RU2398876C2 - Способ выявления штаммов бактерий-продуцентов l-аспарагиназы - Google Patents

Способ выявления штаммов бактерий-продуцентов l-аспарагиназы Download PDF

Info

Publication number
RU2398876C2
RU2398876C2 RU2008122007/10A RU2008122007A RU2398876C2 RU 2398876 C2 RU2398876 C2 RU 2398876C2 RU 2008122007/10 A RU2008122007/10 A RU 2008122007/10A RU 2008122007 A RU2008122007 A RU 2008122007A RU 2398876 C2 RU2398876 C2 RU 2398876C2
Authority
RU
Russia
Prior art keywords
colonies
asparaginase
asparagine
medium
analysed
Prior art date
Application number
RU2008122007/10A
Other languages
English (en)
Other versions
RU2008122007A (ru
Inventor
Марина Владимировна Покровская (RU)
Марина Владимировна Покровская
Николай Николаевич Соколов (RU)
Николай Николаевич Соколов
Вадим Сергеевич Покровский (RU)
Вадим Сергеевич Покровский
Александр Иванович Арчаков (RU)
Александр Иванович Арчаков
Дарья Александровна Гусева (RU)
Дарья Александровна Гусева
Original Assignee
Государственное учреждение Научно-исследовательский институт биомедицинской химии им. В.Н. Ореховича РАМН
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное учреждение Научно-исследовательский институт биомедицинской химии им. В.Н. Ореховича РАМН filed Critical Государственное учреждение Научно-исследовательский институт биомедицинской химии им. В.Н. Ореховича РАМН
Priority to RU2008122007/10A priority Critical patent/RU2398876C2/ru
Publication of RU2008122007A publication Critical patent/RU2008122007A/ru
Application granted granted Critical
Publication of RU2398876C2 publication Critical patent/RU2398876C2/ru

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Изобретение относится к биотехнологии и может быть использовано для повышения эффективности лабораторной селекции микроорганизмов-продуцентов L-аспарагиназ и найти применение при разработке новых лекарственных противоопухолевых ферментных препаратов. Способ предусматривает приготовление дифференциальной среды на основе стандартной среды LB или М9 с содержанием 1,5% агара и дополнительно содержащих L-аспарагин и диагностические компоненты - 0,0057 М или 0,0083 М сульфата меди CuSO4×5H2O и 0,0024 М или 0,0032 М гексацианоферрата калия K3Fe(CN)6 соответственно. Высев исследуемых микроорганизмов на соответствующую дифференциальную среду. Инкубацию посевов в термостате при оптимальной температуре роста микроорганизма в течение 12-20 или 24-48 часов соответственно. Учет результатов по окраске выросших колоний. Красный цвет колоний и окрашенная зона вокруг них указывают на способность исследуемого микроорганизма разрушать аспарагиновые комплексы. Изобретение позволяет сократить сроки выявления микроорганизмов, упростить и ускорить первичный отбор активных колоний, сохранить испытуемые колонии живыми. 3 ил., 1 табл.

Description

Изобретение относится к микробиологии и прикладной биотехнологии и может быть использовано для лабораторной селекции бактерий-продуцентов L-аспарагиназ.
Заявляемый способ представляет собой новый специфический, быстрый, простой и удобный метод выявления наиболее активных продуцентов аспарагиназы в чашках Петри и может найти применение при разработке новых лекарственных противоопухолевых ферментных препаратов.
Бактериальная L-аспарагиназа из природных штаммов Escherichia coli, Erwinia carotovora или Erwinia chrysanthemi (L-аспарагинамидогидролаза, ЕС 3.5.1.1.) применяется при острых лимфобластных лейкозах, лимфо- и ретикулосаркомах человека [1, 2] и производится в США («Enzon/Rhone Poulenc Rorer»), Германии («Medac Gmbh», «Merck & Co.Inc.»), Англии («Ipsen Limited»), Латвии («Grindex») и ряде других стран. Эффективность производства бактериального препарата прямо зависит от количества вырабатываемого фермента. При получении рекомбинантных суперпродуцентов или возникновении мутаций возможно появление смешанных культур, что определяет необходимость выделения чистой наиболее активной культуры [3, 4, 5].
