RU2409693C2 - Высокопрочный лист нетекстурированной электротехнической стали - Google Patents

Высокопрочный лист нетекстурированной электротехнической стали Download PDF

Info

Publication number
RU2409693C2
RU2409693C2 RU2009106654/02A RU2009106654A RU2409693C2 RU 2409693 C2 RU2409693 C2 RU 2409693C2 RU 2009106654/02 A RU2009106654/02 A RU 2009106654/02A RU 2009106654 A RU2009106654 A RU 2009106654A RU 2409693 C2 RU2409693 C2 RU 2409693C2
Authority
RU
Russia
Prior art keywords
sheet
less
temperature
hot
steel
Prior art date
Application number
RU2009106654/02A
Other languages
English (en)
Other versions
RU2009106654A (ru
Inventor
Ёсихиро АРИТА (JP)
Ёсихиро АРИТА
Хидекуни МУРАКАМИ (JP)
Хидекуни МУРАКАМИ
Ютака МАЦУМОТО (JP)
Ютака МАЦУМОТО
Саори ХАРАНАКА (JP)
Саори ХАРАНАКА
Такеси КУБОТА (JP)
Такеси КУБОТА
Original Assignee
Ниппон Стил Корпорейшн
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ниппон Стил Корпорейшн filed Critical Ниппон Стил Корпорейшн
Publication of RU2009106654A publication Critical patent/RU2009106654A/ru
Application granted granted Critical
Publication of RU2409693C2 publication Critical patent/RU2409693C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14708Fe-Ni based alloys
    • H01F1/14716Fe-Ni based alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14791Fe-Si-Al based alloys, e.g. Sendust

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

Изобретение относится к области металлургии, а именно к получению листа нетекстурированной электротехнической стали, применяемого в качестве материала железных сердечников для высокооборотных моторов. Лист выполнен из стали, имеющей химический состав в мас.%: С: от 0,01 до 0,05%, Si: от 2,0 до 4,0%, Mn: от 0,05 до 0,5%, Al: 3,0% или менее, Nb: от 0,01 до 0,05%, остальное Fe и неизбежные примеси, при этом выраженные в мас.% содержания Mn и С удовлетворяют условию Mn≤0,6-10×С. Доля площади рекристаллизованной части стального листа равна 50% или более, предел текучести в испытании на растяжение равен 650 МПа или более, удлинение при разрушении составляет 10% или более и потери в сердечнике W10/400 составляют 70 Вт/кг или менее. Средний диаметр зерен, видимых в поперечном сечении листа, равен 40 µм или меньше. Сталь обладает превосходным пределом прочности, позволяет без ущерба для выхода годных изделий или производительности при штамповке изготавливать сердечники моторов или производить стальные листы. 4 з.п. ф-лы., 5 табл.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к высокопрочному листу нетекстурированной электротехнической стали для применения в качестве материала железных сердечников в моторах электрических транспортных средств и гибридных транспортных средств, а также моторов электрического оборудования.
Уровень техники
В последние годы повсюду возросла ощутимая потребность в энергетически эффективном электрооборудовании. В результате этого повысились требования к техническим характеристикам в отношении листа нетекстурированной электротехнической стали, используемой в качестве материала железных сердечников в ротационных машинах.
Особенно обращает на себя внимание недавний рост потребности в компактных высокопроизводительных моторах в таких областях, как электрические или гибридные транспортные средства. В ответ на эту потребность создаются конструкции моторов, двигательный момент в которых повышается путем увеличения числа оборотов мотора.
Типичными примерами традиционных высокооборотных моторов являются моторы, используемые в металлорежущих станках и в пылесосах. Упомянутые выше моторы транспортных средств являются более громоздкими по сравнению с этими традиционными моторами и имеют так называемую постояннотоковую бесщеточную структуру, которая включает магниты, заглубленные по периметру ротора. Ширина стального листа мостиков (между крайней периферией ротора и магнитами) по периметру ротора является, таким образом, очень малой - в некоторых местах доходит до 1-2 мм. В связи с этим возникла потребность в листе нетекстурированной электротехнической стали, который бы обладал высокой прочностью.
Прочность стали обычно повышают путем добавления легирующих элементов. В листе нетекстурованной электротехнической стали добавляемые для снижения потерь в сердечнике Si, Al и другие элементы проявляют также дополнительный эффект усиления прочности. Известно также, что высокой прочности можно достичь, уменьшая диаметр зерен стали.
Такого рода приемы использованы, например, в японской патентной публикации (А) S62-256917, в которой сообщается о способе получения стали высокой прочности путем введения наряду с Si также Mn и Ni для упрочнения твердого раствора. В этом способе осуществляется деформирование решетки железа поступающими в твердый раствор матрицы замещающими элементами, имеющими атомные размеры, отличные от размеров атомов железа, в результате чего деформационная стойкость стали повышается. Хотя этот способ и повышает прочность, он одновременно снижает ударную вязкость, в результате чего ухудшаются штампуемость, выход годных изделий и производительность.
В японской патентной публикации (А) Н06-330255 и японской патентной публикации (А) Н10-18005 предлагаются способы достижения высокой твердости стали путем диспергирования карбонитридов Nb, Zr, Ti и V в стали с целью ингибирования роста зерен. Однако диспергированные этими способами карбонитриды могут сами действовать как начальные точки трещин и разрывов. Таким образом, хотя они и могут уменьшать диаметр зерен, карбонитриды скорее понижают, чем повышают ударную вязкость, и создают в результате этого проблемы в отношении растрескивания отштампованного сердечника мотора, растрескивания и поломки в процессе производства стального листа и заметного ухудшения выхода годных изделий и производительности.
Раскрытие изобретения
Настоящее изобретение предлагает в качестве материала железного сердечника для высокоскоростных моторов лист нетекстурированной электротехнической стали с превосходной прочностью без ущерба при этом для выхода годных изделий или производительности при штамповке сердечника мотора или в производстве стального листа.
Суть настоящего изобретения, осуществляющего такую способность, заключена в листе нетекстурированной электротехнической стали, который описан ниже.
(1) Лист нетекстурированной электротехнической стали, содержащий (в мас.%): С: от 0,1 до 0,05%, Si: от 2,0 до 4,0%, Mn: от 0,05 до 0,5%, Al: 3,0% или менее, Nb: от 0,01 до 0,05%, остальное - Fe и неизбежные примеси, причем выраженные в мас.% содержания Mn и С удовлетворяют условию Mn≤0,6-10×С, доля площади рекристаллизованной части стального листа равна 50% или более, предел текучести в испытании на растяжение равен 650 МПа или больше, удлинение при разрушении составляет 10% или больше и потери в сердечнике W10/400 составляют 70 вт/кг или менее.
(2) Лист нетекстурированной электротехнической стали согласно (1), дополнительно содержащий (в мас.%) Ni более 0,5% и менее 3,0%.
(3) Лист нетекстурированной электротехнической стали согласно (2), где средний диаметр зерен, видимых в поперечном сечении стального листа, равен 40 µм или меньше.
(4) Лист нетекстурированной электротехнической стали согласно (2), который получают из горячекатаного листа, температура перехода которого в испытании на удар равна 70°С или ниже, путем проведения последующих операций отжига, травления, холодной прокатки и окончательного отжига горячекатаного листа.
(5) Лист нетекстурированной электротехнической стали согласно (2), который получают из горячекатаного листа, температура перехода которого в испытании на удар равна 70°С или ниже, путем проведения последующих операций, травления, холодной прокатки и окончательного отжига горячекатаного листа, причем отжиг из последующих операций исключен.
Определенное выше настоящее изобретение может обеспечить по низкой цене лист нетекстурированной электротехнической стали с превосходной прочностью без ущерба при этом для выхода годных изделий или производительности при производстве сердечников моторов или стальных листов.
Детальное описание изобретения
Авторы изобретения провели исследование, касающееся способов применения добавления упрочняющих сталь элементов, не только с той целью, чтобы повысить магнитные свойства и прочность, но также и для того, чтобы улучшить выход годных изделий и производительность при производстве сердечников моторов и стальных листов.
Улучшение производительности, как это подразумевается в заявке, означает предотвращение растрескивания и разрывов, происходящих в процессе штамповки сердечников моторов и производства стальных листов. Высокопрочные стальные листы отличаются, прежде всего, тем, что они являются хрупкими, по причине чего в процессе штамповки сердечников моторов по краям стальных листов образуются трещины, а при операциях производства стальных листов, таких как травление и холодная прокатка, появляется растрескивание или поломки, в результате чего существенно ухудшаются выход годных изделий и производительность.
