RU2415071C2 - Установка для производства водородного газа термохимическим разложением воды с использованием шлака сталелитейных заводов и отходов - Google Patents

Установка для производства водородного газа термохимическим разложением воды с использованием шлака сталелитейных заводов и отходов Download PDF

Info

Publication number
RU2415071C2
RU2415071C2 RU2008101532/05A RU2008101532A RU2415071C2 RU 2415071 C2 RU2415071 C2 RU 2415071C2 RU 2008101532/05 A RU2008101532/05 A RU 2008101532/05A RU 2008101532 A RU2008101532 A RU 2008101532A RU 2415071 C2 RU2415071 C2 RU 2415071C2
Authority
RU
Russia
Prior art keywords
slag
water
gas
hydrogen
collector
Prior art date
Application number
RU2008101532/05A
Other languages
English (en)
Other versions
RU2008101532A (ru
Inventor
Дебашиш БХАТТАЧАРДЖИ (IN)
Дебашиш БХАТТАЧАРДЖИ
Т. Мухкарджи (In)
Т. Мухкарджи
Вилас ТАТХАВАДКАР (IN)
Вилас ТАТХАВАДКАР
Original Assignee
Тата Стил Лимитед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Тата Стил Лимитед filed Critical Тата Стил Лимитед
Publication of RU2008101532A publication Critical patent/RU2008101532A/ru
Application granted granted Critical
Publication of RU2415071C2 publication Critical patent/RU2415071C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/061Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of metal oxides with water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • C01B3/14Handling of heat and steam
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/04Cyclic processes, e.g. alternate blast and run
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/57Gasification using molten salts or metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1603Integration of gasification processes with another plant or parts within the plant with gas treatment
    • C10J2300/1615Stripping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Processing Of Solid Wastes (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

Изобретение относится к области химии и может быть использовано для генерирования водородного газа из воды. Первый вариант установки для получения водорода из воды в присутствии шлака включает графитовый тигель 1, содержащий расплавленный шлак, реакционный колпак 2, расположенный над указанным тиглем, линию воды для разбрызгивания ее на расплавленный шлак в тигле 1, стальную трубу 4 для отбора и транспортировки полученного водорода из указанного колпака 2 в конденсаторную емкость 7. Причем отобранный водородный газ пропускают в газосборник 11 через, по меньшей мере, один регулирующий клапан 9, 10. Второй вариант установки включает разбрызгиватель флюса, содержащего углеродистый материал, подвижный реакционный колпак 2, присоединенный к устройству цепной тали на блоке, где подвижный реакционный колпак 2 является съемным на шлаковой яме, линию ввода воды для разбрызгивания воды на шлак, где образовавшийся водородный газ проходит через газовый вентиль 6 в сборник-конденсатор 7, откуда затем водородный газ направляют в сборник 11. Изобретение позволяет повысить эффективность используемого устройства за счет использования отходов в производстве водорода. 2 н. и 2 з.п. ф-лы, 5 ил., 2 табл.