В настоящее время активность аспарагиназы определяют, в основном, фотометрическим методом, основанным на качественной и количественной оценке выделяющегося при гидролизе аспарагина аммиака реактивом Несслера [6, 7]. Менее широкое распространение получило спектрофотометрическое определение, возможно, из-за необходимости использования очищенного фермента [8].
Оба метода позволяют определять активность только в жидкой среде, что затрудняет отбор отдельных клонов. При этом для выделения чистых культур микробиологи пользуются почти исключительно методом поверхностных рассевов на пластинчатом агаре в чашках Петри, т.е. на твердой среде.
Наиболее близким к заявляемому способу из известных методов выявления штаммов-продуцентов L-аспарагиназы является метод R.Gulati et al, в котором используется твердая синтетическая среда с феноловым красным [9]. Недостатками метода являются плохая воспроизводимость и низкая специфичность. Кроме того, синтетическая среда может оказаться неполноценной для роста ауксотрофных микроорганизмов и привести к потере активного продуцента.
Техническим результатом заявляемого способа является создание простого и быстрого комплексонометрического метода выявления штаммов бактерий с высокой L-аспарагиназной активностью, позволяющего повысить эффективность отбора наиболее активных штаммов.
Указанный технический результат достигается путем подбора состава дифференциальной среды для выявления штаммов с высокой L-аспарагиназной активностью на основе стандартных сред LB (Luria-Bertani) или М9 с добавлением 1,5% агара, [10, 11, 12], содержащих дополнительно: 0,3 М L-аспарагин и диагностические компоненты - 0,0057 М или 0,0083 М сульфат меди (CuSO4×5Н2О) и 0,0024 М или 0,0032 М гексацианоферрат калия (K3Fe(CN)6, соответственно. Исследуемые бактерии высевают на поверхность приготовленной диагностической среды, выдерживают посевы в термостате при оптимальной температуре роста в течение 12-20 или 24-48 часов, соответственно, после чего учитывают результаты по окраске выросших колоний. Красный цвет колоний и красный ореол вокруг них указывают на способность исследуемого штамма разрушать аспарагиновые комплексы.
Установлено, что комплексонометрическое определение наиболее активных продуцентов L-аспарагиназы основано на образовании прочных красных комплексов меди с анионом гексацианоферрата при ферментативном разрушении синих комплексов с L-аспарагином и L-аспарагиновой кислотой. В результате реакции активные колонии окрашиваются в красный цвет, в то время как неактивные свой естественный цвет не изменяют. Суть предложенного способа выявления штаммов бактерий с L-аспарагиназной активностью состоит в следующем.
В результате реакции с восстанавливающими ингредиентами агара, входящего в состав твердой среды LB и среды М9 из добавленного гексацианоферрата (III) образуется гексацианоферрат (II). При ферментативном гидролизе аспарагина и разрушении прочного хелатного комплекса этой аминокислоты с Cu (II) ионы меди связываются с анионом гексацианоферрата (II), что сопровождается выпадением красно-коричневого осадка.
Cu2++[Fe(CN)6]2-→Cu2[Fe(CN)6]↓
рН≤7
Среду, содержащую комплексные соединения с медью, готовят непосредственно перед употреблением. Автоклавирование питательной среды и растворов проводят в стандартных условиях. Ниже приведены примеры приготовления сред.
Пример 1. Модифицированная среда LB.
Сначала готовится стандартная среда LB. На 1 л: бакто-триптон 10 г [«Fluka» (Швейцария)]; бакто-дрожжевой экстракт 5 г [«Fluka» (Швейцария)]; NaCl 10 г [«Sigma-Aldrich» (США)]; pH 7,6 [10, 11, 12, 13]. К 100 мл расплавленной стерильной среды LB, содержащей 1,5% бакто-агара [«Ferak» (Германия)], последовательно добавляют 4,0 г L-аспарагина [«Reanal» (Венгрия)]; 3,0 мл 0,2 М CuSO4×5H2O [«Sigma-Aldrich (США)], и 2,5 мл 0,1 М K3Fe(CN)6 [«Sigma-Aldrich»(США)]. Таким образом, конечная концентрация дополнительных компонентов составляет 0,3 М L-аспарагина, 0,0057 М CuSO4×5H2O и 0,0024 М K3Fe(CN)6. После добавления каждого компонента смесь тщательно перемешивают.
Пример 2. Модифицированная среда М9.