В связи с этим авторы изобретения провели углубленное исследование, касающееся ударной вязкости листа после проведения окончательной горячей прокатки (ниже иногда называемого «готовым листом») и горячекатаного листа. Ими было установлено, что выход годных изделий и производительность в процессе производства стального листа и в процессе штамповки сердечников моторов существенным образом улучшаются путем установления пределов (в числе прочего) содержания Mn и С, удлинения при разрыве готового листа и ударных характеристик горячекатаного листа. Настоящее изобретение выполнено на основе полученных авторами данных.
Выполненное таким образом изобретение обстоятельно описано ниже.
Прежде всего, будет дано обоснование установления пределов состава листа нетекстурированной электротехнической стали настоящего изобретения. Если не оговорено иначе, используемый в отношении содержания элементов символ % означает мас.%.
С необходим для образования карбидов. Мелкие карбиды увеличивают число центров кристаллизации в процессе рекристаллизации и способствуют также измельчению зерен в результате ингибирования роста зерен рекристаллизации, способствуя, тем самым, достижению высокой прочности стали. Для полной реализации этих эффектов необходимо содержание С 0,01% или больше. Если содержание С превышает 0,05%, эффекты добавления С насыщаются и характеристики потерь в сердечнике ухудшаются. По этой причине верхний предел содержания С устанавливается равным 0,05%.
Si повышает удельное сопротивление стали и эффективен также в отношении упрочнения твердого раствора. Устанавливается верхний предел добавления, равный 4,0%, поскольку избыточное добавление существенным образом ухудшает способность к холодной прокатке. Нижний предел устанавливается равным 2,0% из соображений упрочнения твердого раствора и низких потерь в сердечнике.
Al, подобно Si, повышает удельное сопротивление, но при добавлении более 3,0% ухудшает литейные характеристики. Таким образом, принимая в расчет производительность, верхний предел содержания Al устанавливают равным 3,0%. Хотя нижний предел особым образом не определен, в случае раскисления алюминием, с точки зрения стабильного раскисления (предотвращения в процессе разливки забивки выпускного отверстия), предпочтительно содержание 0,02% или более. В случае раскисления кремнием предпочтительно содержание Al менее 0,01%.
Nb необходим для образования карбидов и уменьшения диаметра зерен. При содержании Nb менее 0,01% достаточного осаждения карбидов не наблюдается. Поэтому нижний предел содержания Nb установлен равным 0,01%. Если же Nb добавляют в количестве более 0,05%, эффект насыщается. По этой причине верхний предел содержания Nb установлен равным 0,05%.
Ni эффективно способствует сильному упрочнению стального листа, не придавая ему большой хрупкости. Однако поскольку он является дорогостоящим элементом, добавляемое количество его подбирают на основе требуемой прочности. В случае его введения, чтобы он мог полностью проявить свой эффект, его преимущественно добавляют до содержания 0,5% или больше. Верхний предел содержания Ni устанавливают равным 3,0% из соображений стоимости.
Mn, подобно Si, повышает удельное сопротивление и является эффективным элементом в отношении упрочнения твердого раствора. Однако, как будет объяснено ниже, в случае стального листа изобретения, в котором используются карбиды, количество добавления Mn существенным образом влияет на ударную вязкость стального листа. По этой причине содержание Mn должно быть ограничено.
Недавно авторами изобретения было обнаружено, что для улучшения выхода годной продукции и производительности при штамповке сердечников моторов и в производстве стального листа зависимость между Mn и С является важной и что в зависимости от содержания С содержание Mn должно быть равным или меньшим (0,6-10×С).
Хотя причина этого полностью и неясна, изобретатели пришли к следующему заключению.
Когда содержание Mn высоко, MnS является крупным, поскольку он осаждается при высокой температуре. Когда же содержание Mn низко, MnS является мелким, поскольку он осаждается при низкой температуре. Так как NbC часто образует композиционный осадок с MnS, последний сильно влияет на характер осаждения NbC. Когда содержание Mn высоко, NbC является крупным и грубо диспергированным, но когда содержание Mn низко, NbC является мелким и плотно диспергированным. По мере уменьшения диаметра зерен стального листа улучшается его ударная вязкость. Однако грубо диспергированные карбиды вероятно обладают слабой способностью ингибировать рост зерен, в результате чего рост зерен протекает легко, понижая ударную вязкость стального листа. Вероятно также и то, что при ударе присутствие крупных осадков понижает ударную вязкость по причине концентрирования напряжения вокруг осадков. Кроме того, содержание С оказывает влияние на размер и распределение карбида. Когда содержание С высоко, карбиды являются крупными, потому что они осаждаются при высокой температуре, и когда содержание С низкое, карбиды являются мелкими и плотно распределенными, потому что они осаждаются при низкой температуре.
На основе полученных выше данных авторы изобретения выяснили, что ударная вязкость стального листа может быть выражена в виде взаимозависимости между содержанием Mn, который влияет на природу осаждения MnS, и содержанием С, который влияет на природу осаждения своих собственных карбидов, и что эта взаимозависимость может быть записана в виде Mn≤0,6-10×С (в мас.%).
Таким образом, на основе указанного выше нижнего предела содержания С и выражения, определяющего взаимозависимость между содержаниями Mn и С, верхний предел содержания Mn определен как 0,5%. Однако с точки зрения ударной вязкости стального листа более предпочтительно содержание Mn 0,2% или менее. С учетом стоимости удаления Mn (деманганации) нижний предел содержания Mn определен как 0,05%.
Ниже дается обоснование для численных пределов, определенных для листа нетекстурированной электротехнической стали.
Доля площади рекристаллизованной части готового листа определена равной 50% или более с точки зрения получения устойчивой прочности. Хотя высокая прочность может быть достигнута путем выбора низкой температуры окончательной горячей прокатки или короткого времени окончательного отжига с целью уменьшения доли площади рекристаллизованной части до менее 50% и, таким образом, сохранения восстановительной структуры из структуры после холодной прокатки, такой путь не подходит для обеспечения заданной прочности, поскольку даже небольшие отклонения температуры или времени окончательного отжига приводят к большим изменениям прочности.
Предел текучести готового листа в испытании на растяжение установлен равным 650 МПа или выше с учетом предела прочности на разрыв высокооборотного мотора. Более предпочтительно, чтобы предел текучести составлял 700 МПа или выше. Установленное в заявке напряжение пластического течения представляет собой высшее значение предела текучести. Образец для испытания на растяжения берется в направлении прокатки, имея форму, рекомендуемую японским промышленным стандартом (JIS).
Удлинение при разрушении устанавливается равным 10% или более, поскольку, если оно меньше 10%, при штамповке вблизи краев стального листа образуются трещины и продолжается разрушение, обусловленное концентрированием напряжения. Чтобы иметь удлинение при разрушении 10% или более, степень рекристаллизации готового листа должна составлять 50% или выше. Это обусловлено тем, что при степени рекристаллизации ниже 50%, напряженное состояние, сохранившееся в нерекристаллизованной части, сильно уменьшает удлинение при разрушении.