Description

ОБЛАСТЬ ИЗОБРЕТЕНИЯ
Данное изобретение относится к новому способу генерирования водородного газа из воды.
ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ
Водород становится известным в качестве наиболее предпочтительной альтернативы ископаемым топливам. В настоящее время водород используется главным образом как сырье, промежуточный химический продукт или, намного меньшем масштабе, как химикат для органического синтеза. Лишь небольшая часть производимого в настоящее время водорода используется как носитель энергии, главным образом в космической промышленности. Автомобильная промышленность разрабатывает новые модели, которые приводятся в движение или двигателями внутреннего сгорания (ДВС) на основе водорода, или на бензине - автомобили с топливными элементами. Однако большинство промышленных способов получения водорода не рассматривается как возобновляемые, поскольку они просто смещают источник загрязнения от распределенного источника (подобного, например, автомобилям и домашним хозяйствам) к более сосредоточенному источнику, подобному установкам получения водорода или тепловым энергоблокам. Одна только водородная промышленность США в настоящее время производит девять миллионов тонн водорода в год для использования в химических производствах, переработке нефти, очистке металлов и электротехнике.
Технологии использования водорода в качестве топлива находятся сегодня в более продвинутом состоянии, чем технологии эффективного получения водорода из возобновляемых источников, таких как солнечная энергия, ветер, энергия приливов или геотермальная энергия. Имеется насущная потребность в разработке лучшей более эффективной и недорогой технологии получения водорода из возобновляемого сырья и перекрытия зазора между технологиями производства и потребления водорода и достижения синергии между двумя сегментами. Национальная Дорожная Карта Энергии Водорода правительства Индии также отдает преимущество развитию передовых технологий производства и применению технологий, основанных на водородном топливе.
Электролитический способ используется во всем мире для получения газообразного водорода. В настоящее время этот способ используют для получения водорода высокой чистоты. Стоимость водорода, произведенного с использованием этого способа значительно выше, и потому его используют только в специальных применениях, подобных производству полупроводников. Но этот способ может облегчить более распределенное генерирование водорода, используя электричество, полученное из возобновляемых и ядерных источников и должен помочь обеспечить местные нужды с минимумом требований к распределению и хранению.
Основным побочным продуктом этого способа является кислород. Процесс реформинга метана с водяным паром также широко используют для получения водорода. В этом каталитическом процессе природный газ или другие легкие углеводороды вводят в реакцию с водяным паром для получения смеси водорода и двуокиси углерода. Затем из смеси продуктов выделяют водород высокой чистоты. Этот способ является наиболее энергетически эффективной промышленной технологией, доступной в настоящее время, и он является наиболее экономичным, когда применяется к большим постоянным нагрузкам. Парциальное окисление ископаемых топлив в больших газификаторах является другим способом термического производства водорода. Он использует реакцию топлива с подаваемым в ограниченном количестве кислородом для получения смеси водорода, которую затем очищают. Парциальное окисление может быть применено к широкому кругу углеводородного сырья, включающему природный газ, тяжелые нефти, твердую биомассу и уголь. Его главным побочным продуктом является двуокись углерода. Появляющиеся новые способы обещают получение водорода без выброса двуокиси углерода, но все они еще находятся на ранних стадиях разработки. Некоторыми из этих технологий являются термохимическое расщепление воды с использованием ядерного и солнечного тепла, протилитические (солнечные) способы с использованием техник твердого состояния (фотоэлектрохимический, электролиз), получение водорода из ископаемого топлива с секвестрацией углерода и биологические методы (водоросли и бактерии).
ЦЕЛИ ИЗОБРЕТЕНИЯ
Цель данного изобретения - предложить новый способ получения водорода из воды.
Другой целью данного изобретения является предложить новый способ получения водородного газа из воды в присутствии углеродистых отходов и каталитических флюсов.
Следующей целью данного изобретения является предложить новый способ получения водородного газа из воды, в котором расплавленный шлак используют для термохимического разложения воды.
Еще одной целью данного изобретения является предложить новый способ получения водородного газа из воды, который является простым и эффективным.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Согласно данному изобретению предложен новый способ получения водородного газа из воды, включающий добавление воды к шлаку и углеродистому флюсу для получения водорода термохимическим разложением воды.
КРАТКОЕ ОПИСАНИЕ ПРИЛАГАЕМЫХ ЧЕРТЕЖЕЙ
Изобретение объяснено более подробно с прилагаемыми чертежами.
Фиг.1а показывает влияние добавления воды на концентрацию FeO и Fe2O3 в шлаке и образование газообразного Н2 на основе результатов расчета фазовой диаграммы вода - шлак при 1873 К.
Фиг.1b относится к графику энтальпии системы вода - шлак как функции добавления воды на основе результатов расчета фазовой диаграммы вода - шлак при 1873 К.
Фиг.2 показывает влияние добавления воды на концентрацию FeO и Fe2O3 в шлаке и образование газообразных Н2, СО и СО2, рассчитанное с использованием программы FACT-sage.
Фиг.3 показывает экспериментальную установку для получения водорода.
Фиг.4 показывает диаграмму потоков и схему установки для получения водорода в шлаковой яме на заводском уровне.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Разработан новый способ для получения водородного газа реакциями воды и шлака в присутствии углеродистых отходов и каталитических флюсов. Суммарной реакцией образования водородного газа является реакция
Figure 00000001
где A представляет количество воды, добавленной в систему, x есть количество С, доступное во флюсе, y есть FeO в шлаке и z представляет образование СО2 реакцией между СО и водой. В этом новом процессе шлак не только обеспечивает физическое тепло для эндотермической реакции разложения воды, но также останавливает обратные реакции между водородом и газообразным кислородом. Fe и низшие оксиды Fe в шлаке реагируют с газообразным кислородом в продуктовой газовой смеси и образуют Fe2O3 и тем самым понижают термодинамическую активность кислорода. Различные типы отходов, которые могут действовать как раскислитель, могут быть использованы как флюс для улучшения образования водородного газа.
Термическое разложение чистой воды в присутствии шлака
Физическое тепло расплавленного шлака может быть использовано для термохимического разложения воды. В этом процессе шлак действует как источник тепла, и некоторые из раскисляющих составляющих (Fe, FeO) в шлаке также принимают участие в реакции разложения (1) путем реакции с образующимся кислородом по реакции (2)
Figure 00000002
Figure 00000003
Экзотермическая реакция окисления обеспечивает дополнительную энергию, требуемую для реакции (1), и также понижает парциальное давление кислорода системы и тем самым повышает скорость образования газообразного водорода. Данные о фазовом равновесии были рассчитаны для реакции между 100 г LD шлака с водой при 1600°С. Количество воды варьировали от 0 до 100 мл, чтобы изучить влияние отношения вода:шлак на образование газообразного водорода. Результаты компьютерных расчетов представлены на фиг. 1а и 1b. Фиг. 1а показывает влияние добавления воды на образование водорода и изменения концентрации FeO и Fe2O3 в шлаке. Энтальпия системы при различном добавлении воды показана на фиг. 1b, которая показывает, что энтальпия 100 г шлака может поддерживать реакцию с количеством воды до 11,3 мл; любое дальнейшее добавление воды будет требовать дополнительного подвода энергии. Поэтому теоретически реакция 1 кг шлака и 113 мл воды будет образовывать 0,8 молей, т.е. 19,2 л газообразного водорода без какого-либо подвода энергии при 1873 К.
Термическое разложение чистой воды в присутствии шлака и углеродистого флюса
Углеродистый и другие заводские отходы, такие как угольная мелочь, коксовая мелочь и т.п., могут быть использованы в качестве раскислителя, который будет улучшать образование водорода термохимическим разложением воды.
Реакцией между водой и углеродом является
Figure 00000004
Данные по фазовому равновесию 100 г шлака и <A> мл воды и 10 г углерода было рассчитано для температуры 1873 К и результаты компьютерного расчета показаны на фиг. 2. Результаты компьютерного расчета подтвердили, что добавление избытка воды, по сравнению со стехиометрическим требованием для реакции углерода, улучшает образование водородного газа. Избыточная вода реагирует с газообразным СО в системе при высокой температуре и образует газ СО2. Если <A>=5,55 моль (100 мл) и х=0,2 моль, то энергия, требуемая для образования 1,2 моль Н2, 0,46 моль СО и 0,37 моль СО2 при 1873 К составляет ΔΗ1873К=740 кДж. Энтальпия 1 кг шлака при 1900 К составляет ΔН1900К=-2120 кДж. Теоретически реакция 100 мл воды и 10 г углерода будет генерировать 1,20 моль, т.е. 26,9 л газообразного водорода при 1600°С, используя физическое тепло 350 г шлака (отношение Н2О:С=10:1). Поэтому теоретически реакции между 1 кг шлака могут продуцировать ~70 л газа. С учетом более низких эффективностей реакции образования и процесса теплопереноса и другие кинетические ограничения практического процесса может генерировать ~10 л водородного газа на 1 кг шлака.
Инновационные установки (лабораторная и заводская) были спроектированы и изготовлены для получения водородного газа с использованием шлака сталеплавильного производства в качестве источника тепла. Разработанная установка может эффективно собирать продуктовый газ с >35% водорода, используя тепло шлака.
Опытная установка, разработанная для изучения реакций расплавленного шлака и воды показана на фиг.3. Стандартная методика (постадийно), которой следовали во время проведения экспериментов с использованием установки, показанной на фиг. 3, описана ниже.
Перед началом эксперимента конденсатор (6) и газосборники(11) сначала эвакуировали, используя вакуум-насос (13) для удаления остаточного воздуха и создания отрицательного давления для потока газа в сборники. Систему изолировали от окружающей среды, закрывая вентили (6, 12) перед экспериментом. Гранулированный шлак со сталеплавильного завода LD плавили в индукционной печи и перегревали до ~1650-1700°С. Расплавленный шлак заливали в предварительно нагретый графитовый тигель (1). Затем на тигель закрепляли реакционный колпак (2). Контролируемое количество воды распыляли на поверхность расплавленного шлака через линию воды (3). Продуктовые газы образовывались реакциями между водой, раскислителями в шлаке и углеродом из тигля, как было обсуждено в предыдущих разделах. Продуктовый газ реакции отбирался из колпака (2) по стальной трубе (4), присоединенной к сборнику. Во время эксперимента пробы продуктового газа отбирали через порт отбора проб (5) для химического анализа. Продуктовый газ пропускали через сборник-конденсатор (7), открывая газовый вентиль (6). Сборник-конденсатор (7) охлаждали водой, хранившейся во внешнем сборнике (8). Продуктовый газ после удаления/стриппинга водяного пара собирали в газосборник (11), открывая вентили регулирования газового потока (9, 10). Пробы газа из сборника-конденсатора и газосборника отбирали присоединением пробоотборника газа к вентилям (9) и (12) соответственно. Сконденсировавшуюся воду из сборника-конденсатора (7) удаляли, открывая вентиль (14), присоединенный к днищу сборника-конденсатора (7).
Типичный анализ проб газа, отобранных из порта отбора проб (5), емкости-конденсатора (7) и емкости сбора (11) дан ниже (концентрация в об.%)
Проба/составляющие Н2 СО СО2 О2 СН2 CmHn N2
Порт отбора проб [5] 22,8 11,2 7,0 3,0 6,2 0,6 33,4
Сборник-конденсатор [7] 23,0 1,6 1,2 1,2 2,0 1,0 70,0
Сборник [11] 20,0 1,8 Nil 2,0 4,0 1,2 71,0
Установка для заводских испытаний
Установка, спроектированная и изготовленная для проведения опытов в шлаковой яме на сталеплавильном заводе LD#2, показана на фиг. 4. Стандартная методика (постадийно), которой следовали, описана ниже.
Эксперименты проводили в шлаковой яме сталелитейной установки LD#2. Процедура выгрузки шлака из сталелитейной печи LD#2 кратко описывается. На заводе шлак из конвертора (работающего периодически) собирают в шлаковый ковш емкостью ~25 тонн. Затем шлаковый ковш транспортируют шлаковой тележкой. После прибытия тележки с шлаковым ковшом в зону шлаковой ямы ковш снимают с тележки мостовым краном, и затем шлак выливают в шлаковую яму. Заполнение шлаковой ямы занимает примерно 2 суток. После того как яма полностью заполнится шлаком, шлак в течение некоторого времени охлаждают и затем закаляют разбрызгиванием воды гидромониторами с боков и с верха. Охлаждение шлака в яме занимает примерно 1 сутки. Во время охлаждения шлака большой объем водяного пара выделяется в воздух. После охлаждения шлак удаляют из ямы опрокидывателем и транспортируют в зону переработки шлака. Опыты проводили на яме, которая была почти полной.
Перед началом эксперимента всю установку, включая газосборник (11) и сборник-конденсатор (7), эвакуировали, используя вакуум-насос (13). Давление в сборнике контролировали, используя мановакууметр (15), присоединенный к сборнику-конденсатору (7). После того как мановакууметр регистрировал значение - 500 мм, установку, т.е. сборник, изолировали закрытием вентилей (6, 12, 17 и 18). После того как шлак выливали в яму кран-балкой, экспериментальную установку, показанную на фиг. 2, погруженную на тележку (24) передвигали ближе к шлаковой яме, используя трактор. Когда тележка с установкой достигала отмеченную зону, сначала на поверхность расплавленного шлака разбрызгивали флюс, содержащий углеродистый материал, используя полиэтиленовые мешки, затем реакционный колпак (2) опускали, используя систему цепной блок-тали (23), и помещали на поверхность горячего шлака. Для надежной изоляции от окружающей атмосферы на кромку реакционного колпака (2) помещали высокотемпературную керамическую волоконную шерсть (25). После помещения колпака (2) на поверхность шлака вентиль подачи (20) на водяной линии открывали, и поток воды контролировали по индикатору потока (21), присоединенному к линии ввода воды. Затем воду равномерно распыляли на поверхность расплавленного шлака, используя водную форсунку (26). Продуктовые газы образовывались реакциями между водой-шлаком-флюсом, как было описано ранее. Немедленно после открытия вентиля подачи воды (20) включали газодувку (22) и открывали вентиль (19) для удаления воздуха и водяного пара из газового трубопровода; как только из выхлопной трубы газодувки (22) начинал выходить продуктовый газ с водяным паром, вентиль (19) закрывали и медленно открывали вентиль (6). Пробы продуктового газа отбирали открытием вентиля (5) и присоединением пробоотборника газа. Когда давление газа в сборнике достигала +800 мм (мановакууметр (15)), газовый вентиль (6) закрывали и газовый вентиль (19) открывали. После того как реакционный колпак (2) сдвигали вверх, отбирали пробы из конденсатора (7) и сборника (11), используя порты отбора проб, присоединенные к вентилям (17 и 18). После отбора проб установку эвакуировали, как описано выше, перед следующим экспериментом. Диаграммы взрываемости были получены для сборника-конденсатора и газосборника, чтобы защитить систему от взрыва, поскольку продуктовый газ, содержащий >30% водорода и <10% CO, является взрывоопасным и воспламеняющимся.
Типичный анализ проб газа, отобранных из отверстия отбора проб (5), дан ниже.
Проба/составляющие Н2 СО СО2 О2 СН4 CmHn N2
Эксп./шлак 04.05.01 40,6 4,8 1,0 9,6 - - Bal
Эксп./шлак 30.06.01 36,6 7,4 3,0 3,4 - - Bal

Claims (4)

1. Установка для получения водорода из воды в присутствии шлака, включающая графитовый тигель (1), содержащий расплавленный шлак; реакционный колпак (2), расположенный над указанным тиглем; линию воды для разбрызгивания воды на расплавленный шлак в тигле (1); стальную трубу (4) для отбора и транспортировки полученного водорода из указанного колпака (2) в конденсаторную емкость (7); причем отобранный водородный газ пропускают в газосборник через, по меньшей мере, один регулирующий клапан (9, 10).
2. Установка для получения водорода из воды, включающая разбрызгиватель флюса, содержащего углеродистый материал, подвижный реакционный колпак (2), присоединенный к устройству цепной тали на блоке, где подвижный реакционный колпак является съемным на шлаковой яме, линию ввода воды для разбрызгивания воды на шлак, где образовавшийся водородный газ проходит через газовый вентиль (6) в сборник-конденсатор (7), откуда затем водородный газ направляют в сборник (11).
3. Установка по п.2, включающая газодувку (22), которую используют для удаления воздуха из газовой трубы перед началом получения водородного газа в реакционном колпаке (2).
4. Установка по п.2, в которой воду разбрызгивают на поверхность расплавленного шлака форсункой (26).
RU2008101532/05A 2006-04-28 2006-06-13 Установка для производства водородного газа термохимическим разложением воды с использованием шлака сталелитейных заводов и отходов RU2415071C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IN387/KOL/06 2006-04-28
IN387KO2006 2006-04-28

Publications (2)

Publication Number Publication Date
RU2008101532A RU2008101532A (ru) 2009-07-20
RU2415071C2 true RU2415071C2 (ru) 2011-03-27

Family

ID=38655111

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008101532/05A RU2415071C2 (ru) 2006-04-28 2006-06-13 Установка для производства водородного газа термохимическим разложением воды с использованием шлака сталелитейных заводов и отходов

Country Status (10)

Country Link
US (3) US20100111826A1 (ru)
EP (1) EP2013139A4 (ru)
JP (1) JP5017362B2 (ru)
KR (1) KR101298052B1 (ru)
CN (1) CN101203455A (ru)
BR (1) BRPI0612895B1 (ru)
CA (1) CA2622171C (ru)
MX (1) MX2007016201A (ru)
RU (1) RU2415071C2 (ru)
WO (1) WO2007125537A1 (ru)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2624574C (en) 2005-09-30 2014-12-02 Tata Steel Limited A method for producing hydrogen and/or other gases from steel plant wastes and waste heat
CN101203455A (zh) 2006-04-28 2008-06-18 塔塔钢铁有限公司 使用钢厂炉渣和废料由热化学分解水制造氢气的装置
IT1400139B1 (it) * 2010-05-20 2013-05-17 Asiu S P A Un procedimento per la produzione di idrogeno, per il sequestro di anidride carbonica e per la produzione di materiali da costruzione a partire da scorie e/o ceneri industriali.
WO2014154910A1 (en) * 2013-03-29 2014-10-02 Centre National De La Recherche Scientifique (Cnrs) Method for producing high-purity hydrogen gas
US10899610B2 (en) 2013-03-29 2021-01-26 Centre National De La Recherche Scientifique Method for producing high-purity hydrogen gas and/or nanomagnetite
CN103894199B (zh) * 2014-04-04 2015-09-30 哈尔滨工程大学 用作光解水制氧的石墨烯修饰的多孔氧化铁纳米片及制备方法
CN105056857A (zh) * 2015-08-21 2015-11-18 黄文鹏 一种螺杆合成挤出原料生产线
CN108467012A (zh) * 2018-05-07 2018-08-31 浙江高成绿能科技有限公司 一种可快速持续产氢的化学制氢系统
CN111943136A (zh) * 2020-07-29 2020-11-17 浙江工业大学 一种直接利用生活垃圾焚烧炉渣制氢的方法
CN113023672B (zh) * 2021-04-28 2022-11-25 北京中电企发能源科技有限公司 一种炼钢转炉铸余渣余热制氢的系统和方法

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191023418A (en) 1910-10-10 1911-05-18 Wilhelm Gerhartz Improvements in and relating to the Method of Gaining Hydrogen by the Decomposition of Water Steam with the Aid of Melted Iron.
US2953445A (en) * 1955-08-11 1960-09-20 Rummel Roman Gasification of fuels and decomposition of gases
US2908737A (en) * 1957-02-08 1959-10-13 Dominicis Giovanni De Smoke suction installation for electric metal melting furnaces
US3083957A (en) * 1958-08-06 1963-04-02 Voest Ag Tilting crucible with smoke seal means
US3205810A (en) * 1962-09-04 1965-09-14 Inland Steel Co Adjustable hood construction for metallurgical furnace
US3421869A (en) * 1964-06-01 1969-01-14 Con Gas Service Corp Method for the production of a mixture of hydrogen and steam
US3460934A (en) * 1966-12-19 1969-08-12 John J Kelmar Blast furnace method
US3531270A (en) * 1967-04-10 1970-09-29 Intern Steel Slag Corp Molten steel slag handling method and apparatus
US3615298A (en) * 1969-04-14 1971-10-26 Consolidation Coal Co Gasification of carbonaceous material
US3709997A (en) * 1970-12-20 1973-01-09 J Alferov Convertible electrode electric furnace installation and method
US3761243A (en) * 1971-05-21 1973-09-25 Steel Corp Method of quenching slag
US3787193A (en) * 1971-11-18 1974-01-22 Fmc Corp Production of water gas
DE2556732A1 (de) 1975-12-17 1977-06-30 Wilhelm Wissing Verfahren zur energiegewinnung aus kohlenstoffhaltigen, festen brennstoffen durch ueberfuehrung der festen brennstoffe in andere aggregatzustaende in verbindung mit der thermischen erzeugung und der anlagerung von wasserstoff sowie stickstoff, sauerstoff und wasser
FR2366217A1 (fr) * 1975-08-27 1978-04-28 Comp Generale Electricite Dispositif generateur d'hydrogene
US3979551A (en) * 1975-09-24 1976-09-07 Hawley Manufacturing Corporation Arc furnace fumes control system
JPS5241606A (en) * 1975-09-30 1977-03-31 Nippon Steel Corp Method for gasification of coal by using molten slug and molten iron
JPS549189A (en) * 1975-10-27 1979-01-23 Agency Of Ind Science & Technol Method of thermochemical producing hydrogen and oxygne from water
JPS5821955B2 (ja) * 1977-11-21 1983-05-04 三菱重工業株式会社 溶融スラグ熱を利用した石炭のガス化装置
US4222768A (en) * 1978-03-14 1980-09-16 Asahi Giken Kogyo Kabushiki Kaisha Method for producing electric steel
JPS5826392B2 (ja) 1979-03-09 1983-06-02 新日本製鐵株式会社 溶融高炉スラグ顕熱利用法
JPS5688494A (en) * 1979-12-20 1981-07-17 Nippon Steel Corp Process and apparatus for recovering sensible heat of slag
DE3032043A1 (de) * 1980-08-26 1982-03-04 Klöckner-Werke AG, 4100 Duisburg Verfahren zur entschwefelung bei der gaserzeugung im eisenbadreaktor
JPS5794093A (en) * 1980-12-02 1982-06-11 Sumitomo Metal Ind Ltd Method for operating coal gasification furnace
GB2144988A (en) * 1983-08-20 1985-03-20 Metal Box Plc Thermal treatment apparatus
JPS6183653A (ja) * 1984-10-01 1986-04-28 日本鋼管株式会社 水砕スラグの製造方法
US4696680A (en) * 1985-10-03 1987-09-29 The United States Of America As Represented By The United States Department Of Energy Method and apparatus for the selective separation of gaseous coal gasification products by pressure swing adsorption
JPS63103016U (ru) 1986-12-24 1988-07-04
DE3925564A1 (de) 1989-08-02 1991-02-07 Krupp Koppers Gmbh Verfahren zur erzeugung eines wasserstoffreichen gases
US5004495A (en) * 1990-02-05 1991-04-02 Labate M D Method for producing ultra clean steel
US5984985A (en) * 1990-06-21 1999-11-16 Marathon Ashland Petroleum Llc Multiple vessel molten metal gasifier
US5211744A (en) * 1991-10-02 1993-05-18 Premelt Systems, Inc. Method and means for improving molten metal furnace charging efficiency
DE19522320C1 (de) * 1995-06-20 1996-08-22 Joseph E Doumet Verfahren und Vorrichtung zum Abkühlen und Verfestigen von glühendflüssiger Hochofenschlacke
AU1275697A (en) * 1996-11-25 1998-06-22 Ashland Inc. Two-zone molten metal hydrogen-rich and carbon monoxide-rich gas generation process
AT406262B (de) * 1998-06-29 2000-03-27 Holderbank Financ Glarus Verfahren und vorrichtung zum granulieren und zerkleinern von flüssigen schlacken
FR2801895B1 (fr) * 1999-12-03 2002-03-01 Agriculture Azote Et Carbone O Procede et installation de gazeification de composes carbones
ES2640910T3 (es) * 2000-10-27 2017-11-07 Air Products And Chemicals, Inc. Sistemas y procesos para proporcionar hidrógeno a células de combustible
WO2002070403A1 (en) * 2001-03-06 2002-09-12 Alchemix Corporation Method for the production of hydrogen and applications thereof
US6685754B2 (en) * 2001-03-06 2004-02-03 Alchemix Corporation Method for the production of hydrogen-containing gaseous mixtures
US6663681B2 (en) 2001-03-06 2003-12-16 Alchemix Corporation Method for the production of hydrogen and applications thereof
US7011136B2 (en) * 2001-11-12 2006-03-14 Bwxt Y-12, Llc Method and apparatus for melting metals
AT412650B (de) * 2003-09-25 2005-05-25 Voest Alpine Ind Anlagen Verfahren und anlage zum granulieren von schlacke
JP2006036804A (ja) 2004-07-22 2006-02-09 Nippon Steel Chem Co Ltd 有機系廃棄物から可燃性ガスの製造方法
CA2624574C (en) * 2005-09-30 2014-12-02 Tata Steel Limited A method for producing hydrogen and/or other gases from steel plant wastes and waste heat
CN101203455A (zh) * 2006-04-28 2008-06-18 塔塔钢铁有限公司 使用钢厂炉渣和废料由热化学分解水制造氢气的装置