Сначала готовится стандартная среда М9. На 1 л: Na2HPO4 6 г [«Serva»(Германия)]; KH2PO4 3 г [«Serva»(Германия)]; NaCl 0,5 г [«Sigma-Aldrich» (США)]; NH4Cl 1 г [«Sigma-Aldrich» (США)]; pH 7,6. После автоклавирования и охлаждения в среду добавляют следующие компоненты: 1 М MgSO4x7H2O 2 мл [«Sigma-Aldrich» (США)]; 20% глюкоза 10 мл [«Panreac» (Испания)]; 1 М CaCl2 1 мл [«Sigma-Aldrich» (США)]. Три последних раствора стерилизуются фильтрованием [10, 11]. К 100 мл расплавленной стерильной среды М9, содержащей 1,5% агара [«Ferak» (Германия)], последовательно добавляют 4,0 г L-аспарагина [«Reanal» (Венгрия)]; 4,5 мл 0,2 М CuSO4×H2O [«Sigma-Aldrich» (США)] и 3,5 мл 0,1 М K3Fe(CN)6 [«Sigma-Aldrich» (США)]. Таким образом, конечная концентрация дополнительных компонентов составляет 0,3 М L-аспарагина, 0,0083 М CuSO4×5H2O и 0,0032 М K3Fe(CN)6. После добавления каждого компонента смесь тщательно перемешивают.
При необходимости в среду вносят антибиотики и индукторы {например, при выращивании штаммов BL-21(DE3)/pBAD/ECARLANS (E.coli/pBAD) и BL-21(DE3)/pACYC177-LANS (E.coli/pACYC) вносят L-арабинозу [«Sigma-Aldrich» (США)] до 0,0015 М или IPTG (isopropyl-beta-D-thiogalactopyranoside) [«Sigma-Aldrich» (США)] до 0,001 M} соответствено. Среду разливают в чашки Петри и подсушивают в ламинаре в течение 20 мин. Горячая готовая среда зеленого цвета, холодная - зеленоватая с голубым оттенком, что обусловлено сочетанием синего цвета медного комплекса и желтого гексацианоферрата.
Герметично закрытые готовые чашки могут храниться при комнатной температуре в течение месяца. Покрасневшая или побуревшая среда вследствие выпадения осадка Cu2[Fe(CN)6] к употреблению непригодна.
Для тестирования сред из коллекции лаборатории медицинской биотехнологии ИБМХ РАМН отобраны рекомбинантные штаммы Е.coli с высокой L-аспарагиназной активностью от 12 до 34 МЕ/мг белка: BL-21(DE3)/pBAD/ECARLANS (E.coli/pBAD) и BL-21(DE3)/pACYC177-LANS (E.coli/pACYC); стандартные генетически модифицированные штаммы E.coli, используемые в биотехнологии с низкой L-аспарагиназной активностью (до 10 МЕ/мл белка): JM 109, DH-52, МС 1061, BL-21(DE3); а также природные штаммы: Lactobacillus plantarum, Lactobacillus casei varrhamnosus, Bacillus megaterium, Bacillus subtilis и Erwinia carotovora N1 (коллекция микроорганизмов БГУ, Минск, Беларусь) с активностью 0,003-0,007 и 0,1-0,3 МЕ/мг белка соответственно.
Бактериальную культуру шпателем или петлей рассевают по поверхности диагностической среды, приготовленной по примеру 1 или 2. Чашки помещают в термостат при температуре 37°С на 12-20 часов (среда на основе LB) и 24-48 часов (среда на основе М9). Покраснение колоний и диаметр окрашенной зоны вокруг них зависят от клеточной массы и способности изучаемых штаммов разрушать аспарагиновые комплексы. Более длительная инкубация не рекомендуется вследствие образования и диффузии побочных продуктов реакции и метаболитов клеток.
Результаты, полученные при применении заявляемого способа, были сопоставлены с данными стандартного метода с использованием реактива Несслера. Активность L-аспарагиназы выражали в Международных единицах (ME). За 1 ME активности принимали количество фермента, катализирующего высвобождение 1 мкмоль аммиака за 1 мин при 37°С.
Результаты представлены в табл.1 и на фиг.1-3.