Потери в сердечнике W10/400 (потери в сердечнике при возбуждении до 1,0 Тл при 400 Гц) устанавливают равными 70 вт/кг или меньше, поскольку, если потери в сердечнике W10/400 больше 70 вт/кг, генерируемое ротором тепло велико, в результате чего КПД мотора падает из-за размагничивания заглубленных в ротор магнитов. Более предпочтительно, чтобы потери в сердечнике W10/400 составляли 50 вт/кг или меньше.
Высокий предел текучести и удлинение при разрушении могут быть достигнуты путем уменьшения среднего диаметра зерен, видимых в поперечном сечении стального листа, до 40 µм или менее. Таким образом, средний диаметр зерен определен как 40 µм или менее.
Для дополнительного улучшения производительности предпочтительно использовать в настоящем изобретении в процессе производства листа электротехнической стали горячекатаный лист с температурой перехода при испытании на удар, равной 70°С или ниже.
Полагая, что появление растрескивания и/или разрушения листа электротехнической стали после горячей прокатки в процессе производства или в процессе штамповки сердечников означает, что температура перехода горячекатаного листа была высокой и то, что сам процесс производства после горячей прокатки был в зоне хрупкости, авторы изобретения отрегулировали производственные условия так, чтобы снизить температуру перехода горячекатаного листа с тем, чтобы вести производство после горячей прокатки в зоне пластичности, и обнаружили, что при этом растрескивание и разрушение больше не возникали.
А поскольку в производственных операциях травления, холодной прокатки и заключительного отжига температура стального листа может быть установлена равной 70°С, никаких проблем с растрескиванием или разрушением не возникнет, если температура перехода горячекатаного листа будет ниже указанной температуры. Верхний предел температуры перехода горячекатаного листа определен, таким образом, равным 70°С. Само собой разумеется, что для устойчивости продвижения полосы предпочтительна еще более низкая температура перехода.
Задаваемая в заявке температура перехода является, как это предписывается JIS, температурой, интерполируемой как температура при 50% вязкого разрушения на кривой перехода, представляющей зависимость степени вязкого разрушения от задаваемой температуры. В альтернативном случае эта температура может быть интерполирована как температура при среднем значении поглощенных энергий при степенях вязкого разрушения 0 и 100%.
Хотя испытуемый образец имел в основном размер, предписываемый JIS, его ширину выбирали равной толщине горячекатаного листа. Таким образом, он имел длину в направлении прокатки 55 мм, высоту 10 мм и ширину приблизительно от 1,5 до 3,0 мм в зависимости от толщины горячекатаного листа. При этом во время испытания предпочтительно укладывать один поверх другого ряд испытуемых образцов до 10 мм толщины полноразмерного испытуемого образца.
Лист нетекстурированной электротехнической стали настоящего изобретения может быть изготовлен с помощью традиционных способов сталеварения, горячей прокатки (или горячей прокатки и отжига горячекатаного листа), травления, холодной прокатки и окончательного отжига, причем в процессе производства не требуется никаких специальных условий. Например, достаточно применять такие стандартные условия, как температуру нагрева сляба при горячей прокатке от 1000 до 1200°С, окончательную температуру от 800 до 1000°С и температуру охлаждения 700°С или ниже. В конкретном случае, в котором температура перехода горячекатаной стали в испытании на удар составляет 70°С или ниже, важным является ингибировать рекристаллизацию и осаждение С в горячекатаном листе, по причине чего температуру сматывания следует выбирать равной 600°С или ниже, предпочтительно 550°С или ниже.
Хотя для предотвращения растрескивания и разрушения полосы при проведении операций травления и холодной прокатки благоприятна меньшая толщина горячекатаного листа, толщину следует должным образом подбирать с учетом ударной вязкости, производительности и т.д. горячекатаного листа. Кроме того, вопрос о том, следует или не следует проводить отжиг горячекатаного листа, может быть решен с учетом ударной вязкости горячекатаного листа, роста зерен при окончательном отжиге, физических свойств и электрических свойств.
Поскольку диаметр зерен влияет на физические свойства и потери в сердечнике готового листа, условия окончательного отжига следует отрегулировать должным образом в соответствии с требуемыми свойствами. В частности, для получения среднего размера зерен 40 µм или меньше и доли площади рекристаллизованной части 50% или более, предпочтительно проводить окончательный отжиг в условиях температуры отжига от 790 до 900°С при времени отжига от 10 до 60 сек.
Как уже говорилось выше, в настоящем изобретении лист электротехнической стали имеет химический состав (в мас.%): С: от 0,1 до 0,05%, Si: от 2,0 до 4,0%, Mn: от 0,05 до 0,5%, Al: 3,0% или менее, Nb: от 0,01 до 0,05% и необязательно Ni предпочтительно в количестве от 0,5 до 3,0%, остальное - Fe и неизбежные примеси, причем выраженные в мас.% содержания Mn и С удовлетворяют условию Mn≤0,6-10×С, доля площади рекристаллизованной части стального листа после окончательного отжига составляет 50% или более, предел текучести в испытании на растяжение составляет 650 МПа или более, удлинение при разрушении составляет 10% или более, потери в сердечнике W10/400 составляют 70 вт/кг или менее и средний диаметр зерен, видимых в поперечном сечении стального листа, преимущественно равен 40 µм или меньше, а производство листа электротехнической стали проводят с использованием горячекатаного листа, температура перехода которого в испытании на удар равна 70°С или ниже, в результате чего получают по низкой цене лист нетекстурированной электротехнической стали с превосходной прочностью, без ущерба при этом для выхода годных изделий или производительности при производстве сердечников моторов или стальных листов.
Возможности и эффекты осуществления настоящего изобретения описаны ниже на основе примеров.
Следует отметить, что используемые в примерах условия приведены лишь в целях иллюстрации и ни в коем случае не ограничивают настоящее изобретение. Для достижения целей настоящего изобретения могут быть допущены различные условия, не выходящие за рамки его сути.
ПРИМЕРЫ
Пример 1
При использовании лабораторной вакуумной плавильной печи изготовлены сутунки, имеющие составы, показанные в таблице 1. Каждую сутунку нагревают в течение 60 мин при 1100°С и сразу же подвергают горячей прокатке до толщины 2,0 мм, после чего горячекатаный лист отжигают в течение 1 мин при 900°С и подвергают за один проход холодной прокатке до толщины 0,35 мм. Полученный таким образом холоднокатаный лист подвергают в течение 30 сек окончательному отжигу при 790°С. Как следует из таблицы 1, образцы А2, А5, А7, А8 и А11, отвечающие условиям настоящего изобретения, обладают великолепными свойствами, в частности они характеризуются пределом текучести 650 МПа или больше и удлинением при разрушении 10% или больше. Кроме того, доля площади рекристаллизованной части этих образцов составляет 50% или больше. Образцы, которые не отвечают условиям изобретения, не соответствуют критериям изобретения. Более конкретно, A1, A4 и А10 имеют предел текучести менее 650 МПа, образец А6 имеет удлинение при разрушении менее 10% и образцы A3 и А12 характеризуются потерями в сердечнике более 70 вт/кг.
Таблица 1
