RU2409770C2 - Компрессорный блок и способ его монтажа - Google Patents

Компрессорный блок и способ его монтажа Download PDF

Info

Publication number
RU2409770C2
RU2409770C2 RU2008142116/06A RU2008142116A RU2409770C2 RU 2409770 C2 RU2409770 C2 RU 2409770C2 RU 2008142116/06 A RU2008142116/06 A RU 2008142116/06A RU 2008142116 A RU2008142116 A RU 2008142116A RU 2409770 C2 RU2409770 C2 RU 2409770C2
Authority
RU
Russia
Prior art keywords
drainage
compressor
medium
housing
compressor unit
Prior art date
Application number
RU2008142116/06A
Other languages
English (en)
Other versions
RU2008142116A (ru
Inventor
Геррит ЛЕНДЕРИНК (NL)
Геррит ЛЕНДЕРИНК
Тео НЕЙХЕЙС (NL)
Тео НЕЙХЕЙС
Original Assignee
Сименс Акциенгезелльшафт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сименс Акциенгезелльшафт filed Critical Сименс Акциенгезелльшафт
Publication of RU2008142116A publication Critical patent/RU2008142116A/ru
Application granted granted Critical
Publication of RU2409770C2 publication Critical patent/RU2409770C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/601Mounting; Assembling; Disassembling specially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • F04D17/122Multi-stage pumps the individual rotor discs being, one for each stage, on a common shaft and axially spaced, e.g. conventional centrifugal multi- stage compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0686Units comprising pumps and their driving means the pump being electrically driven specially adapted for submerged use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/70Suction grids; Strainers; Dust separation; Cleaning
    • F04D29/701Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Compressor (AREA)

Abstract

Изобретение относится к компрессорному блоку, в частности, для подводной эксплуатации, и обеспечивает при его использовании устранение влияния жидкой агрессивной среды при эксплуатации под водой. Указанный технический результат достигается в компрессорном блоке (1), содержащем электродвигатель (2). Ось (60) вращения во время работы ориентирована вертикально, а корпус (4) имеет на находящемся внизу осевом конце (63) дренаж (64). Этот же технический результат достигается в способе монтажа компрессорного блока (1), при котором он заполняется над водой несжимаемой средой, транспортируется к находящемуся под водой месту эксплуатации, к впускному (6) и выпускному отверстиям присоединяются патрубки, и среда отводится из компрессорного блока (1) через дренаж (64). 2 н. и 6 з.п. ф-лы, 3 ил.

Description

Изобретение относится к компрессорному блоку, в частности, для подводной эксплуатации, содержащему компрессор, электродвигатель, корпус с впускным и выпускным отверстиями для добываемой среды и ось вращения, вокруг которой вращается ротор компрессорного блока, причем предусмотрены электромагнитные подшипники 21, 22, 25, охлаждаемые до рабочей температуры посредством охлаждающей системы, в которой в одном перетоке компрессора предусмотрено ответвление 32, от которого по трубопроводам часть добываемой среды пропускается через фильтр 35, а затем направляется по двум отдельным трубопроводам к подшипникам.
Новейшие разработки в области компрессоростроения сконцентрированы на подводном расположении мощных компрессоров, которые должны служить для добычи природного газа. Вследствие особых эксплуатационных условий, в частности из-за сильно ограниченного доступа для обслуживания и наличия питающих линий, специалисты стоят перед большими вызовами. Требования защиты окружающей среды в этой области запрещают любой материальный обмен между устанавливаемыми агрегатами и окружающей их морской водой. К тому же морская вода является агрессивной средой, и на различных морских глубинах встречаются предельные условия давления и температуры. Другое требование состоит в том, что агрегаты, с одной стороны, должны иметь предельно длительный срок службы, а с другой стороны, должны быть выполнены так, чтобы они почти не требовали обслуживания. Дополнительным осложняющим обстоятельством является значительное загрязнение частично химически агрессивной добываемой среды.
Сжимаемая добываемая среда, в частности добываемый природный газ, имеет не только нередко изменяющийся агрессивный химический состав, но и является носителем различных конденсатов, которые затрудняют сжатие и, в частности, приводят к повышенному износу компрессора. По этой причине перед сжатием осуществляется отделение конденсата. Однако с помощью даже самой сложной технологии не удается предотвратить последующее отделение конденсата также в компрессорном блоке, что может, по меньшей мере, сократить срок его службы. К тому же в эксплуатируемом под водой компрессорном блоке возникает та проблема, что присоединение подводящих и отводящих добываемую среду линий происходит, как правило, только на месте эксплуатации и на пути туда в компрессорный блок уже может проникнуть окружающая среда, например агрессивная морская вода, которая может нанести ему вред.
Из WO 92/14062 уже известна насосная станция для подводной эксплуатации, содержащая также компрессор, который транспортирует газообразные компоненты источника ископаемого сырья с морского дна на сушу. В этой публикации предложено устанавливать роторы добычных машин в масляных подшипниках скольжения, которые смазываются масляной пленкой. Корпуса турбомашин установлены вертикально и имеют в самой низкой точке постоянно открытое отверстие для слива масла, через которое, кроме того, из корпуса могут отводиться другие газы и конденсаты. Жидкие компоненты транспортируются на сушу и сепарируются там. В соответствии с этим следует предусмотреть отдельные трубопроводы и сложную подготовительную установку. Описанная в WO 92/14062 установка раскрыта также в GB 2226776 A и WO 95/15428.
Исходя из проблем уровня техники, изобретение поставило своей задачей устранение потенциала вреда конденсатов и других жидкостей в предусмотренном, в частности, для подводной эксплуатации компрессорном блоке описанного выше типа без повышения затрат на установку и монтаж.
Эта задача решается посредством компрессорного блока по пункту 1 и способа его монтажа по пункту 2. В подчиненных им зависимых пунктах содержатся предпочтительные варианты осуществления изобретения.
Решающее преимущество комбинации вертикальной установки с дренажом на нижнем осевом конце корпуса заключается в том, что за счет протяженности вдоль оси вращения особенно благоприятные условия дренажа возникают потому, что вследствие более высокого водяного столба возникают более высокие гидростатические давления, которые обеспечивают лучшее вытекание конденсатов из корпуса. Благодаря этому через находящийся на нижнем осевом конце корпуса дренаж лучше вытекают также конденсаты, чему способствует более высокое гидростатическое давление за счет вертикальной ориентации.
Чтобы обеспечить вытекание жидкостей без остатка, целесообразно, если поверхности внутри компрессорного блока выполнены так, что при вертикальной ориентации находящиеся внутри корпуса жидкости достигают дренажа, стекая только за счет силы тяжести. Для этого обращенные от дренажа поверхности должны иметь наклон, вызывающий течение к дренажу. Подходящие для сбора жидкости поднутрения в отношении дренажа внутри корпуса не предусмотрены.
Для отвода без остатка конденсатов и для преодоления возможных разностей давлений целесообразно, если к выполненному в виде отверстия дренажу присоединен насос, отводящий конденсат.
Для процессов монтажа, кроме того, целесообразно, если корпус компрессорного блока установлен в раме посредством предусмотренных на корпусе опорных элементов, причем эта установка выполнена с возможностью вращения корпуса вокруг горизонтальной оси в зоне центра тяжести ротора, при этом дренаж во время вращения перемещается из низкой точки в высокую точку.
Этот вариант осуществления изобретения целесообразен, в частности, тогда, когда в способе монтажа эксплуатируемого под водой компрессорного блока последний перед погружением под воду заполняется несжимаемой средой, затем транспортируется к находящемуся под водой месту эксплуатации, к впускному и выпускному отверстиям присоединяются патрубки, после чего компрессорный блок опорожняется от среды через дренаж. Во избежание обмена с окружающей подводной средой целесообразно закрыть впускное и выпускное отверстия под водой заглушками, прежде чем будет заполнена несжимаемая среда, и снова удалить заглушки, прежде чем к впускному и выпускному отверстиям будут присоединены патрубки. Для заполнения корпуса компрессорного блока целесообразно повернуть корпус вокруг горизонтальной оси, как это описано выше, в результате чего дренаж окажется на верхнем осевом конце. Через дренаж может осуществляться полное заполнение корпуса несжимаемой средой, в частности, если внутреннее пространство корпуса выполнено так, что жидкости при работе достигают дренажа, стекая полностью за счет силы тяжести, а компрессорный блок при заполнении находится нижним осевым концом вверху. Соответствующий этому наклон поверхностей заботится о том, чтобы при заполнении несжимаемой средой в корпусе не задерживались сжимаемые газовые пузырьки. В качестве несжимаемой среды может служить, например, дистиллированная или деминерализованная вода, так что внутреннее пространство компрессорного блока не подвергается вредному влиянию окружающей среды, например морской воды, и в то же время заглушкам впускного и выпускного отверстий при транспортировке компрессорного блока под водой к месту эксплуатации не приходится выдерживать никакую особую сжимающую нагрузку.
Закрывание впускного и выпускного отверстий заглушками целесообразно также для того, чтобы в компрессорный блок не могли заплыть рыбы и заползти крабы.
Ниже изобретение более подробно описано на специальном примере его осуществления со ссылкой на чертежи. Изображенные варианты следует понимать только как пример для пояснения изобретения. На чертежах представляют:
фиг.1 - схематично продольный разрез компрессорного блока;
фиг.2 и 3 - схематично этапы способа монтажа.
На фиг.1 схематично изображен разрез вдоль компрессорного блока 1, который в качестве основных деталей содержит электродвигатель 2 и компрессор 3 в газонепроницаемом корпусе 4. Корпус 4 заключает в себе электродвигатель 2 и компрессор 3. В зоне перехода от электродвигателя 2 к компрессору 3 корпус 4 снабжен впускным 6 и выпускным 7 отверстиями, причем через впускное отверстие 6 посредством всасывающего патрубка 8 сжимаемая текучая среда всасывается, а через выпускное отверстие 7 вытекает.
При работе компрессорный блок 1 расположен вертикально, причем ротор 15 электродвигателя 2 и расположенный под ним ротор 9 компрессора 3 объединены, образуя общий вал 19, вращающийся вокруг общей вертикальной оси 60 вращения.
Ротор 15 установлен в первом радиальном подшипнике 21 на своем верхнем конце.
Ротор 9 посредством второго радиального подшипника 22 установлен в нижнем положении.
На верхнем конце общего вала 19, т.е. на верхнем конце ротора 15, предусмотрен упорный подшипник 25. Радиальные 21, 22 и упорный 25 подшипники имеют электромагнитный принцип работы и соответственно заключены в кожухи. Радиальные подшипники 21, 22 расположены при этом в направлении периферии вокруг соответствующего места опоры вала 19, выполнены с возможностью вращения на 360° и неразъемными.