На фиг.1 видна хорошая воспроизводимость результатов при правильно подобранных условиях. В семи бесцветных секторах находятся штаммы E.coli XL-blue, Lactobacillus plantarium, Erwinia carotovora, Bacillus subtilis, Bacillus megaterium, E.coli BL-21 (DE3), E.coli DH-52. В окрашенном секторе - E.coli BL-21 (DE3)/pACYC177-LANS. На фиг.2 видны отдельные окрашенные колонии в однородной культуре. На фиг.3 видна смесь активных и неактивных клонов.
Показано, что только колонии Lactobacillus plantarium, Lactobacillus casei varrhamnosus и Bacillus subtilis, Bacillus megaterium с активностью 0,007 МЕ/мг белка оставались неокрашенными при любых сроках инкубации и любой окраске среды.
Приведенная в примерах 1 и 2 концентрация CuS04x5H2O эквивалентна содержанию связующих компонентов среды; увеличение концентрации и появление свободных ионов меди приводит к неспецифическому красному окрашиванию и невозможности роста клеток в этих условиях. Гексацианоферрат калия является не только необходимым компонентом основной реакции, но и индикатором, свидетельствующим о наличии или отсутствии токсических количеств ионов меди.
Незначительное изменение концентраций хлоридов или нитратов заметно не влияет на результат. Изменение ионного состава осложняет анализ, поэтому для приготовления среды желательно использовать бакто-триптон и дрожжевой экстракт с контролируемым содержанием примесей. В случае выраженных биохимических нарушений в клетках продукты неполного окисления и метаболиты, особенно альдегиды и кетоны, выделяемые в среду, также влияют на рН и окислительно-восстановительный потенциал системы, а следовательно, и на процесс тестирования, что может привести к неспецифическому покраснению колоний.
Несмотря на колебания химического состава некоторых ингредиентов сред (бакто-триптон и дрожжевой экстракт), применение реагентов (с учетом производителя) в соответствующих концентрациях позволяет получать хорошо воспроизводимые результаты не только на синтетических средах, таких как М9, но даже в среде LB.
Таким образом, предложенный комплексонометрический способ позволяет:
1) выявлять бактериальные штаммы с L-аспарагиназной активностью не менее 0,01-0,1 МЕ/мг белка, в т.ч. проводить первичный отбор единичных активных колоний прямо с чашки;
2) оценивать чистоту культуры по биохимической активности в отношении L-аспарагина;
3) сохранять испытуемые колонии живыми и использовать их в дальнейшей работе, т.к. клетки растут на привычной среде, ионы гексацианоферрата по мере дезамидирования аспарагина удаляются из раствора в виде осадка с медью, а ионы меди постоянно находятся в связанном состоянии и на рост культуры практически не влияют;
4) использовать не только синтетические среды, но и традиционную среду LB, на которой растет большинство микроорганизмов, и, наиболее вероятно, сможет расти любой модифицированный штамм.
5) использовать доступные и недорогие реактивы.
Литература
1. Wriston J.C. Asparaginase // Methods in Enzymology. - 1985, - Vol.113. - P.608-618.
2. Соколов Н.Н., Занин А.А., Александрова С.С.Бактериальные L-аспарагиназы и глутамин (аспарагин)азы: некоторые свойства, строение и противоопухолевая активность // Вопросы медицинской химии - 2000. - Том. 46(6). - С.531-548.
3. Harms E., Wehner A., Jennings M. et al. Construction of expression system for Escherichia coli asparaginase 11 and two-step purification of the recombinant enzyme from periplasmic extracts // Protein Expr. Purif. - 1991. - Vol.2. - P.144-150.
4. Gilbert H.J., Blazek R., Bullman H.M. et al. Cloning and expression of the Erwinia chrysanthemi asparaginase gene in Escherichia coli and Erwinia carotovora // J.Gen. Microbiol. - 1986. - Vol.132. - P.151-160.
5. Эльдаров М.А., Жгун А.А., Гервазиев Ю.В. и др. Ген L-аспарагиназы Erwinia carotovora и штамм Escherichia coli ВКПМ №В-8174 - продуцент L-аспарагиназа Erwinia carotovora // Патент РФ 2221868. 20.01.2004 Бюл.№2.
6. Wade H.E., Phillips P.B.Automated determination of bacterial asparaginase and glutaminase // Anal.Biochem. - 1971. - Vol.44. - P.89.
7. Wriston J.C. