RU2403230C1 - Способ получения гранулированного теплоизоляционного материала - Google Patents

Способ получения гранулированного теплоизоляционного материала Download PDF

Info

Publication number
RU2403230C1
RU2403230C1 RU2009121342A RU2009121342A RU2403230C1 RU 2403230 C1 RU2403230 C1 RU 2403230C1 RU 2009121342 A RU2009121342 A RU 2009121342A RU 2009121342 A RU2009121342 A RU 2009121342A RU 2403230 C1 RU2403230 C1 RU 2403230C1
Authority
RU
Russia
Prior art keywords
mass
silica
alkali
granular
ratio
Prior art date
Application number
RU2009121342A
Other languages
English (en)
Inventor
Гелани Асманович Халухаев (RU)
Гелани Асманович ХАЛУХАЕВ
Александр Николаевич Кондратенко (RU)
Александр Николаевич Кондратенко
Юрий Романович Кривобородов (RU)
Юрий Романович Кривобородов
Original Assignee
Общество С Ограниченной Ответственностью "Акросилтекс" (Ооо "Акросилтекс")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество С Ограниченной Ответственностью "Акросилтекс" (Ооо "Акросилтекс") filed Critical Общество С Ограниченной Ответственностью "Акросилтекс" (Ооо "Акросилтекс")
Priority to RU2009121342A priority Critical patent/RU2403230C1/ru
Priority to PCT/RU2010/000023 priority patent/WO2010140919A1/ru
Application granted granted Critical
Publication of RU2403230C1 publication Critical patent/RU2403230C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/22Glass ; Devitrified glass
    • C04B14/24Glass ; Devitrified glass porous, e.g. foamed glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/021Agglomerated materials, e.g. artificial aggregates agglomerated by a mineral binder, e.g. cement
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/027Lightweight materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/02Treatment
    • C04B20/026Comminuting, e.g. by grinding or breaking; Defibrillating fibres other than asbestos
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/02Treatment
    • C04B20/04Heat treatment
    • C04B20/06Expanding clay, perlite, vermiculite or like granular materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/02Treatment
    • C04B20/04Heat treatment
    • C04B20/06Expanding clay, perlite, vermiculite or like granular materials
    • C04B20/061Expanding clay, perlite, vermiculite or like granular materials in rotary kilns
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B30/00Compositions for artificial stone, not containing binders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0068Ingredients with a function or property not provided for elsewhere in C04B2103/00
    • C04B2103/0094Agents for altering or buffering the pH; Ingredients characterised by their pH
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/60Agents for protection against chemical, physical or biological attack
    • C04B2103/63Flame-proofing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Building Environments (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

Изобретение относится к области получения строительных материалов, конкретно к получению теплоизоляционных заполнителей, используемых в качестве утеплителей в различных конструкциях и элементах зданий и сооружений строительных. Способ получения гранулированного теплоизоляционного материала для строительных изделий включает перемешивание аморфного кремнезема с дисперсностью 1-100 мкм с кремнеземсодержащим сыпучим наполнителем, таким как песок с дисперсностью 5-70 мкм в течение 3-10 мин до получения однородной сыпучей массы, введение в сухую сыпучую массу щелочесодержащего компонента, предварительно разбавленного водой либо в виде кремнеземсодержащего вяжущего с плотностью 1,5-1,7 г/см3 при соотношении его от 1:1 до 4:1, либо в виде водного раствора едкого натра или каустической соды при соотношении от 1:0,2 до 1:0,5, перемешивание сухой сыпучей массы с этим щелочесодержащим компонентом в течение 3-5 мин до получения однородной пастообразной массы, продавливание этой массы через фильеры диаметром 3-8 мм, резку образующейся на выходе из фильеры нити на куски размером не более 5-6 мм, последующее гранулирование с одновременным вспучиванием гранул при сушке их во вращающейся сушильной камере при температуре до 250°С и при следующем соотношении исходных компонентов, мас.%: аморфный кремнезем 23,0-34,0, указанный сыпучий наполнитель 49,0-58,0, указанный щелочесодержащий компонент 4,0-13,0, вода - остальное. Технический результат: упрощение процесса, получение гранул с низкой теплопроводностью, повышенной прочностью, водостойкостью и морозостойкостью.

Description

Изобретение относится к области получения строительных материалов, конкретно получения гранулированных теплоизоляционных материалов, в том числе легких пористых заполнителей, и может найти применение в строительстве при утеплении и звукоизоляции различных конструкций и элементов зданий и сооружений - стен, перегородок, мансард, лоджий, полов, потолков непосредственно на строящемся объекте в том числе на основе неорганических, несгораемых и экологически чистых эффективных материалов.
Известны способы получения теплоизоляционных материалов на основе кремнистых пород, к которым относятся кремнистые породы осадочного происхождения, такие как диатомиты, трепелы и опоки. Это природные гидратные кремнеземы в аморфном состоянии (аморфные кремнеземы), относящиеся к группе опала.
Эти известные способы получения теплоизоляционных материалов на основе кремнистых пород могут быть подразделены, в частности, на две группы, в зависимости от вида поризации:
- пенопоризация шликера с последующей сушкой и обжигом изделий;
- термохимическое вспучивание за счет использования выгорающих добавок (кокса), диссоциирующих добавок (известняка) или удаления гидратной воды.
Первая группа представлена технологией получения пенодиатомитовых изделий (Майзель И.Л., Сандлер В.Г., Технология теплоизоляционных материалов. - М.: Высшая школа, 1988), которая заключается в тонком измельчении диатомита, приготовлении пенодиатомитовой массы и формовании изделий, стабилизации пористой структуры изделий посредством сушки и образования пористого керамического черепка обжигом высушенного сырца. Очень высокая влажность пеномассы, достигающая 200-250%, является причиной больших усадочных деформаций при сушке (20-25%), что ухудшает качество готовых изделий. Сушка пенодиатомитовых изделий производится в формах, что предопределяет неблагоприятные условия для удаления влаги, так как ее испарение может происходить только с поверхности. Это обстоятельство, а также значительные сушильные усадки пеномассы определяют большую (48-96 ч) продолжительность процесса сушки. Обжигают изделия в туннельных печах при максимальной температуре 800-900°С в течение 18-22 часов.
Согласно другой известной монографии (Горлов Ю.П. Технология теплоизоляционных акустических материалов и изделий. - М.: Высшая школа, 1989, с.197-207) изделия имеют плотность 450-600 кг/м3, прочность 0,6-0,9 МПа. Таким образом, недостатком данного способа является повышенная плотность, высокие энергозатраты, связанные с длительными тепловыми процессами и высоким водосодержанием, значительная усадка полученного материала.
В частности, известен способ изготовления теплоизоляционного материала, включающий смешивание кремнистой породы из группы: трепел, диатомит, опока и щелочного компонента, укладку смеси в формы и ее термическую обработку (RU 2053984 С1, Кл. С04В 38/02, 10.02.1996).
Полученные изделия не отличаются хорошей водостойкостью. К тому же данным способом не получают гранулированный теплоизоляционный материал.
Из RU 2293073, 10.02.2007 известен способ изготовления негорючего утеплителя, который включает приготовление сырьевой смеси путем совместного помола кварцевого песка и кремнефтористого натрия, смешения с жидким стеклом, предварительного приготовленным водным раствором пенообразователя ПО-6К и заливку полученной сырьевой смеси между наружным и внутренним слоями строительной конструкции, осуществляют совместный помол кварцевого песка и кремнефтористого натрия при их соотношении 9-10:1 вес. ч. Соответственно в течение 5-6 ч с получением продукта помола с удельной поверхностью 1700-2500 см2/г, жидкое стекло смешивают в течение 5-7 мин с предварительно приготовленным водным раствором пенообразователя ПО-6К в соотношении пенообразователя ПО-6К и воды 1:50 вес.ч. при соотношении указанного водного раствора и жидкого стекла 1:1,5 вес.ч. с получением сырьевой смеси непосредственно перед ее заливкой.
Однако данный способ также не предназначен для получения гранулированного теплоизоляционного материала.
Из SU 1548178, 07.03.1990 известен способ получения теплоизоляционного легкого пористого заполнителя путем смешения силикатного свяжующего (60-80 мас.%), представляющего собой продукт плотностью 1,5-1,72 г/см3, полученный в результате обработки раствором щелочи тонкомолотого туфа с тонкодисперсным туфом 11-25 мкм и газообразователем в виде сажи или технического углерода 0,5-1,5, силикатом калция 2,5-4,5, метасиликатом натрия 6-9. Теплоизоляционный материал имеет следующие свойства: средняя плотность 300-600 кг/м3, прочность при сжатии 2-6 МПа, термостойкость 680-820°С, температуроустойчивость 750-900°С, гидролитический класс 2-3-й, кислотостойкость минеральных кислот 80-99%, водопоглащение по объему 1,5-12%, теплопроводность 0,080-0,115 Вт/м·град, температура предварительной тепловой обработки 120-135°С.
Однако способ достаточно сложен, так как основан на использовании многокомпонентного состава и является неэкономичным.
Из RU 2177921 известен способ получения гранулированного теплоизоляционного материала, включающий приготовление жидкого стекла гидротермальной обработки суспензии микрокремнезема в растворе гидросиликата натрия при атмосферном давлении, грануляцию и термообработку сырцовых гранул, при этом в качестве микрокремнезема используют отход производства кристаллического кремния аморфной структуры с размером частиц (0,01-0,1)×10-6 м следующего химического состава: 83-93 мас.% SiO2 и 6-16 мас.% углеродистых примесей - углерод (С) и карборунд (SiC), соотношение жидкой и твердой фаз в суспензии Ж/Т=0,94-1,008, гидротермальную обработку суспензии осуществляют 68-73°С в течение 5-10 мин с получением высокомодульного жидкого стекла с силикатным модулем 4-7, а термообработку сырцовых гранул проводят при 350-400°С в течение 20-30 мин.
Данный известный способ также отличается определенной сложностью и неэкономичен.
Из RU 2274620 известен способ получения гранулированного теплоизоляционного материала, включающий приготовление суспензии из компонентов смеси, гидротермальную обработку ее при 80-90°С и атмосферном давлении в течение 10-15 мин, грануляцию и последующую термообработку сырцовых гранул при 350-400°С в течение 10 мин.
Сырьевая смесь для гранулированного теплоизоляционного материала включает, мас.%: микрокремнезем - 41,37, «карамель» - остаточный продукт при переработке древесины по сульфатному способу, содержащий 91,8 мас.% нерастворимых в 72%-ной H2SO4 веществ в пересчете на сухое вещество - 0,21, раствор гидроксида натрия с концентрацией 54,22% в пересчете на Na2O - 21,97, воду - 36,45.
Данный известный способ также не экономичен, длителен и конечный продукт не обладает всем комплексом необходимых свойств, в частности не обладает необходимой водостойкостью.
Из RU 2290379, 27.12.2006 известен способ получения гранулированного теплоизоляционного материала из сырьевой смеси, который включает приготовление суспензии из компонентов смеси, гидротермальную обработку ее при 80-90°С и атмосферном давлении в течение 10-15 мин, грануляцию и последующую термообработку сырцевых гранул при 350-400°С в течение 10 мин. Сырьевая смесь для получения гранулированного теплоизоляционного материала содержит, мас.%: микрокремнезем - 41,4, «карамель» - отход сульфатно-целлюлозной переработки древесины - 0,2-0,8, раствор гидроксида натрия с концентрацией 45,22% в пересчете на Na2O - 21,5, воду - остальное.
Данный способ также не экономичен, а полученные гранулы не обладают необходимой прочностью и водостойкостью.
Из RU 2329986, 27.07.2008 известен еще один способ получения гранулированного теплоизоляционного материала, который включает приготовление сырьевой смеси, содержащей кремнистую породу типа диатомита, или опоки, или трепела, щелочной компонент в виде гидроксида натрия или калия с добавлением воды в количестве, необходимом для удобства формования массы, перемешивание, формование массы и термообработку. При приготовлении смеси в водный раствор гидроксида натрия или калия вводится этилсиликат, содержащий 40,5% двуокиси кремния, 14% тетраэтоксисилана, затем порциями вводят отдозированные кремнистую породу и гидроксид натрия или калия, добавляют воду в указанном количестве. Полученные после формования гранулы опудривают измельченной кремнистой породой. Термообработку осуществляют при температуре 300-500°С в течение 5-15 минут или при температуре 501-900°С в течение 1-5 минут. Соотношение компонентов сырьевой смеси составляет, мас.%: указанная кремнистая порода 69-91,5, гидроксид натрия или калия 8-30, указанный этилсиликат 0,5-1.
Получают гранулы экологически чистого теплоизоляционного материала из местного природного сырья с повышенной прочностью и водостойкостью.
Однако данный способ не экономичен, включает использование достаточно дефицитных компонентов.
Технической задачей заявленного изобретения является упрощение процесса, снижение себестоимости готового продукта, а также получение гранулированного продукта с пониженной теплопроводностью, повышенной водостойкостью и морозостойкостью.
Поставленная техническая задача достигается способом получения гранулированного теплоизоляционного материала для строительных изделий, включающим перемешивание аморфного кремнезема с дисперсностью 1-100 мкм с кремнеземсо держащим сыпучим наполнителем, таким как песок с дисперсностью 5-70 мкм в течение 3-10 мин до получения однородной сыпучей массы, введение в сухую сыпучую массу щелочесодержащего компонента, предварительно разбавленного водой либо в виде кремнеземсодержащего вяжущего с плотностью 1,5-1,7 г/см3 при соотношении его от 1:1 до 4:1, либо в виде водного раствора едкого натра или каустической соды при соотношении от 1:0,2 до 1:0,5, перемешивание сухой сыпучей смеси с этим щелочесодержащим компонентом в течение 3-5 мин до получения однородной пастообразной массы, продавливание этой массы через фильеры диаметром 3-8 мм, резку образующейся на выходе из фильеры нити на куски размером не более 5-6 мм, последующее гранулирование с одновременным вспучиванием гранул при сушке их во вращающейся сушильной камере при температуре до 250°С и при следующем соотношении исходных компонентов, мас.%:
аморфный кремнезем 23,0-34,0
указанный сыпучий наполнитель 49,0-58,0
указанный щелочесодержащий компонент 4,0-13,0
вода остальное
В качестве аморфного кремнезема используют аморфий кремнезем как природного происхождения (трепел, диатомит, опоки), так и промышленного происхождения (микрокремнеземы).
В качестве кремнеземсодержащего сыпучего наполнителя используют различные пески (кварцевые, намывные речные и морские), отходы добычи и обработки гранита и других горных пород, высушенные глины, супеси, суглинки, шлакозольные отходы от сжигания различных углей (бурых, антрацитов), вспученные гидрослюды (вермикулит, перлитовый песок), вулканические породы (пемзы, туфы), доменные и металлургические шлаки с дисперсностью 5-70 мкм
В качестве щелочесодержащего компонента используют едкий натр (калий) (водный раствор) или каустическую соду, а также кремнеземсодержащее вяжущее (связующее) с плотностью 1,5-1,7 г/см3, полученное в частности по патентам RU 2236374, 20.09.2004; RU 2283818, 20.09.2006.
Предлагаемая технология основывается на свойстве вспучивания аморфных кремнеземов, затворенных водным раствором щелочного компонента и подвергнутого термообработке при температуре до 250°С. При этом в зависимости от состава шихты степень вспучивания регулируется от 2 до 6-кратного. При этом полученные гранулы в два раза легче и обладают более низкой теплопроводностью, чем керамзит, получаемый при температурах выше 950°С, и не уступают керамзиту по несущей способности. Реализация данной технологии осуществляется в следующем порядке. Кварцевый песок дисперсностью 5-70 мкм перемешивается в смесителе с аморфным кремнеземом дисперсностью 1-10 мкм до получения однородной сухой массы в течение 3-10 минут, затем в сухую массу вводится щелочной элемент в виде кремнеземсодержащего вяжущего, разбавленного водой в соотношении от 1:1 до 4:1, или водный раствор щелочного компонента в соотношении от 1:0,2 до 1;0,5. Производится перемешивание до получения однородной пастообразной массы в течение 3-5 минут. Полученная масса продавливается, например, через фильеры с отверстиями диаметром 3-8 мм, на выходе из фильеры происходит резка образующейся нити, например струнная, на куски не более 5-6 мм, которые попадают в гранулятор, где приобретают форму, близкую к шару. Из гранулятора они направляются во вращающуюся сушильную камеру с температурой 250°С. Проходят ее в постоянном движении. За время прохождения сушильной камеры происходит их вспучивание. Готовая продукция из сушильной камеры попадает в бункер - накопитель готовой продукции.
Полученные гранулы имеют сплошную гладкую поверхность без открытых пор.
Гранулы могут использоваться как засыпной утеплитель или из них изготавливают стеновые блоки.
Ниже приведены примеры составов для получения гранул с использованием кремнеземсодержащего вяжущего и без него (в качестве щелочесодержащего компонента), которые однако только иллюстрируют изобретение, но не ограничивают его.
Пример 1.
На вяжущем из песка 1,59 г/см3 (на кремнеземсодержащем вяжущем по патенту RU2283818).
Состав: вяжущее - 12,0 мас.%
Кремнезем (микрокремнезем) - 23,8 мас.%
Вода-7,1 мас.%
Песок - 57,1 мас.%
Пример 2.
Этот же материал без использования вяжущего.
Состав: песок - 49,6 мас.%
Кремнезем (трепел) - 33,1 мас.%
Вода-12,4 мас.%
Едкий натр - 4,9 мас.%
При М350 он имеет следующие характеристики:
Теплопроводность - 0,087
Предел прочности на сдавливание - 2,4 МПа.
Изготовление блоков с использованием полученных гранул может осуществляться двумя способами, или с использованием кремнеземсодержащего вяжущего, или путем их спекания.
При получении их с использованием вяжущего.
Гранулы обволакиваются вяжущим, засыпаются в форму и подвергаются термообработке при 250°С. Блоки имеют плотность 1200 кг/м3, теплопроводность 0,158, прочнсть-М-150, морозостойкость- F -50.
При получении их спеканием.
Гранулы засыпаются в форму и подвергаются термообработке при 750-850°С. Блоки имеют плотность 700-800 кг/м3, теплопроводность 0,093, прочнсть-М-100, морозостойкость- F 45.