Выполненный центробежным компрессор 3 содержит три ступени 11, соответственно сообщенные посредством перетока 33. Возникающие на ступенях 11 разности давления создают тягу на роторе 9, которая передается через муфту 18 на ротор 15 и направлена навстречу массе образованного роторами 9, 15 общего ротора, так что в номинальном режиме происходит значительная компенсация тяги. Таким образом, упорный подшипник 25 может быть выполнен сравнительно меньше, чем в горизонтальном устройстве.
Электромагнитные подшипники 21, 22, 25 охлаждаются охлаждающей системой 31 до рабочей температуры, причем охлаждающая система 31 предусматривает ответвление 32 в одном перетоке компрессора 3. Из ответвления 32 по трубопроводам через фильтр 35 направляется часть добываемой среды, преимущественно природного газа, а затем по двум отдельным трубопроводам - к внешним местам опоры (первый 21 и четвертый 24 радиальный подшипники и упорный подшипник 25). Это охлаждение посредством холодной добываемой среды делает ненужными дополнительные питающие линии.
Ротор 15 окружен статором 16, содержащим кожух 39, так что агрессивная добываемая среда не повреждает обмотки статора 16. При этом кожух 39 рассчитан предпочтительно так, что он способен выдерживать полное рабочее давление. Это происходит потому, что предусмотрено отдельное охлаждающее устройство 40 для статора 16, которое через теплообменник 43 посредством насоса 42 транспортирует собственную охлаждающую среду 41. По меньшей мере, кожух 39 выполнен таким образом, что участок, расположенный между статором 16 и ротором 15, имеет, правда, небольшую толщину стенки, однако при полном заполнении охлаждающего устройства 40 охлаждающей средой 41 способен выдерживать расчетное давление. Таким образом, в этой зоне предотвращаются крупные потери от вихревых токов, и повышается КПД всего устройства.
Ротор 9 целесообразно содержит вал 10, на котором смонтированы отдельные ступени 11 компрессора. Это может осуществляться предпочтительно посредством горячей прессовой посадки. Точно так же возможно геометрическое замыкание, например посредством многоугольников. В другом варианте предусмотрена сварка различных ступеней 11 компрессора друг с другом, в результате чего возникает монолитный ротор 9.
На нижнем осевом конце 63 корпуса 4 в вертикальном рабочем положении находится дренажная точка SDP, в которой в виде отверстия корпуса 4 находится дренаж 64. В дренажной точке SDP собирается вся жидкость, находящаяся внутри корпуса 4 и стекающая на основе только силы тяжести. Для этого все поверхности внутри компрессорного блока выполнены таким образом, что при вертикальной рабочей ориентации наклон 65 поверхностей надежно предотвращает скопление жидкости, за исключением дренажной точки. К дренажу 64 присоединен конденсатный насос 67, который отводит скапливающуюся жидкость. В осевой зоне центра 68 тяжести ротора на корпусе 4 предусмотрены опорные элементы 69, которые обеспечивают возможность размещения упорных средств в упорных точках.
Посредством опорных элементов 69 возможно размещение в раме 70 (фиг.2 и 3). Размещение в раме 70 выполнено с возможностью вращения компрессорного блока 1 вокруг горизонтальной оси. Таким образом, дренаж 64 может поворачиваться из самой нижней точки в соответствии с вертикальной рабочей ориентацией в самую верхнюю точку.
В способе монтажа предусмотрено, что на первом этапе компрессорный блок 1 располагается в раме 70 зеркально-симметрично рабочему положению с дренажом 64 вверх при вертикальном расположении оси 60 вращения. В этом положении после закрывания заглушками впускного 6 и выпускного 7 отверстий осуществляется заполнение компрессорного блока 1 несжимаемой средой 82, а именно дистиллированной или деминерализованной водой. Затем компрессорный блок 1 поворачивается обратно в рабочее положение и транспортируется под водой к месту эксплуатации. Наконец, после удаления заглушек с впускного 6 и выпускного 7 отверстий присоединяются соответствующие линии 80, 81 для добываемой среды, и к дренажу 64 присоединяется конденсатный насос 67 с присоединенным к нему конденсатосборником. Перед пуском компрессорного блока 1 в эксплуатацию заполненная в него среда откачивается конденсатным насосом 67 из внутреннего пространства компрессорного блока 1.

Claims (8)

1. Компрессорный блок (1), в частности, для подводной эксплуатации, содержащий компрессор (3), электродвигатель (2), корпус (4) с впускным отверстием (6) и выпускным отверстием (7) для добываемой среды и ось (60) вращения, с возможностью вращения вокруг которой установлен ротор компрессорного блока (1), причем предусмотрены электромагнитные подшипники (21, 22, 25), охлаждаемые до рабочей температуры посредством охлаждающей системы (31), в которой в одном перетоке компрессора (3) предусмотрено ответвление (32), от которого по трубопроводам часть добываемой среды пропускается через фильтр (35), а затем направляется по двум отдельным трубопроводам к подшипникам (первый радиальный подшипник 21 и второй радиальный подшипник 24 и упорный подшипник 25), причем ось (60) вращения во время работы ориентирована вертикально, а корпус (4) имеет на находящемся внизу осевом конце (63) дренаж (64).
2. Блок по п.1, отличающийся тем, что поверхности внутри него выполнены таким образом, что при вертикальной рабочей ориентации находящиеся внутри корпуса жидкости стекают и достигают дренажа (64) только за счет силы тяжести.
3. Блок по п.2, отличающийся тем, что направленные от дренажа (64) поверхности внутри компрессорного блока (1) имеют такой наклон, что смачивающие их жидкости стекают с поверхностей при вертикальной рабочей ориентации в направлении дренажа (64).
4. Блок по п.1, отличающийся тем, что к дренажу (64) присоединен конденсатный насос (67), отводящий жидкость.
5. Блок по п.1, отличающийся тем, что корпус (4) посредством предусмотренных на нем опорных элементов установлен в раме (70) с возможностью вращения вокруг горизонтальной оси и перемещения дренажа (64) из низкой точки в высокую точку.
6. Блок по п.4, отличающийся тем, что горизонтальная ось, с возможностью вращения вокруг которой установлен корпус, проходит в зоне центра (68) тяжести ротора.
7. Способ монтажа компрессорного блока (1) по пп.1-5 или 6, предназначенного для подводной эксплуатации, отличающийся тем, что компрессорный блок (1) заполняют над водой несжимаемой средой (82), транспортируют к находящемуся под водой месту эксплуатации, к впускному отверстию (6) и выпускному отверстию (7) присоединяют патрубки и среду (82) отводят из компрессорного блока (1) через дренаж (64).
8. Способ по п.7, отличающийся тем, что средой (82) является дистиллированная или деминерализованная вода.
RU2008142116/06A 2006-03-24 2007-03-22 Компрессорный блок и способ его монтажа RU2409770C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP06006065 2006-03-24
EP06006065.4 2006-03-24

Publications (2)

Publication Number Publication Date
RU2008142116A RU2008142116A (ru) 2010-04-27
RU2409770C2 true RU2409770C2 (ru) 2011-01-20

Family

ID=38068454

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008142116/06A RU2409770C2 (ru) 2006-03-24 2007-03-22 Компрессорный блок и способ его монтажа

Country Status (10)

Country Link
US (1) US8714910B2 (ru)
EP (1) EP1999380B1 (ru)
CN (1) CN101410628B (ru)
AT (1) ATE507396T1 (ru)
BR (1) BRPI0709151A2 (ru)
DE (1) DE502007007058D1 (ru)
ES (1) ES2364680T3 (ru)
NO (1) NO339915B1 (ru)
RU (1) RU2409770C2 (ru)
WO (1) WO2007110378A1 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9954414B2 (en) 2012-09-12 2018-04-24 Fmc Technologies, Inc. Subsea compressor or pump with hermetically sealed electric motor and with magnetic coupling
US10161418B2 (en) 2012-09-12 2018-12-25 Fmc Technologies, Inc. Coupling an electric machine and fluid-end
US10221662B2 (en) 2013-03-15 2019-03-05 Fmc Technologies, Inc. Submersible well fluid system
US10393115B2 (en) 2012-09-12 2019-08-27 Fmc Technologies, Inc. Subsea multiphase pump or compressor with magnetic coupling and cooling or lubrication by liquid or gas extracted from process fluid
US10801309B2 (en) 2012-09-12 2020-10-13 Fmc Technologies, Inc. Up-thrusting fluid system

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012204403A1 (de) 2012-03-20 2013-09-26 Man Diesel & Turbo Se Radialverdichtereinheit
ITCO20120024A1 (it) * 2012-05-09 2013-11-10 Nuovo Pignone Srl Equalizzatore di pressione
DE102013214911A1 (de) 2013-07-30 2015-02-05 Siemens Aktiengesellschaft Unterwasser-Kompressor zum Verdichten eines Gases unter Wasser und Verwendung des Unterwasser-Kompressors
DE102013216627A1 (de) 2013-08-22 2015-02-26 Robert Bosch Gmbh Drehzahlvariable Fluid-Kühl-Filter-Anordnung
DE102015120289A1 (de) * 2015-11-24 2017-05-24 Hella Kgaa Hueck & Co. Anordnung einer elektrischen Vakuumpumpe in einem Fahrzeug
JP6583933B2 (ja) * 2015-11-30 2019-10-02 三菱重工コンプレッサ株式会社 多段遠心圧縮機
ITUA20161464A1 (it) 2016-03-08 2017-09-08 Nuovo Pignone Tecnologie Srl Centrifugal compressor without external drainage system, motorcompressor and method of avoiding external drainage in a compressor / Compressore centrifugo senza sistema di drenaggio esterno, motocompressore e metodo per evitare drenaggio esterno in un compressore
WO2018092842A1 (ja) 2016-11-17 2018-05-24 株式会社Ihi 遠心圧縮機
EP3514396A1 (de) 2018-01-22 2019-07-24 Siemens Aktiengesellschaft Anordnung mit einem rotor und zwei lagern
CN110360132A (zh) * 2019-08-20 2019-10-22 西安陕鼓动力股份有限公司 集成式离心压缩机及其抽芯方法
CN116677656B (zh) * 2023-07-10 2024-01-23 江苏科腾环境科技有限公司 一种高安全性的防爆压缩机系统

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2704657A (en) * 1955-03-22 taylor
US2435470A (en) * 1944-06-23 1948-02-03 Deming Co Pump
US3104964A (en) 1961-12-28 1963-09-24 Gen Electric Gas pump with liquid removal means
DE2223784B1 (de) 1972-05-16 1973-05-24 Deere & Co Radialgeblaese mit Diffusor,insbesondere fuer die Reinigungsvorrichtung von Maehdreschern
SU538155A1 (ru) 1974-12-25 1976-12-05 Курганское Проектно-Конструкторское Бюро Устройство дл сборки ротационных машин
SU578492A1 (ru) 1976-02-04 1977-10-30 Специальное Конструкторско-Технологическое Бюро Компрессорного И Холодильного Машиностроения Устройство дл сборки ротационных машин
US4023261A (en) 1976-04-29 1977-05-17 Unipas, Inc. Method of making an encapsulated wet motor circulator
DE2807449B1 (de) * 1978-02-22 1979-08-23 Basf Ag Verfahren zur Reingigung von mehrstufigen Turboverdichtern fuer Gase
JPS557914A (en) * 1978-06-30 1980-01-21 Hitachi Ltd Single-shaft multi-stage centrifugal compressor
DE3641478A1 (de) 1986-12-04 1988-06-16 Klein Schanzlin & Becker Ag Gehaeusetraeger fuer stroemungsmaschinen
NO172555C (no) * 1989-01-06 1993-08-04 Kvaerner Subsea Contracting As Undervannsstasjon for behandling og transport av en broennstroem
NO172075C (no) * 1991-02-08 1993-06-02 Kvaerner Rosenberg As Kvaerner Fremgangsmaate ved drift av et kompressoranlegg i en undervannstasjon for transport av en broennstroem og kompressoranlegg i en undervannstasjon for transport av en broennstroem
NO172076C (no) * 1991-02-08 1993-06-02 Kvaerner Rosenberg As Kvaerner Kompressoranlegg i en undervannstasjon for transport av en broennstroem
IL109967A (en) * 1993-06-15 1997-07-13 Multistack Int Ltd Compressor
WO1995015428A1 (en) 1993-12-03 1995-06-08 Kvaerner Energy A.S Method for developing an offshore hydrocarbon reservoir and an underwater station for use in exploring an offshore hydrocarbon reservoir
AU706634B2 (en) * 1995-12-28 1999-06-17 Ebara Corporation Pump assembly
US5779434A (en) * 1997-02-06 1998-07-14 Baker Hughes Incorporated Pump mounted thrust bearing
RU2159871C1 (ru) 1999-03-10 2000-11-27 Открытое акционерное общество Научно-производственное объединение "Искра" Способ сборки газоперекачивающего агрегата
NL1018212C2 (nl) * 2001-06-05 2002-12-10 Siemens Demag Delaval Turbomac Compressoreenheid omvattende een centrifugaalcompressor en een elektromotor.
FR2885966B1 (fr) * 2005-05-23 2011-01-14 Danfoss Commercial Compressors Compresseur frigorifique a spirales
NO326747B1 (no) * 2006-06-30 2009-02-09 Aker Subsea As Anordning og fremgangsmåte for å forhindre inntrenging av sjøvann i en kompressormodul under nedsenking til eller opphenting fra sjøbunnen

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9954414B2 (en) 2012-09-12 2018-04-24 Fmc Technologies, Inc. Subsea compressor or pump with hermetically sealed electric motor and with magnetic coupling
US10161418B2 (en) 2012-09-12 2018-12-25 Fmc Technologies, Inc. Coupling an electric machine and fluid-end
US10393115B2 (en) 2012-09-12 2019-08-27 Fmc Technologies, Inc. Subsea multiphase pump or compressor with magnetic coupling and cooling or lubrication by liquid or gas extracted from process fluid
US10801309B2 (en) 2012-09-12 2020-10-13 Fmc Technologies, Inc. Up-thrusting fluid system
US10221662B2 (en) 2013-03-15 2019-03-05 Fmc Technologies, Inc. Submersible well fluid system
US11352863B2 (en) 2013-03-15 2022-06-07 Fmc Technologies, Inc. Submersible well fluid system

Also Published As

Publication number Publication date
ATE507396T1 (de) 2011-05-15
EP1999380B1 (de) 2011-04-27
EP1999380A1 (de) 2008-12-10
NO339915B1 (no) 2017-02-13
US20100290896A1 (en) 2010-11-18
BRPI0709151A2 (pt) 2011-06-28
WO2007110378A1 (de) 2007-10-04
DE502007007058D1 (de) 2011-06-09
RU2008142116A (ru) 2010-04-27
ES2364680T3 (es) 2011-09-12
US8714910B2 (en) 2014-05-06
NO20084423L (no) 2008-10-21
CN101410628B (zh) 2011-05-25
CN101410628A (zh) 2009-04-15

Similar Documents

Publication Publication Date Title
RU2409770C2 (ru) Компрессорный блок и способ его монтажа
RU2457363C2 (ru) Насосная система
RU2394172C1 (ru) Компрессорный блок и применение охлаждающей среды
RU2410572C2 (ru) Компрессорный блок
US7476090B2 (en) Vented turbocharger center housing and method
EP1299621B1 (en) Drainage system for gas turbine supporting bearings
RU2396466C2 (ru) Компрессорный блок
CA2656027C (en) Method and apparatus for protection of compressor modules against influx of contaminated gas
RU2498113C2 (ru) Подводный добычной агрегат
US20130343932A1 (en) Subsea motor-turbomachine
NO20111588A1 (no) Fremgangsmate og anordning for handtering av fluidstrom inne i et skruepumpesystem
NO20111589L (no) Framgangsmate og anordning for smoring av et skruepumpesystem
JP5106077B2 (ja) 潤滑剤シール式回転翼形油回転真空ポンプ
RU2396465C2 (ru) Способ эксплуатации компрессорного блока и компрессорный блок
CN100552234C (zh) 离心式压缩机转子机构
RU2552472C2 (ru) Компрессорный блок и способ выполнения технологических операций над рабочей текучей средой
JP6389657B2 (ja) すべり軸受装置
JPH09196065A (ja) 縦型回転機械の軸受装置
RU78278U1 (ru) Лабиринтно-винтовой насос погружного типа
RU2752789C1 (ru) Герметичный электронасос
NO162782B (no) Sentrifugalenhet og fremgangsmaate ved igangkjoering av en sentrifugalenhet.
RU9904U1 (ru) Насосная установка для откачивания жидкости из емкости
RU2285825C1 (ru) Система уплотнения и смазки нагнетателя газоперекачивающего агрегата
JPH0575920B2 (ru)
JP2017072192A (ja) すべり軸受装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200323