Also Published As

Publication number Publication date
CA2622171C (en) 2014-12-23
EP2013139A4 (en) 2009-12-16
KR20080110979A (ko) 2008-12-22
US20110027133A1 (en) 2011-02-03
US20100111826A1 (en) 2010-05-06
KR101298052B1 (ko) 2013-08-20
BRPI0612895A2 (pt) 2012-12-04
CN101203455A (zh) 2008-06-18
JP5017362B2 (ja) 2012-09-05
MX2007016201A (es) 2008-03-11
US9346675B2 (en) 2016-05-24
RU2008101532A (ru) 2009-07-20
CA2622171A1 (en) 2007-11-08
EP2013139A1 (en) 2009-01-14
US20120171080A1 (en) 2012-07-05
JP2009535287A (ja) 2009-10-01
WO2007125537A1 (en) 2007-11-08
BRPI0612895B1 (pt) 2020-12-22
WO2007125537A9 (en) 2010-12-02

Similar Documents

Publication Publication Date Title
RU2415071C2 (ru) Установка для производства водородного газа термохимическим разложением воды с использованием шлака сталелитейных заводов и отходов
Zhang et al. A comprehensive review of the promising clean energy carrier: Hydrogen production, transportation, storage, and utilization (HPTSU) technologies
US10208665B2 (en) Methods and systems for energy conversion and generation
US20070217995A1 (en) Hydrogen Producing Method and Apparatus
RU2693980C2 (ru) Способ снижения выбросов co2 при работе металлургического завода
Pashchenko et al. Ammonia decomposition in the thermochemical waste-heat recuperation systems: A view from low and high heating value
CN103765986A (zh) 等离子电弧炉和应用
Pashchenko Photochemical hydrocarbon fuel regeneration: Hydrogen-rich fuel from CO2
US20220081295A1 (en) System and method for adjusting pressure in a reservoir and system for producing at least one energy carrier
KR20190133347A (ko) 폐자원 순환 공정을 통한 이산화탄소 전환 시스템 및 그 방법
Dong et al. Feasibility evaluation of the terminated waste energy in situ conversion strategy toward carbon neutralization in metallurgical processes
WO2024075831A1 (ja) バイオ多段式水素発生方法及びバイオ多段式水素発生システム
JP2005232524A (ja) 固体酸化物電解質を用いた水素製造システム
CN115516139A (zh) 通过铝热反应生产热能和基础化学物质的方法
JP2017132668A (ja) 水素ステーションシステム
CN107810252A (zh) 用于制造甲烷的结合水的水解作用的布杜阿尔反应
CN214654555U (zh) 一种利用锅炉含硫烟气制甲烷的系统
Demirbaş et al. Hydrogen resources: Conversion of black liquor to hydrogen rich gaseous products
CN112851463B (zh) 一种利用锅炉含硫烟气制甲烷的系统和方法
IT9020870A1 (it) Processo di combustione di idrocarburi in cui si evita la dispersione in atmosfera dell&#39;anidride carbonica prodotta, ed impianto atto a realizzarlo
Fino Hydrogen production in conventional, bio-based and nuclear power plants
Yao et al. Thermodynamics of Hydrogen Production from Steam Reforming of Tar Model Compound with Blast Furnace Slag
TWI386365B (zh) 富氫與純氫氣體製造之整合裝置與方法
KR20240062164A (ko) 축열식 청록수소 생산 시스템
Stevanović et al. HYDROGEN PRODUCTION BY THERMAL CRACKING OF NATURAL GAS–TEST FACILITY

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180614