того, по сравнению с первым вариантом осуществления схема приемника (не показана) второго варианта осуществления может принимать больше информации, связанной с индексом кодовой книги, для выбора матрицы предварительного кодирования из кодовой книги.
Передатчик и приемник первого и второго вариантов осуществления могут включать в себя перемежитель (не показан) для выполнения перемежения путем разбора битов кода, чтобы минимизировать потери, вызываемые шумом в передаваемых данных. Более того, в состав может быть включен блок обратного быстрого преобразования Фурье (IFFT) (не показан) для назначения предварительно кодированных символов передачи поднесущим во временной области. В добавление, передатчик и приемник согласно первому и второму вариантам осуществления также могут включать в себя фильтр (не показан) для преобразования символов передачи в высокочастотные сигналы, а также аналоговый преобразователь (не показан).
Ниже приведено описание имитации или теста возможностей предварительного кодирования на основе фазового сдвига в многопользовательской системе с множеством антенн. Таблица 4 иллюстрирует результаты имитации или теста.
Таблица 4
Параметр Конфигурация
Структура системы Система 3GPP LTE (нисходящая линия связи на основе OFDMA)
Параметры OFDM 5 МГц (300-1 поднесущих)
Длина подкадра 0,5 мс
Размер блока ресурса 75 поднесущих * 4 OFDM-символа
Модели канала ITU Pedestrian A, Typical Urban
(6-ти лучевой)
Мобильная скорость (км/ч) 3
Схемы модуляции и скорости кодирования канала QPSK(R=1/3,1/2,3/4)
16-QAM(R=1/2,5/8,3/4)
64-QAM (R=3/5, 2/3, 3/4, 5/6)
Код канала Turbo code Component decoder:max-log-MAP
Режим MIMO MU-MIMO
Назначение ресурсов Локализованный режим
Конфигурация антенн [2Tx, 2Rx]
Пространственная корреляция (Tx, Rx) (0%, 0%), (70%, 70%)
Приемник MIMO Приемник MMSE
Оценка канала Совершенная оценка канала
H-ARQ Отслеживаемое комбинирование на битовом уровне
максимальное количество повторных передач: 3 TTI
количество задержки повторной передачи: 3 TTI
Фиг.11A представляет собой схему, иллюстрирующую сравнение между обычной схемой PARC и способом настоящего изобретения в среде, где в канале ITU PedA отсутствует пространственная корреляция. Фиг.11B представляет собой схему, иллюстрирующую сравнение между обычной схемой PARC и способом настоящего изобретения в среде, где пространственная корреляция составляет 70%.
Согласно Фиг.11A и 11B, пропускная способность согласно настоящему изобретению всегда выше, чем при способе PARC, независимо от пространственной корреляции передатчика и приемника. Сверх того, различие заметно усиливается по мере увеличения пространственной корреляции передатчика и приемника. То есть общая передающая способность передатчика увеличивается из-за уменьшения помех множества пользователей.
Фиг.12A представляет собой схему, иллюстрирующую сравнение между обычной схемой PARC и способом настоящего изобретения в канале TU с высокочастотной селекцией. Фиг.12B представляет собой еще одну схему, иллюстрирующую сравнение между обычной схемой PARC и способом настоящего изобретения в канале TU с высокочастотной селекцией.
Согласно Фиг.12A разница между схемой PARC и настоящим изобретением минимальна, независимо от пространственной корреляции. На Фиг.12B, когда пространственная корреляция передатчика и приемника составляет 70%, пропускная способность увеличивается на 15% в результате выигрыша по SNR благодаря предварительному кодированию на основе кодовой книги.
Специалистам в данной области техники будет очевидно, что в рамках объема или сущности настоящего изобретения могут быть выполнены различные модификации или вариации. Соответственно, настоящее изобретение имеет целью охватить все модификации и вариации, которые входят в объем прилагаемой формулы изобретения и ее эквивалентов.

Claims (14)

1. Способ передачи данных с использованием множества поднесущих в беспроводной системе связи с множеством антенн, причем способ содержит этапы, на которых:
принимают от мобильной станции (MS) информацию обратной связи для, по меньшей мере, одного из канального кодирования, модуляции и коэффициента пространственного мультиплексирования;
независимо выполняют канальное кодирование и модуляцию множества элементов пользовательских данных для создания множества потоков пользовательских данных, используя принятую информацию обратной связи;
определяют матрицу предварительного кодирования на основе фазового сдвига с использованием матрицы предварительного кодирования, выбранной из кодовой книги на основе коэффициента пространственного мультиплексирования, причем кодовая книга включает в себя первую матрицу предварительного кодирования с относительно более низким коэффициентом пространственного мультиплексирования и вторую матрицу предварительного кодирования с относительно более высоким коэффициентом пространственного мультиплексирования, и при этом вторая матрица предварительного кодирования содержит первую матрицу предварительного кодирования как часть второй матрицы предварительного кодирования; и выполняют в прекодере предварительное кодирование пользовательских данных, используя определенную матрицу предварительного кодирования на основе фазового сдвига для множества потоков данных для получения выходных сигналов; и передают выходные сигналы на мобильную станцию.
2. Способ по п.1, в котором на этапе определения матрицы предварительного кодирования на основе фазового сдвига: определяют первую матрицу для сдвига фазы,
определяют вторую матрицу для получения результата умножения первой матрицы на вторую матрицу в унитарную матрицу.
3. Способ по п.2, в котором первая матрица представляет собой диагональную матрицу с равномерно увеличенным фазовым углом в столбцах, а вторая матрица представляет собой матрицу, которая удовлетворяет условиям унитарной матрицы.
4. Способ по п.3, дополнительно содержащий этапы, на которых: выбирают из второй матрицы определенное количество столбцов, соответствующих коэффициенту пространственного мультиплексирования; и реконфигурируют вторую матрицу с использованием только выбранных столбцов.
5. Способ по п.3, в котором результат умножения первой матрицы и второй матрицы имеет следующий вид:
Figure 00000030

где θi обозначает величину фазы, k обозначает индекс поднесущих или индекс ресурсов, Nt обозначает количество передающих или виртуальных антенн, a R обозначает коэффициент пространственного мультиплексирования.
6. Способ по п.2, в котором матрица предварительного кодирования на основе фазового сдвига соответствует результату умножения первой матрицы на вторую матрицу.
7. Способ по п.1, в котором определение матрицы предварительного кодирования на основе фазового сдвига выполняют с использованием информации обратной связи от мобильной станции (MS).
8. Способ по п.1, в котором определение матрицы предварительного кодирования на основе фазового сдвига выполняют без использования информации обратной связи от мобильной станции (MS).
9. Передающее устройство в системе связи с множеством антенн, в которой используется множество поднесущих, причем устройство содержит:
канальный кодер и модулятор, сконфигурированные так, чтобы независимо выполнять канальное кодирование и модуляцию множества элементов пользовательских данных для создания множества потоков пользовательских данных, используя информацию обратной связи для, по меньшей мере, одного из канального кодирования, модуляции и коэффициента пространственного мультиплексирования от принимающего устройства; и
прекодер, сконфигурированный так, чтобы определять матрицу предварительного кодирования на основе фазового сдвига с использованием матрицы предварительного кодирования, выбранной из кодовой книги на основе коэффициента пространственного мультиплексирования, причем кодовая книга включает в себя первую матрицу предварительного кодирования с относительно более низким коэффициентом пространственного мультиплексирования и вторую матрицу предварительного кодирования с относительно более высоким коэффициентом пространственного мультиплексирования, и при этом вторая матрица предварительного кодирования содержит первую матрицу предварительного кодирования как часть второй матрицы предварительного кодирования, причем прекодер дополнительно выполнен с возможностью выполнять предварительное кодирование множества потоков данных, используя определенную матрицу предварительного кодирования на основе фазового сдвига.
10. Устройство по п.9, в котором прекодер использует первую матрицу для фазового сдвига и вторую матрицу для получения результата умножения первой матрицы на вторую матрицу в унитарную матрицу.
11. Устройство по п.10, в котором первая матрица представляет собой диагональную матрицу, в которой фазовые углы увеличены на фиксированную величину относительно столбцов, а вторая матрица представляет собой матрицу, которая удовлетворяет условиям для унитарной матрицы.
12. Устройство по п.10, в котором результат умножения первой матрицы и второй матрицы имеет следующий вид
Figure 00000031

где θi обозначает величину фазы, k обозначает индекс поднесущих или индекс ресурсов, Nt обозначает количество передающих или виртуальных антенн, a R обозначает коэффициент пространственного мультиплексирования.
13. Устройство по п.9, в котором прекодер определяет матрицу предварительного кодирования на основе фазового сдвига с использованием информации обратной связи от мобильной станции (MS).
14. Устройство по п.9, в котором прекодер определяет матрицу предварительного кодирования на основе фазового сдвига без использования информации обратной связи от мобильной станции.
RU2009114706/09A 2006-09-19 2007-09-19 Способ передачи с использованием предварительного кодирования на основе фазового сдвига и устройство для его реализации в беспроводной системе связи RU2421930C2 (ru)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US82614306P 2006-09-19 2006-09-19
US60/826,143 2006-09-19
KR1020070003281A KR20080026010A (ko) 2006-09-19 2007-01-11 위상천이 기반의 프리코딩을 이용한 데이터 전송 방법 및이를 구현하는 송수신 장치
KR10-2007-0003281 2007-01-11

Publications (2)

Publication Number Publication Date
RU2009114706A RU2009114706A (ru) 2010-10-27
RU2421930C2 true RU2421930C2 (ru) 2011-06-20

Family

ID=39200983

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009114706/09A RU2421930C2 (ru) 2006-09-19 2007-09-19 Способ передачи с использованием предварительного кодирования на основе фазового сдвига и устройство для его реализации в беспроводной системе связи

Country Status (11)

Country Link
US (3) US7881395B2 (ru)
EP (1) EP2105000A2 (ru)
JP (1) JP2010503311A (ru)
KR (1) KR20080026010A (ru)
AU (1) AU2007297958B2 (ru)
BR (1) BRPI0717074A2 (ru)
CA (1) CA2662598C (ru)
MX (1) MX2009002902A (ru)
RU (1) RU2421930C2 (ru)
TW (1) TW200824379A (ru)
WO (1) WO2008035915A2 (ru)

Families Citing this family (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2721514T3 (es) * 2001-11-06 2019-08-01 Panasonic Ip Corp America Procedimiento de codificación de imágenes en movimiento y procedimiento de decodificación de imágenes en movimiento
US7844232B2 (en) * 2005-05-25 2010-11-30 Research In Motion Limited Joint space-time optimum filters (JSTOF) with at least one antenna, at least one channel, and joint filter weight and CIR estimation
US7917176B2 (en) * 2006-02-14 2011-03-29 Nec Laboratories America, Inc. Structured codebook and successive beamforming for multiple-antenna systems
TWI343200B (en) * 2006-05-26 2011-06-01 Lg Electronics Inc Method and apparatus for signal generation using phase-shift based pre-coding
KR20070113967A (ko) * 2006-05-26 2007-11-29 엘지전자 주식회사 위상천이 기반의 프리코딩 방법 및 이를 지원하는 송수신기
KR20080022033A (ko) * 2006-09-05 2008-03-10 엘지전자 주식회사 프리코딩 정보 피드백 방법 및 프리코딩 방법
KR20080026010A (ko) 2006-09-19 2008-03-24 엘지전자 주식회사 위상천이 기반의 프리코딩을 이용한 데이터 전송 방법 및이를 구현하는 송수신 장치
KR20080026019A (ko) * 2006-09-19 2008-03-24 엘지전자 주식회사 위상천이 기반의 프리코딩 방법 및 이를 지원하는 송수신기
KR100939738B1 (ko) 2006-12-21 2010-01-29 삼성전자주식회사 다중안테나 무선통신 시스템에서 순환 지연 다이버시티장치 및 방법
ES2641488T3 (es) * 2007-02-13 2017-11-10 Telefonaktiebolaget Lm Ericsson (Publ) Métodos y sistemas para precodificación combinada y diversidad de retardo cíclico
KR20080076683A (ko) * 2007-02-14 2008-08-20 엘지전자 주식회사 위상천이 기반의 프리코딩 방법 및 이를 지원하는 송수신기
JP4889532B2 (ja) * 2007-03-20 2012-03-07 株式会社エヌ・ティ・ティ・ドコモ 移動通信システムにおける基地局装置及び方法
US20080233902A1 (en) * 2007-03-21 2008-09-25 Interdigital Technology Corporation Method and apparatus for communicating precoding or beamforming information to users in mimo wireless communication systems
BRPI0809870B1 (pt) 2007-04-30 2020-11-10 Interdigital Technology Corporation método e dispositivo de detecção e verificação de erros de sinalização de feedback em sistemas de comunicação mimo
EP2145400B1 (en) 2007-04-30 2013-03-20 Telefonaktiebolaget L M Ericsson (publ) Method and arrangement for adapting a multi-antenna transmission
US8155232B2 (en) * 2007-05-08 2012-04-10 Samsung Electronics Co., Ltd. Multiple antennas transmit diversity scheme
US20080310547A1 (en) * 2007-06-08 2008-12-18 Nokia Siemens Networks Oy Multi-code precoding for sequence modulation
US8125884B1 (en) * 2007-07-11 2012-02-28 Marvell International Ltd. Apparatus for pre-coding using multiple codebooks and associated methods
US20090022049A1 (en) * 2007-07-16 2009-01-22 Honeywell International Inc. Novel security enhancement structure for mimo wireless network
KR101306713B1 (ko) * 2007-08-14 2013-09-11 엘지전자 주식회사 다중 안테나 시스템에서 피드백 방법 및 코드북 구성 방법
KR20090030200A (ko) 2007-09-19 2009-03-24 엘지전자 주식회사 위상천이 기반의 프리코딩을 이용한 데이터 송수신 방법 및이를 지원하는 송수신기
EP2193611B1 (fr) * 2007-09-20 2011-03-09 France Telecom Procede d'emission et de reception d'un signal dans un systeme multi-antennes mettant en oeuvre un precodage spatial, emetteur, recepteur, et produits programme d'ordinateur correspondants
JP5226011B2 (ja) * 2007-12-25 2013-07-03 パナソニック株式会社 端末装置および復調方法
CA2710517C (en) * 2007-12-26 2015-10-13 Research In Motion Limited System and method modulation scheme changes
US8780941B2 (en) * 2008-01-08 2014-07-15 Qualcomm Incorporated MMSE method and system
US8155063B2 (en) 2008-04-28 2012-04-10 Apple Inc. Apparatus and methods for transmission and reception of data in multi-antenna systems
US8199836B2 (en) * 2008-05-02 2012-06-12 Nec Laboratories America, Inc. Multi-resolution precoding codebook
KR101478277B1 (ko) * 2008-05-03 2014-12-31 인텔렉추얼디스커버리 주식회사 Mu-mimo를 지원하기 위한 프리코딩을 이용한 프레임송신 방법 및 그 방법을 지원하는 기지국
US20090279478A1 (en) * 2008-05-06 2009-11-12 Motorola, Inc. Method and apparatus for facilitating dynamic cooperative interference reduction
SG157971A1 (en) * 2008-06-13 2010-01-29 Panasonic Corp A multiple-input multiple-output (mimo) transmitter and communication system
US20090323849A1 (en) * 2008-06-30 2009-12-31 Interdigital Patent Holdings, Inc. Method and apparatus for performing multiple-input multiple-output wireless communications
KR20100013251A (ko) 2008-07-30 2010-02-09 엘지전자 주식회사 다중안테나 시스템에서 데이터 전송방법
KR101056614B1 (ko) 2008-07-30 2011-08-11 엘지전자 주식회사 다중안테나 시스템에서 데이터 전송방법
KR101027237B1 (ko) 2008-07-30 2011-04-06 엘지전자 주식회사 다중안테나 시스템에서 데이터 전송방법
JP5231645B2 (ja) * 2008-08-14 2013-07-10 エレクトロニクス アンド テレコミュニケーションズ リサーチ インスチチュート ビームフォーミングベクトル生成方法およびビームフォーミングベクトル生成情報提供方法
KR101268687B1 (ko) * 2008-08-18 2013-05-29 한국전자통신연구원 다중-셀 협력 통신을 위한 기지국들 및 단말을 포함하는 통신 시스템
KR101470501B1 (ko) 2008-08-20 2014-12-08 삼성전자주식회사 양자화된 채널 상태 정보에 기반하여 데이터를 전송하는 장치 및 방법
JP5213586B2 (ja) * 2008-08-25 2013-06-19 株式会社エヌ・ティ・ティ・ドコモ ユーザ装置及び基地局装置並びに通信制御方法
US8457240B2 (en) * 2008-08-25 2013-06-04 Daniel Lee Methods of selecting signal transmitting, receiving, and/or sensing devices with probabilistic evolutionary algorithms in information conveyance systems
US9112562B2 (en) * 2008-09-02 2015-08-18 Intel Corporation Techniques utilizing adaptive codebooks for beamforming in wireless networks
KR101501714B1 (ko) * 2008-10-14 2015-03-11 삼성전자주식회사 미모 무선 통신 시스템에서 오버헤드를 줄이기 위한 장치 및 방법
US8200286B2 (en) * 2008-10-31 2012-06-12 Telefonaktiebolaget L M Ericsson (Publ) Base station and method for improving coverage in a wireless communication system using antenna beam-jitter and CQI correction
CN101729131B (zh) * 2008-11-03 2014-06-04 夏普株式会社 无线通信系统及预编码方法
KR100967517B1 (ko) * 2008-11-19 2010-07-07 고려대학교 산학협력단 직교 공간 다중화 시스템의 선처리 장치 및 방법
US8638732B2 (en) * 2009-01-07 2014-01-28 Samsung Electronics Co., Ltd. Apparatus and method for allocating resources using codebook in a broadband wireless communication system
EP2209220A1 (en) * 2009-01-19 2010-07-21 ST-Ericsson (France) SAS Process for beamforming data to be transmitted by a base station in a MU-MIMO system and apparatus for performing the same
US11223459B2 (en) * 2009-02-10 2022-01-11 Telefonaktiebolaget Lm Ericsson (Publ) Mapping user data onto a time-frequency resource grid in a coordinated multi-point wireless communication system
US8837396B2 (en) * 2009-02-10 2014-09-16 Telefonaktiebolaget L M Ericsson (Publ) Mapping user data onto a time-frequency resource grid in a coordinated multi-point wireless communication sytem
US8830918B2 (en) * 2009-03-16 2014-09-09 Interdigital Patent Holdings, Inc. Method and apparatus for performing uplink transmit diversity
KR101599532B1 (ko) * 2009-04-08 2016-03-14 엘지전자 주식회사 Mimo 코드북 생성 방법 및 장치
KR20100138263A (ko) * 2009-06-24 2010-12-31 주식회사 팬택 적응형 순환 지연 다이버서티를 이용한 다중 포인트 협력형송수신 방법 및 그를 이용한 시스템측 장치와 수신장치, 협력형 기지국 세트 결정 방법
WO2011032571A1 (en) * 2009-09-17 2011-03-24 Universität Duisburg-Essen Transmitter and receiver for transceiving optical signals
US8422449B2 (en) * 2009-10-23 2013-04-16 Electronics And Telecommunications Research Institute MU-MIMO method in WLAN system, and access point and station for MU-MIMO
WO2011072305A1 (en) 2009-12-11 2011-06-16 Maxlinear, Inc. Low-complexity diversity using preequalization
US20110153668A1 (en) * 2009-12-18 2011-06-23 Research In Motion Limited Accessing a data item stored in an unavailable mobile communication device
KR101757452B1 (ko) 2010-01-08 2017-07-13 삼성전자주식회사 무선 통신 시스템에서 자원 매핑 및 디매핑 방법 및 장치
JP2011254171A (ja) * 2010-05-31 2011-12-15 Sharp Corp 通信システム、送信装置、送信制御方法、送信制御プログラム、及びプロセッサ
US9806848B2 (en) * 2010-09-29 2017-10-31 Qualcomm Incorporated Systems, methods and apparatus for determining control field and modulation coding scheme information
US9077498B2 (en) 2010-09-29 2015-07-07 Qualcomm Incorporated Systems and methods for communication of channel state information
US9831983B2 (en) 2010-09-29 2017-11-28 Qualcomm Incorporated Systems, methods and apparatus for determining control field and modulation coding scheme information
US9602298B2 (en) 2010-09-29 2017-03-21 Qualcomm Incorporated Methods and apparatuses for determining a type of control field
US9813135B2 (en) 2010-09-29 2017-11-07 Qualcomm, Incorporated Systems and methods for communication of channel state information
US10090982B2 (en) 2010-09-29 2018-10-02 Qualcomm Incorporated Systems and methods for communication of channel state information
US9374193B2 (en) 2010-09-29 2016-06-21 Qualcomm Incorporated Systems and methods for communication of channel state information
US9882624B2 (en) 2010-09-29 2018-01-30 Qualcomm, Incorporated Systems and methods for communication of channel state information
US8934560B2 (en) * 2010-10-07 2015-01-13 Qualcomm Incorporated Method and apparatus of using CDD like schemes with UE-RS based open loop beamforming
JP5578617B2 (ja) 2010-10-18 2014-08-27 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送信方法、送信装置、受信方法および受信装置
US20130058239A1 (en) * 2010-10-21 2013-03-07 James June-Ming Wang Integrity and Quality Monitoring and Signaling for Sounding and Reduced Feedback
US11152977B2 (en) 2010-10-21 2021-10-19 Mediatek Singapore Pte. Ltd. Integrity and quality monitoring and signaling for sounding and reduced feedback
KR101869357B1 (ko) * 2010-12-10 2018-06-21 선 페이턴트 트러스트 신호생성방법 및 신호생성장치
MX355906B (es) 2010-12-10 2018-05-04 Sun Patent Trust Método de precodificación y dispositivo de transmisión.
US20120189303A1 (en) * 2011-01-24 2012-07-26 Winzer Peter J Optical transport multiplexing client traffic onto parallel line system paths
US8730989B2 (en) 2011-02-11 2014-05-20 Interdigital Patent Holdings, Inc. Method and apparatus for closed loop transmit diversity transmission initial access
KR102026652B1 (ko) 2011-02-18 2019-09-30 선 페이턴트 트러스트 신호생성방법 및 신호생성장치
JP5540146B2 (ja) 2011-02-21 2014-07-02 パナソニック株式会社 プリコーディング方法、プリコーディング装置
US8971432B2 (en) 2011-04-19 2015-03-03 Panasonic Intellectual Property Corporation Of America Signal generating method and signal generating device
JP5803306B2 (ja) * 2011-06-10 2015-11-04 ソニー株式会社 通信装置及び通信方法、並びに通信システム
JP5909886B2 (ja) * 2011-06-10 2016-04-27 ソニー株式会社 通信装置及び通信方法、並びに通信システム
CN103748801B (zh) 2011-07-28 2017-08-04 三星电子株式会社 无线通信系统中用于波束形成的装置和方法
JP6113166B2 (ja) * 2011-08-19 2017-04-12 クインテル テクノロジー リミテッド 仰角面空間ビームフォーミングを行うための方法および装置
US8861638B2 (en) * 2011-09-26 2014-10-14 Cambridge Silicon Radio Limited Transmitter with reduced peak-to-mean amplitude ratio
US8605817B2 (en) * 2011-10-20 2013-12-10 Lsi Corporation Modulation and layer mapping in physical channels
US8891656B2 (en) * 2011-10-27 2014-11-18 Ntt Docomo, Inc. Low-complexity, rank extendable, codebook design and method for supporting precoding matrix feedback for multi-user and single-user MIMO systems
KR101330223B1 (ko) * 2012-02-10 2013-11-18 연세대학교 산학협력단 더블 듀얼 반송파 변조(ddcm) 프리코딩 방법, 이를 이용한 데이터 송수신 방법, 및 이를 수행하는 데이터 송수신 시스템
CN104272622B (zh) * 2012-05-22 2018-04-06 太阳专利托管公司 发送方法、接收方法、发送装置及接收装置
KR20150037755A (ko) * 2012-07-06 2015-04-08 엘지전자 주식회사 무선 통신 시스템에서 하향링크 신호를 수신 또는 전송하기 위한 방법 및 이를 위한 장치
JP2014027608A (ja) * 2012-07-30 2014-02-06 Ntt Docomo Inc 基地局装置、ユーザ端末、通信システム及び通信制御方法
US9692123B2 (en) * 2012-09-17 2017-06-27 Qualcomm Incorporated Systems and methods of controlling antenna radiation patterns
JP5850872B2 (ja) * 2013-03-07 2016-02-03 株式会社Nttドコモ ユーザ装置及び基地局
KR102097295B1 (ko) 2013-07-26 2020-04-06 한국전자통신연구원 다중 입력 다중 출력 통신 시스템의 부호화 장치 및 방법
US9722841B1 (en) * 2014-07-16 2017-08-01 University Of South Florida Channel-based coding for wireless communications
WO2016067319A1 (en) * 2014-10-29 2016-05-06 Nec Corporation Communication system and method, base station, and user terminal
CN107370530B (zh) * 2016-05-12 2021-02-12 华为技术有限公司 信道状态信息反馈方法、预编码方法、终端设备和基站
KR102535917B1 (ko) * 2016-06-03 2023-05-30 파나소닉 인텔렉츄얼 프로퍼티 코포레이션 오브 아메리카 통신 장치, 통신 방법 및 집적 회로
JP6167439B2 (ja) * 2016-06-29 2017-07-26 サン パテント トラスト 送信装置および受信装置
US10863474B2 (en) * 2016-10-21 2020-12-08 Qualcomm Incorporated Millimeter-wavelength network map for use in a beamforming procedure
JP6312013B2 (ja) * 2017-06-08 2018-04-18 サン パテント トラスト 送信装置および受信装置
US10644771B2 (en) * 2018-06-08 2020-05-05 University Of South Florida Using artificial signals to maximize capacity and secrecy of multiple-input multiple-output (MIMO) communication
US10516452B1 (en) * 2018-06-08 2019-12-24 University Of South Florida Using artificial signals to maximize capacity and secrecy of multiple-input multiple-output (MIMO) communication
TWI729427B (zh) * 2018-09-27 2021-06-01 聯發科技股份有限公司 無線通訊方法及裝置、電腦可讀介質
US10749566B2 (en) * 2018-11-13 2020-08-18 Qualcomm Incorporated Dynamically adjustable radio-frequency (RF) front-end