Claims (1)

  1. Способ получения гранулированного теплоизоляционного материала для строительных изделий, включающий перемешивание аморфного кремнезема с дисперсностью 1-100 мкм с кремнеземсодержащим сыпучим наполнителем, таким, как песок с дисперсностью 5-70 мкм, в течение 3-10 мин до получения однородной сыпучей массы, введение в сухую сыпучую массу щелочесодержащего компонента, предварительно разбавленного водой либо в виде кремнеземсодержащего вяжущего с плотностью 1,5-1,7 г/см3 при соотношении его от 1:1 до 4:1, либо в виде водного раствора едкого натра или каустической соды при соотношении от 1:0,2 до 1:0,5, перемешивание сухой сыпучей массы с этим щелочесодержащим компонентом в течение 3-5 мин до получения однородной пастообразной массы, продавливание этой массы через фильеры диаметром 3-8 мм, резку образующейся на выходе из фильеры нити на куски размером не более 5-6 мм, последующее гранулирование с одновременным вспучиванием гранул при сушке их во вращающейся сушильной камере при температуре до 250°С и при следующем соотношении исходных компонентов, мас.%:
    аморфный кремнезем 23,0-34,0 указанный сыпучий наполнитель 49,0-58,0 указанный щелочесодержащий компонент 4,0-13,0 вода остальное
RU2009121342A 2009-06-05 2009-06-05 Способ получения гранулированного теплоизоляционного материала RU2403230C1 (ru)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2009121342A RU2403230C1 (ru) 2009-06-05 2009-06-05 Способ получения гранулированного теплоизоляционного материала
PCT/RU2010/000023 WO2010140919A1 (ru) 2009-06-05 2010-01-20 Способ получения гранулированного теплоизоляционного материала