Образец С (%) Si (%) Mn (%) Al (%) Nb (%) 0,6-10×С (%) Предел текучести (МПа) Удлинение при разрушении (%) W10/400 (Вт/кг) Примечания
A1 0,008 2,93 0,33 0,49 0,027 0,52 623 19 41 Сравнительн.
А2 0,015 0,45 667 20 46 Изобретение
A3 0,055 0,05 689 17 78 Сравнительн.
A4 0,032 1,55 0,23 1,42 0,041 0,28 513 31 65 Сравнительн.
А5 2,21 678 23 53 Изобретение
А6 4,15 876 5 36 Сравнительн.
А7 0,041 3,13 0,05 0,024 0,015 0,19 667 25 56 Изобретение
А8 0,18 678 18 54 Изобретение
А9 0,56 685 8 57 Сравнительн.
А10 0,029 2,54 0,12 0,003 0,007 0,31 582 27 51 Сравнительн.
А11 0,021 655 24 57 Изобретение
А12 0,058 676 21 79 Сравнительн.
Пример 2
Сутунки, содержащие (в мас.%) С: 0,032%, Si: 3,0%, Mn: от 0,12 до 1,00%, Al: 3,0% и Nb: от 0,035%, изготовлены с использованием лабораторной вакуумной плавильной печи. Каждую сутунку нагревают в течение 60 мин при 1100°С и сразу же подвергают горячей прокатке до толщины 2,0 мм, протравляют и подвергают за один проход холодной прокатке до толщины 0,50 мм. Полученный таким образом холоднокатаный лист подвергают в течение 30 сек окончательному отжигу при 800°С. Как следует из таблицы 2, все образцы характеризуются великолепным пределом текучести 650 МПа или больше и потерями в сердечнике 70 вт/кг или менее. Образцы В1-В3, отвечающие условиям изобретения, характеризуются удлинением при разрушении 10% или больше, хорошей стойкостью температуры перехода горячекатаного листа 70°С или ниже и долей площади рекристаллизованной части, равной 50% или больше. Из образцов, не отвечающих условиям изобретения, В4 характеризуется удлинением при разрушении меньшим 10%, в то время как В5-В8 характеризуются не только удлинением при разрушении меньшим 10%, но характеризуются также температурой перехода горячекатаного листа выше 70°С.
Таблица 2
Обра-зец Mn (%) 0,6-10×С (%) Предел текучести (МПа) Удлинение при разрушении (%) W10/400 (Вт/кг) Температура перехода горячекатаного листа (°С) Примечания
В1 0,12 0,28 664 21 45 40 Примеры изобретения
В2 0,18 668 18 46 60
В3 0,25 672 14 45 65
В4 0,31 675 9 44 70 Сравнительный пример (удлинение при разрушении за пределами диапазона)
В5 0,48 678 8 47 80 Сравнительные примеры (удлинение при разрушении и температура перехода за пределами диапазона)
В6 0,75 683 8 45 90
В7 0,88 687 7 45 110
В8 1,00 692 6 43 130
Пример 3
Сутунки, содержащие (в мас.%) С: от 0,005 до 0,095%, Si: 2,7%, Mn: 0,24%, Al: 0,6% и Nb: 0,045%, изготовлены с использованием лабораторной вакуумной плавильной печи. Каждую сутунку нагревают в течение 60 мин при 1120°С и сразу же подвергают горячей прокатке до толщины 1,8 мм, протравляют и подвергают за один проход холодной прокатке до толщины 0,35 мм. Полученный таким образом холоднокатаный лист подвергают в течение 30 сек окончательному отжигу при 820°С. Как следует из таблицы 3, все образцы характеризуются великолепным пределом текучести 650 МПа или больше. Образцы С1-С4, отвечающие условиям изобретения, характеризуются удлинением при разрушении 10% или больше и хорошей стойкостью температуры перехода горячекатаного листа 70°С или ниже. При этом доли площади рекристаллизованной части этих образцов равны 50% или больше. Из образцов, не отвечающих условиям изобретения, С4 характеризуется удлинением при разрушении меньшим 10%, в то время как С6-С8 характеризуются не только удлинением при разрушении меньшим 10%, но характеризуются также температурой перехода горячекатаного листа выше 70°С.
Таблица 3
Обра-зец С (%) 0,6-10×С (%) Предел текучести (МПа) Удлинение при разрушении (%) W10/400 (Вт/кг) Температура перехода горячекатаного листа (°С) Примечания
С1 0,005 0,55 653 21 45 10 Сравнительный пример
С2 0,012 0,48 653 18 46 10 Примеры изобретения
С3 0,022 0,38 661 16 45 30 Пример изобретения
С4 0,035 0,25 662 14 44 50 Пример изобретения
С5 0,044 0,16 663 8 47 65 Сравнительный пример (удлинение при разрушении за пределами диапазона)
С6 0,051 0,09 674 8 63 110 Сравнительные примеры (удлинение при разрушении и температура перехода за пределами диапазона)
С7 0,062 -0,02 679 7 73 120 Сравнительные примеры (удлинение при разрушении, потери в сердечнике и температура перехода за пределами диапазона)
С8 0,095 -0,35 681 6 87 130
Пример 4
Сутунки, содержащие (в мас.%) С: 0,021%, Si: 3,5%, Mn: 0,18%, Al: 0,03%, Nb: 0,025% и Ni: от 0,01 до 2,7%, изготовлены с использованием лабораторной вакуумной плавильной печи. Каждую сутунку нагревают в течение 60 мин при 1120°С и сразу же подвергают горячей прокатке до толщины 1,8 мм, протравляют и подвергают за один проход холодной прокатке до толщины 0,35 мм. Полученный таким образом холоднокатаный лист подвергают в течение 30 сек окончательному отжигу при температуре от 830°С. Как следует из таблицы 4, все образцы характеризуются великолепными пределом текучести 650 МПа или больше, удлинением при разрушении 10% или больше, потерями в сердечнике 70 вт/кг или меньше и температурой перехода горячекатаного листа 70°С или ниже. Доля площади рекристаллизованной части составляет 50% или больше. Образцы D4-D10 с содержанием Ni 0,5% или более имеют очень высокий предел текучести.
Таблица 4
Обра-зец С (%) 0,6-10×С (%) Предел текучести (МПа) Удлинение при разрушении (%) W10/400 (Вт/кг) Температура перехода горячекатаного листа (°С) Примечания
D1 0,01 0,39 664 26 45 65 G
D2 0,12 666 25 46 65 G
D3 0,34 669 24 45 65 G
D4 0,56 701 22 44 60 Е
D5 0,76 721 21 47 55 Е
D6 0,97 757 20 45 55 Е
D7 1,23 789 19 43 55 Е
D8 1,78 803 17 43 60 Е
D9 2,33 856 16 45 60 Е
D10 2,70 877 14 43 60 Е
G: отвечает условиям изобретения
Е: исключительно высокий предел текучести
Пример 5
Сутунки, содержащие (в мас.%) С: 0,024%, Si: 2,8%, Mn: 0,17%, Al: 0,8% и Nb: 0,028%, изготовлены с использованием лабораторной вакуумной плавильной печи. Каждую сутунку нагревают в течение 60 мин при 1120°С и сразу же подвергают горячей прокатке до толщины 1,8 мм, протравляют и подвергают за один проход холодной прокатке до толщины 0,35 мм. Каждый из полученных таким образом холоднокатаных листов подвергают в течение 30 сек окончательному отжигу при различной температуре от 700 до 900°С. Как следует из таблицы 5, все образцы кроме Е1, который имеет небольшую долю площади рекристаллизованной части, обладают великолепными свойствами, в частности характеризуются пределом текучести 650 МПа или больше, удлинением при разрушении 10% или больше и потерями в сердечнике 70 вт/кг или меньше. Образцы Е2-Е4 со средним диаметром зерен меньше 40 µм и долей площади рекристаллизованной части 50% или больше заслуживают особого внимания благодаря очень высокому напряжению пластического течения и исключительно хорошему удлинению при разрыве.
Таблица 5
Обра-зец Средний диаметр зерен (µм) Доля площади рекристаллизации (%) Напряжение пластического течения готового листа (МПа) Удлинение при разрушении (%) W10/400 (Вт/кг) Примечания
Е1 Не измерен 20 753 5 70 Р
Е2 Не измерен 60 692 23 50 Е
Е3 21 100 689 22 48 Е
Е4 38 100 689 21 46 Е
Е5 46 100 659 17 42 G
Е6 65 100 655 13 39 G
Р: не отвечает условиям изобретения (недостаточная доля площади рекристаллизации)
G: отвечает условиям изобретения
Е: исключительно высокий предел текучести
Промышленная применимость
Настоящее изобретение предлагает в качестве материала железных сердечников для высокооборотных моторов, используемых на транспортных средствах, в электрооборудовании и т.п., лист превосходной нетекстурированной электротехнической стали с оптимальным пределом текучести без ущерба для выхода годных изделий или производительности при штамповке сердечников моторов или в производстве стального листа. Сам по себе такой лист может найти очень широкое применение в промышленности.

Claims (5)

1. Лист нетекстурированной электротехнической стали, содержащий, мас.%: С: от 0,01 до 0,05%, Si: от 2,0 до 4,0%, Mn: от 0,05 до 0,5%, Al: 3,0% или менее, Nb: от 0,01 до 0,05%, остальное Fe и неизбежные примеси, при этом выраженные в мас.% содержания Mn и С удовлетворяют условию Mn≤0,6-10×С, доля площади рекристаллизованной части стального листа равна 50% или более, предел текучести в испытании на растяжение равен 650 МПа или более, удлинение при разрушении составляет 10% или более и потери в сердечнике W10/400 составляют 70 Вт/кг или менее.
2. Лист нетекстурированной электротехнической стали по п.1, дополнительно содержащий, мас.%: Ni более 0,5% и менее 3,0%.
3. Лист нетекстурированной электротехнической стали по п.2, где средний диаметр зерен, видимых в поперечном сечении стального листа, равен 40 мкм или меньше.
4. Лист нетекстурированной электротехнической стали по п.2, который получают из горячекатаного листа, температура перехода которого в испытании на удар равна 70°С или ниже, путем проведения последующих операций отжига, травления, холодной прокатки и окончательного отжига горячекатаного листа, где температура перехода является температурой, интерполируемой как температура при 50% вязкого разрушения на кривой перехода, представляющей зависимость степени вязкого разрушения от задаваемой температуры.
5. Лист нетекстурированной электротехнической стали по п.2, который получают из горячекатаного листа, температура перехода которого в испытании на удар равна 70°С или ниже, путем проведения последующих операций травления, холодной прокатки и окончательного отжига горячекатаного листа, причем отжиг из последующих операций исключен, где температура перехода является температурой, интерполируемой как температура при 50% вязкого разрушения на кривой перехода, представляющей зависимость степени вязкого разрушения от задаваемой температуры.
RU2009106654/02A 2006-07-26 2007-06-15 Высокопрочный лист нетекстурированной электротехнической стали RU2409693C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006203396 2006-07-26
JP2006-203396 2006-07-26