Family Cites Families (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6891897B1 (en) 1999-07-23 2005-05-10 Nortel Networks Limited Space-time coding and channel estimation scheme, arrangement and method
SG80071A1 (en) 1999-09-24 2001-04-17 Univ Singapore Downlink beamforming method
US6298092B1 (en) 1999-12-15 2001-10-02 Iospan Wireless, Inc. Methods of controlling communication parameters of wireless systems
US6760882B1 (en) 2000-09-19 2004-07-06 Intel Corporation Mode selection for data transmission in wireless communication channels based on statistical parameters
GB0027392D0 (en) 2000-11-09 2001-03-07 Roke Manor Research Code specific phase shifts applied to spread spectrum systems using walsh-handarmed codes
US6859503B2 (en) * 2001-04-07 2005-02-22 Motorola, Inc. Method and system in a transceiver for controlling a multiple-input, multiple-output communications channel
US6785341B2 (en) 2001-05-11 2004-08-31 Qualcomm Incorporated Method and apparatus for processing data in a multiple-input multiple-output (MIMO) communication system utilizing channel state information
JP2003018127A (ja) 2001-07-03 2003-01-17 Fujitsu Ltd 送信装置および受信装置
US20030048753A1 (en) 2001-08-30 2003-03-13 Ahmad Jalali Method and apparatus for multi-path elimination in a wireless communication system
US7301893B2 (en) 2001-11-21 2007-11-27 Texas Instruments Incorporated Linear space-time block code with block STTD structure
KR100896682B1 (ko) 2002-04-09 2009-05-14 삼성전자주식회사 송/수신 다중 안테나를 포함하는 이동 통신 장치 및 방법
US7613248B2 (en) 2002-06-24 2009-11-03 Qualcomm Incorporated Signal processing with channel eigenmode decomposition and channel inversion for MIMO systems
US7151809B2 (en) 2002-10-25 2006-12-19 Qualcomm, Incorporated Channel estimation and spatial processing for TDD MIMO systems
RU2351071C2 (ru) 2002-10-25 2009-03-27 Квэлкомм Инкорпорейтед Оценка канала и пространственная обработка для tdd mimo систем
FR2848747A1 (fr) 2002-12-16 2004-06-18 France Telecom Procede et dispositif multi-antenne de transmission de signaux
KR100552680B1 (ko) 2003-02-17 2006-02-20 삼성전자주식회사 다중 안테나 ofdm 통신 시스템에서의 papr 저감방법 및 이를 사용하는 다중 안테나 ofdm 통신 시스템
US20040192218A1 (en) 2003-03-31 2004-09-30 Oprea Alexandru M. System and method for channel data transmission in wireless communication systems
FR2863422A1 (fr) 2003-12-04 2005-06-10 France Telecom Procede d'emission multi-antennes d'un signal precode lineairement,procede de reception, signal et dispositifs correspondants
JP4864720B2 (ja) * 2003-12-05 2012-02-01 クアルコム,インコーポレイテッド 閉ループ多重入出力移動通信システムで送信固有ベクトルを選択してデータを送信する装置及び方法
US7447268B2 (en) 2004-03-31 2008-11-04 Intel Corporation OFDM system with per subcarrier phase rotation
US8582596B2 (en) 2004-06-04 2013-11-12 Qualcomm Incorporated Coding and modulation for broadcast and multicast services in a wireless communication system
KR100754795B1 (ko) 2004-06-18 2007-09-03 삼성전자주식회사 직교주파수분할다중 시스템에서 주파수 공간 블록 부호의부호화/복호화 장치 및 방법
US8116262B2 (en) * 2004-06-22 2012-02-14 Rockstar Bidco Lp Methods and systems for enabling feedback in wireless communication networks
WO2006002550A1 (en) 2004-07-07 2006-01-12 Nortel Networks Limited System and method for mapping symbols for mimo transmission
US7606319B2 (en) * 2004-07-15 2009-10-20 Nokia Corporation Method and detector for a novel channel quality indicator for space-time encoded MIMO spread spectrum systems in frequency selective channels
US7583982B2 (en) 2004-08-06 2009-09-01 Interdigital Technology Corporation Method and apparatus to improve channel quality for use in wireless communications systems with multiple-input multiple-output (MIMO) antennas
US20060039489A1 (en) 2004-08-17 2006-02-23 Texas Instruments Incorporated Method and apparatus for providing closed-loop transmit precoding
WO2006019253A1 (en) 2004-08-17 2006-02-23 Samsung Electronics Co., Ltd Apparatus and method for space-time-frequency block coding for increasing performance
US7620019B1 (en) 2004-08-27 2009-11-17 Nortel Networks Limited Space division multiple access scheduling
US8019303B2 (en) 2004-09-28 2011-09-13 Intel Corporation Multi-antenna multicarrier receiver and methods for adaptively adjusting a receive data rate based on channel utilization
KR20060028989A (ko) 2004-09-30 2006-04-04 엘지전자 주식회사 다중입출력 시스템에 적용되는 신호 처리 방법
US7656842B2 (en) 2004-09-30 2010-02-02 Motorola, Inc. Method and apparatus for MIMO transmission optimized for successive cancellation receivers
KR20060038812A (ko) * 2004-11-01 2006-05-04 엘지전자 주식회사 다중입출력 시스템의 선행 코딩 행렬 정보 전송 방법 및이를 이용한 신호 전송 방법
US20060093061A1 (en) 2004-11-04 2006-05-04 Samsung Electronics Co., Ltd. Apparatus and method for transmitting and receiving data using space-time block coding
US20060140294A1 (en) 2004-11-05 2006-06-29 Nokia Corporation Block modulation
US7627051B2 (en) 2004-11-08 2009-12-01 Samsung Electronics Co., Ltd. Method of maximizing MIMO system performance by joint optimization of diversity and spatial multiplexing
KR100909539B1 (ko) 2004-11-09 2009-07-27 삼성전자주식회사 다중 안테나를 사용하는 광대역 무선 접속 시스템에서 다양한 다중안테나 기술을 지원하기 위한 장치 및 방법