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009121342A RU2403230C1 (ru) 2009-06-05 2009-06-05 Способ получения гранулированного теплоизоляционного материала

Publications (1)

Publication Number Publication Date
RU2403230C1 true RU2403230C1 (ru) 2010-11-10

Family

ID=43297910

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009121342A RU2403230C1 (ru) 2009-06-05 2009-06-05 Способ получения гранулированного теплоизоляционного материала

Country Status (2)

Country Link
RU (1) RU2403230C1 (ru)
WO (1) WO2010140919A1 (ru)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2442762C1 (ru) * 2010-09-10 2012-02-20 Виктор Александрович Кондратенко Способ изготовления легковесного керамического теплоизоляционного и теплоизоляционно-конструкционного материала
RU2472726C1 (ru) * 2011-08-31 2013-01-20 Юлия Алексеевна Щепочкина Шихта для производства пористого заполнителя
RU2472727C1 (ru) * 2011-09-30 2013-01-20 Юлия Алексеевна Щепочкина Шихта для производства пористого заполнителя
RU2472728C1 (ru) * 2011-09-30 2013-01-20 Юлия Алексеевна Щепочкина Шихта для производства пористого заполнителя
RU2484029C1 (ru) * 2011-10-06 2013-06-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" Сырьевая смесь для изготовления пеностекла
RU2504526C2 (ru) * 2011-03-21 2014-01-20 Василий Агафонович Лотов Способ изготовления теплоизоляционных изделий
RU2507168C1 (ru) * 2012-10-05 2014-02-20 Юлия Алексеевна Щепочкина Шихта для производства пористого заполнителя
RU2569949C2 (ru) * 2013-07-02 2015-12-10 Геннадий Дмитриевич Ашмарин Способ изготовления строительных изделий из кремнистых пород
RU2782904C1 (ru) * 2021-12-07 2022-11-07 Акционерное общество "Научно-исследовательский центр" Строительство" (АО "НИЦ "Строительство") Способ получения пеностеклокерамического гранулированного строительного материала из природного кварцевого песка

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1495324A1 (ru) * 1986-11-14 1989-07-23 Харьковский инженерно-строительный институт Сырьева смесь дл получени плотного заполнител
DE3941732C2 (de) * 1989-12-18 1999-01-07 Dennert Poraver Gmbh Verfahren zur kontinuierlichen Herstellung von Schaumglas-Formkörpern
UA40628C2 (ru) * 1996-03-11 2001-08-15 Закрите Акціонерне Товариство "Ксв" Строительный теплоизоляционный материал
RU2329986C2 (ru) * 2006-08-22 2008-07-27 Людмила Григорьевна Федяева Способ получения гранулированного теплоизоляционного материала