Publications (2)

Publication Number Publication Date
RU2009106654A RU2009106654A (ru) 2010-09-10
RU2409693C2 true RU2409693C2 (ru) 2011-01-20

Family

ID=38981330

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009106654/02A RU2409693C2 (ru) 2006-07-26 2007-06-15 Высокопрочный лист нетекстурированной электротехнической стали

Country Status (9)

Country Link
US (1) US8557058B2 (ru)
EP (1) EP2045347B1 (ru)
JP (1) JP5194535B2 (ru)
KR (1) KR101070090B1 (ru)
CN (1) CN101490294B (ru)
BR (1) BRPI0715103B8 (ru)
RU (1) RU2409693C2 (ru)
TW (1) TW200811296A (ru)
WO (1) WO2008013015A1 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2674181C1 (ru) * 2015-02-18 2018-12-05 ДжФЕ СТИЛ КОРПОРЕЙШН Лист из нетекстурированной электротехнической стали, способ его изготовления и сердечник двигателя
RU2677561C1 (ru) * 2015-02-13 2019-01-17 ДжФЕ СТИЛ КОРПОРЕЙШН Лист из текстурированной электротехнической стали и способ его изготовления
US10975451B2 (en) 2015-08-04 2021-04-13 Jfe Steel Corporation Method for producing non-oriented electrical steel sheet having excellent magnetic properties
RU2771133C1 (ru) * 2019-01-24 2022-04-26 ДжФЕ СТИЛ КОРПОРЕЙШН Лист из нетекстурированной электротехнической стали и способ его производства
RU2791867C1 (ru) * 2019-10-29 2023-03-14 ДжФЕ СТИЛ КОРПОРЕЙШН Лист из нетекстурированной электротехнической стали и способ его изготовления

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5713100B2 (ja) 2011-08-18 2015-05-07 新日鐵住金株式会社 無方向性電磁鋼板、その製造方法、モータ鉄心用積層体及びその製造方法
CN109097680B (zh) * 2018-08-10 2020-07-28 宝武集团鄂城钢铁有限公司 一种使用50t中频感应炉冶炼制得的高锰高铝无磁钢板的制造方法
BR112020026572A2 (pt) 2018-10-24 2021-05-04 Nippon Steel Corporation folha de aço magnética não orientada e método de fabricação do núcleo empilhado com o uso a mesma
US11732319B2 (en) 2018-12-27 2023-08-22 Jfe Steel Corporation Non-oriented electrical steel sheet
WO2022176154A1 (ja) * 2021-02-19 2022-08-25 日本製鉄株式会社 無方向性電磁鋼板用熱延鋼板およびその製造方法
EP4310202A1 (en) * 2021-03-19 2024-01-24 Nippon Steel Corporation Non-directional electromagnetic steel sheet and method for manufacturing same

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62256917A (ja) 1986-04-28 1987-11-09 Nippon Steel Corp 回転機用高抗張力無方向性電磁鋼板およびその製造方法
RU2018542C1 (ru) 1988-01-29 1994-08-30 Штальверке Пайне-Зальцгиттер АГ Способ изготовления холоднокатаной ленты или листа и стальной лист
JPH028346A (ja) * 1988-06-27 1990-01-11 Nippon Steel Corp 高張力電磁鋼板及びその製造方法
JPH0222442A (ja) * 1988-07-12 1990-01-25 Nippon Steel Corp 高張力電磁鋼板及びその製造方法
JPH0472904A (ja) 1990-07-13 1992-03-06 Hitachi Denshi Ltd ケーブル伝送信号の補正装置
JP3305806B2 (ja) * 1993-05-21 2002-07-24 新日本製鐵株式会社 高張力無方向性電磁鋼板の製造方法
JP3239988B2 (ja) 1996-06-28 2001-12-17 住友金属工業株式会社 磁気特性に優れた高強度無方向性電磁鋼板およびその製造方法
JP3707268B2 (ja) 1998-10-28 2005-10-19 Jfeスチール株式会社 方向性電磁鋼板の製造方法
US6309473B1 (en) * 1998-10-09 2001-10-30 Kawasaki Steel Corporation Method of making grain-oriented magnetic steel sheet having low iron loss
KR20010101348A (ko) 1998-12-30 2001-11-14 추후기재 양호한 성형성을 가진 강대 및 그것의 제조 방법
JP2003183734A (ja) * 2001-12-11 2003-07-03 Jfe Engineering Kk 冷間圧延性に優れた無方向性電磁鋼板の製造方法
AU2003216420A1 (en) 2002-05-08 2003-11-11 Ak Properties, Inc. Method of continuous casting non-oriented electrical steel strip
JP2003342698A (ja) * 2002-05-20 2003-12-03 Nippon Steel Corp 高周波鉄損の優れた高張力無方向性電磁鋼板
JP4072904B2 (ja) * 2003-06-06 2008-04-09 株式会社村田製作所 高周波スイッチ
JP4510559B2 (ja) 2004-09-06 2010-07-28 新日本製鐵株式会社 高強度電磁鋼板とその製造方法および加工方法
JP4469268B2 (ja) 2004-12-20 2010-05-26 新日本製鐵株式会社 高強度電磁鋼板の製造方法
JP4681450B2 (ja) * 2005-02-23 2011-05-11 新日本製鐵株式会社 圧延方向の磁気特性に優れた無方向性電磁鋼板とその製造方法
JP4710465B2 (ja) 2005-07-25 2011-06-29 住友金属工業株式会社 回転子用無方向性電磁鋼板の製造方法
JP4779474B2 (ja) 2005-07-07 2011-09-28 住友金属工業株式会社 回転子用無方向性電磁鋼板およびその製造方法
JP4586669B2 (ja) * 2005-08-01 2010-11-24 住友金属工業株式会社 回転子用無方向性電磁鋼板の製造方法
JP4506664B2 (ja) 2005-12-15 2010-07-21 住友金属工業株式会社 回転子用無方向性電磁鋼板およびその製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2677561C1 (ru) * 2015-02-13 2019-01-17 ДжФЕ СТИЛ КОРПОРЕЙШН Лист из текстурированной электротехнической стали и способ его изготовления
US10988822B2 (en) 2015-02-13 2021-04-27 Jfe Steel Corporation Grain-oriented electrical steel sheet and method for manufacturing same
RU2674181C1 (ru) * 2015-02-18 2018-12-05 ДжФЕ СТИЛ КОРПОРЕЙШН Лист из нетекстурированной электротехнической стали, способ его изготовления и сердечник двигателя
US10941458B2 (en) 2015-02-18 2021-03-09 Jfe Steel Corporation Non-oriented electrical steel sheet, production method therefor, and motor core
US10975451B2 (en) 2015-08-04 2021-04-13 Jfe Steel Corporation Method for producing non-oriented electrical steel sheet having excellent magnetic properties
RU2771133C1 (ru) * 2019-01-24 2022-04-26 ДжФЕ СТИЛ КОРПОРЕЙШН Лист из нетекстурированной электротехнической стали и способ его производства
RU2791867C1 (ru) * 2019-10-29 2023-03-14 ДжФЕ СТИЛ КОРПОРЕЙШН Лист из нетекстурированной электротехнической стали и способ его изготовления