US7813330B2 (en) * 2004-12-03 2010-10-12 Samsung Electronics Co., Ltd Gap filler apparatus and method for providing cyclic delay diversity in a digital multimedia broadcasting system, and broadcasting relay network using the same
KR100696208B1 (ko) 2004-12-08 2007-03-20 한국전자통신연구원 다중 안테나 송수신 시스템의 제어 방법, 송신기 및 수신기
US7974359B2 (en) * 2004-12-22 2011-07-05 Qualcomm Incorporated Methods and apparatus for mitigating multi-antenna correlation effect in communication systems
US7453983B2 (en) 2005-01-20 2008-11-18 Carestream Health, Inc. Radiation therapy method with target detection
US7636297B1 (en) 2005-02-07 2009-12-22 Marvell International Ltd. Transmit diversity technique based on channel randomization for OFDM systems
JP4376805B2 (ja) * 2005-02-10 2009-12-02 日本電信電話株式会社 空間多重伝送用送信方法および送信装置
GB2423675B (en) 2005-02-28 2009-08-19 King S College London Diversity transmitter and method
CN1838653A (zh) 2005-03-24 2006-09-27 松下电器产业株式会社 低功耗通信装置、低功耗多天线通信系统及其操作方法
KR101124932B1 (ko) * 2005-05-30 2012-03-28 삼성전자주식회사 어레이 안테나를 이용하는 이동 통신 시스템에서의 데이터송/수신 장치 및 방법
US20070041457A1 (en) 2005-08-22 2007-02-22 Tamer Kadous Method and apparatus for providing antenna diversity in a wireless communication system
US20070165738A1 (en) 2005-10-27 2007-07-19 Barriac Gwendolyn D Method and apparatus for pre-coding for a mimo system
US7729432B2 (en) * 2005-10-28 2010-06-01 Samsung Electronics Co., Ltd. System and method for enhancing the performance of wireless communication systems
US8760994B2 (en) 2005-10-28 2014-06-24 Qualcomm Incorporated Unitary precoding based on randomized FFT matrices
US7782573B2 (en) * 2005-11-17 2010-08-24 University Of Connecticut Trellis-based feedback reduction for multiple input multiple output orthogonal frequency division multiplexing (MIMO-OFDM) with rate-limited feedback
KR100849328B1 (ko) 2005-11-22 2008-07-29 삼성전자주식회사 다중 안테나를 사용하는 통신 시스템에서 송수신 안테나결정 장치 및 방법
US7602745B2 (en) * 2005-12-05 2009-10-13 Intel Corporation Multiple input, multiple output wireless communication system, associated methods and data structures
US20070147543A1 (en) 2005-12-22 2007-06-28 Samsung Electronics Co., Ltd. Extension of space-time block code for transmission with more than two transmit antennas
KR20070068300A (ko) 2005-12-26 2007-06-29 삼성전자주식회사 통신 시스템에서 데이터 송수신 장치 및 방법
CN101606339B (zh) * 2006-01-13 2013-10-16 Lg电子株式会社 使用基于反馈信息的天线选择实现发射分集和空间复用的方法和装置
KR20070076642A (ko) 2006-01-19 2007-07-25 삼성전자주식회사 폐루프 다중안테나 오에프디엠 시스템에서 직교공간멀티플렉싱을 위한 장치 및 방법
KR100918747B1 (ko) 2006-02-07 2009-09-24 삼성전자주식회사 직교 주파수 분할 다중 접속 방식을 사용하는 이동 통신시스템에서 상향링크 신호 송신 장치 및 방법
KR101260836B1 (ko) 2006-02-28 2013-05-06 삼성전자주식회사 직교 주파수 분할 다중 시스템에서 다이버시티 이득을 제공하는 선 부호화 방법 및 이를 이용한 송신 장치 및 방법
WO2007132313A2 (en) 2006-05-12 2007-11-22 Nokia Corporation Feedback frame structure for subspace tracking precoding
KR100715582B1 (ko) 2006-05-24 2007-05-09 삼성전자주식회사 다중사용자 다중입출력 시스템에서 선부호화를 위한코드북을 이용한 송수신 방법과 이를 위한 송수신기
KR20070113967A (ko) 2006-05-26 2007-11-29 엘지전자 주식회사 위상천이 기반의 프리코딩 방법 및 이를 지원하는 송수신기
TWI343200B (en) * 2006-05-26 2011-06-01 Lg Electronics Inc Method and apparatus for signal generation using phase-shift based pre-coding
US7961810B2 (en) 2006-09-07 2011-06-14 Texas Instruments Incorporated Antenna grouping and group-based enhancements for MIMO systems
KR20080026010A (ko) 2006-09-19 2008-03-24 엘지전자 주식회사 위상천이 기반의 프리코딩을 이용한 데이터 전송 방법 및이를 구현하는 송수신 장치
KR20080026019A (ko) 2006-09-19 2008-03-24 엘지전자 주식회사 위상천이 기반의 프리코딩 방법 및 이를 지원하는 송수신기
US8503560B2 (en) * 2006-10-02 2013-08-06 Samsung Electronics Co., Ltd System and method for performing precoding in a wireless communication system
US7702029B2 (en) 2006-10-02 2010-04-20 Freescale Semiconductor, Inc. MIMO precoding enabling spatial multiplexing, power allocation and adaptive modulation and coding
KR20080036499A (ko) 2006-10-23 2008-04-28 엘지전자 주식회사 순환지연을 이용한 데이터 전송 방법
KR101356508B1 (ko) 2006-11-06 2014-01-29 엘지전자 주식회사 무선 통신 시스템에서의 데이터 전송 방법
US8780771B2 (en) 2007-02-06 2014-07-15 Qualcomm Incorporated Cyclic delay diversity and precoding for wireless communication
KR20080076683A (ko) 2007-02-14 2008-08-20 엘지전자 주식회사 위상천이 기반의 프리코딩 방법 및 이를 지원하는 송수신기
EP2130308B1 (en) 2007-03-22 2018-12-19 Marvell World Trade Ltd. Variable codebook for mimo system
KR100969753B1 (ko) * 2007-03-26 2010-07-13 삼성전자주식회사 다중 입력 다중 출력 방식을 사용하는 무선 통신시스템에서 사전 부호화 장치 및 방법
US8498356B2 (en) * 2007-04-13 2013-07-30 Samsung Electronics Co., Ltd. Apparatus and method of generating codebook for multiple input multiple output communication system
US7629902B2 (en) * 2007-06-08 2009-12-08 Samsung Electronics Co., Ltd. MIMO wireless precoding system robust to power imbalance
US20090110114A1 (en) 2007-10-26 2009-04-30 Eko Nugroho Onggosanusi Open-Loop MIMO Scheme and Signaling Support for Wireless Networks
KR101565558B1 (ko) 2008-09-01 2015-11-03 한국전자통신연구원 코드북 생성 장치, 생성 방법 및 데이터 송신 방법
KR101435846B1 (ko) 2008-10-30 2014-08-29 엘지전자 주식회사 다중안테나를 갖는 무선 통신 시스템에서 간섭 제어 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO: «Multi-Degree Cyclic Delay Diversity with Frequency-domain Channel Dependent Scheduling», 3GPP TSG RAN WG1 Meeting #46, R1-062107, 28.08.2006, pages 1-6. *