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2442762C1 (ru) * 2010-09-10 2012-02-20 Виктор Александрович Кондратенко Способ изготовления легковесного керамического теплоизоляционного и теплоизоляционно-конструкционного материала
RU2504526C2 (ru) * 2011-03-21 2014-01-20 Василий Агафонович Лотов Способ изготовления теплоизоляционных изделий
RU2472726C1 (ru) * 2011-08-31 2013-01-20 Юлия Алексеевна Щепочкина Шихта для производства пористого заполнителя
RU2472727C1 (ru) * 2011-09-30 2013-01-20 Юлия Алексеевна Щепочкина Шихта для производства пористого заполнителя
RU2472728C1 (ru) * 2011-09-30 2013-01-20 Юлия Алексеевна Щепочкина Шихта для производства пористого заполнителя
RU2484029C1 (ru) * 2011-10-06 2013-06-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" Сырьевая смесь для изготовления пеностекла
RU2507168C1 (ru) * 2012-10-05 2014-02-20 Юлия Алексеевна Щепочкина Шихта для производства пористого заполнителя
RU2569949C2 (ru) * 2013-07-02 2015-12-10 Геннадий Дмитриевич Ашмарин Способ изготовления строительных изделий из кремнистых пород
RU2782904C1 (ru) * 2021-12-07 2022-11-07 Акционерное общество "Научно-исследовательский центр" Строительство" (АО "НИЦ "Строительство") Способ получения пеностеклокерамического гранулированного строительного материала из природного кварцевого песка
RU2817428C1 (ru) * 2023-07-07 2024-04-16 Акционерное общество "Научно-исследовательский центр "Строительство" (АО "НИЦ "Строительство") Состав шихты для получения теплоизоляционных блоков из природного кварцевого песка

Also Published As

Publication number Publication date
WO2010140919A1 (ru) 2010-12-09

Similar Documents

Publication Publication Date Title
RU2403230C1 (ru) Способ получения гранулированного теплоизоляционного материала
CN101831981B (zh) 一种复合型轻质砌块及其制备方法
Ketov et al. Recycling of rice husks ash for the preparation of resistant, lightweight and environment-friendly fired bricks
RU2333176C1 (ru) Способ получения строительного материала
JPH0543666B2 (ru)
CN110642559B (zh) 粉煤灰地质聚合物泡沫混凝土及制备方法
RU2397967C1 (ru) Способ получения полуфабриката для изготовления строительных материалов
KR100306866B1 (ko) 단열건축재료
CN110183099A (zh) 一种膨胀多孔玻璃颗粒的制造方法
CN105152598A (zh) 一种网架型陶粒泡沫混凝土及其制备方法
CN104961420A (zh) 抗震防震墙体材料及制备方法
CN106082884B (zh) 一种含有固废煤渣的轻质保温墙板及制备工艺
CN115259823B (zh) 一种轻质高强低导热系数加气混凝土及其制备方法
RU2405743C1 (ru) Сырьевая смесь для получения пеносиликатного материала и способ изготовления пеносиликатного материала (варианты)
RU2448065C2 (ru) Способ получения теплоизоляционного и утеплительного материала для строительных изделий
RU2592909C2 (ru) Пористый материал на основе кремнезема и портландита для заполнения изолирующего кирпича с контролируемой структурой и соответствующий способ получения
KR100580230B1 (ko) 2중 발포 셀을 갖는 초경량골재
CN110937867A (zh) 一种轻质陶粒混凝土及其制备方法
RU2341483C2 (ru) Сырьевая смесь для получения пеносиликатного теплоизоляционного материала и способ его изготовления
KR100957674B1 (ko) 건축용 경량 복합 재료
RU2563861C1 (ru) Способ получения мелкогранулированного пеностеклокерамического материала
CN109734406B (zh) 陶瓷砖抛光泥和硅藻土基微孔保温材料及其制备方法
RU2439024C1 (ru) Состав смеси для получения теплоизоляционного материала
CN107902979B (zh) 一种砌砖及其制造方法
RU2433975C1 (ru) Способ изготовления гранулированного заполнителя для бетона

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Free format text: LICENCE

Effective date: 20110811

MM4A The patent is invalid due to non-payment of fees

Effective date: 20150606