Also Published As

Publication number Publication date
KR20090007745A (ko) 2009-01-20
CN101490294A (zh) 2009-07-22
EP2045347B1 (en) 2018-10-31
BRPI0715103B1 (pt) 2014-11-25
TWI332529B (ru) 2010-11-01
RU2009106654A (ru) 2010-09-10
KR101070090B1 (ko) 2011-10-04
CN101490294B (zh) 2011-04-06
WO2008013015A1 (fr) 2008-01-31
EP2045347A1 (en) 2009-04-08
US20090301609A1 (en) 2009-12-10
US8557058B2 (en) 2013-10-15
TW200811296A (en) 2008-03-01
BRPI0715103B8 (pt) 2016-09-13
JP5194535B2 (ja) 2013-05-08
JP2008050685A (ja) 2008-03-06
BRPI0715103A2 (pt) 2013-02-19
EP2045347A4 (en) 2016-06-01

Similar Documents

Publication Publication Date Title
RU2409693C2 (ru) Высокопрочный лист нетекстурированной электротехнической стали
TWI406957B (zh) High-frequency iron loss low non-directional electromagnetic steel sheet and its manufacturing method
EP2278034B1 (en) High-strength non-oriented electrical steel sheet and method of manufacturing the same
JP5223190B2 (ja) 無方向性電磁鋼板およびその製造方法
JP5146169B2 (ja) 高強度無方向性電磁鋼板およびその製造方法
JP2005126733A (ja) 高温加工性にすぐれた熱間プレス用鋼板及び自動車用部材
JP5028992B2 (ja) 無方向性電磁鋼板およびその製造方法
JP5126844B2 (ja) 熱間プレス用鋼板およびその製造方法ならびに熱間プレス鋼板部材の製造方法
JP2005120399A (ja) 延性に優れた高強度低比重鋼板およびその製造方法
JPWO2020262063A1 (ja) 無方向性電磁鋼板の製造方法とモータコアの製造方法およびモータコア
CN104328342A (zh) 一种变频高效压缩机用无取向硅钢及生产方法
JP2010121213A (ja) 延性に優れた高強度低比重鋼板の製造方法
JP2007247047A (ja) 無方向性電磁鋼板
JP2005029889A (ja) 延性に優れた高強度低比重鋼板およびその製造方法
JP7119519B2 (ja) 無方向性電磁鋼板、ステータコア、ロータコア及びこれらの製造方法
JP3280692B2 (ja) 深絞り用高強度冷延鋼板の製造方法
JP2016156072A (ja) 穴拡げ性に優れたフェライト系ステンレス鋼鈑及びその製造方法
TWI413697B (zh) Non - directional electromagnetic steel plate
JP2014098210A (ja) 構造部材
JP5186781B2 (ja) 時効熱処理用無方向性電磁鋼板ならびに無方向性電磁鋼板およびその製造方法
JP2003105508A (ja) 加工性の優れた無方向性電磁鋼板及びその製造方法
JP3937685B2 (ja) 高周波磁気特性に優れた電磁鋼板とその製造方法
JP4267439B2 (ja) 磁気特性に優れた無方向性電磁鋼板と、その製造方法および歪取焼鈍方法
JP4280139B2 (ja) 無方向性電磁鋼板とその製造方法
JP2004270011A (ja) 回転機用高磁束密度無方向性電磁鋼板の製造方法

Legal Events

Date Code Title Description
PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20140804

PD4A Correction of name of patent owner