Also Published As

Publication number Publication date
US20080205533A1 (en) 2008-08-28
WO2008035915A2 (en) 2008-03-27
TW200824379A (en) 2008-06-01
CA2662598C (en) 2013-01-22
AU2007297958A8 (en) 2009-11-19
WO2008035915A3 (en) 2009-09-17
US20110194650A1 (en) 2011-08-11
US7881395B2 (en) 2011-02-01
US20110149857A1 (en) 2011-06-23
AU2007297958A1 (en) 2008-03-27
US8135085B2 (en) 2012-03-13
AU2007297958B2 (en) 2010-07-22
US8213530B2 (en) 2012-07-03
CA2662598A1 (en) 2008-03-27
JP2010503311A (ja) 2010-01-28
BRPI0717074A2 (pt) 2013-10-29
KR20080026010A (ko) 2008-03-24
EP2105000A2 (en) 2009-09-30
RU2009114706A (ru) 2010-10-27
MX2009002902A (es) 2009-03-31

Similar Documents

Publication Publication Date Title
RU2421930C2 (ru) Способ передачи с использованием предварительного кодирования на основе фазового сдвига и устройство для его реализации в беспроводной системе связи
KR101356508B1 (ko) 무선 통신 시스템에서의 데이터 전송 방법
KR101026976B1 (ko) 다중-입력 다중-출력 통신 시스템에 대한 피드백 채널 설계
US9258041B2 (en) Methods and systems for combined cyclic delay diversity and precoding of radio signals
RU2447589C2 (ru) Способ управления передачей данных по нисходящему каналу с использованием технологии mimo и базовая станция
US7697622B2 (en) Apparatus and method for transmitting/receiving data in a multi-antenna communication system
CN102833049B (zh) 多个空间多路复用模式的mimo系统
KR101483321B1 (ko) 지연 다이버시티와 공간-주파수 다이버시티에 의한 송신 방법
US8233559B2 (en) Method and apparatus for transmitting a pilot in multi-antenna system
KR20090079186A (ko) 위상천이 기반 프리코딩 방법 및 이를 지원하는 송수신 장치
JP2014507088A (ja) 少ない信号量でのmimoのための束となったコードワードのレイヤへのマッピング
WO2007121568A1 (en) Method and system for closed loop multiple input/output antenna environments in wireless communication
CN101632279A (zh) 使用基于相移的预编码的发送方法以及在无线通信系统中用于实施其的设备
KR100934657B1 (ko) 위상천이 기반 프리코딩 방법 및 이를 지원하는 송수신장치
KR101499255B1 (ko) 다중안테나 시스템에서 파일럿의 전송방법
KR20090057004A (ko) 위상천이 기반의 프리코딩을 이용한 데이터 전송 방법 및 이를 구현하는 송수신 장치
KR20080036508A (ko) 순환지연을 이용한 데이터 전송 방법

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170920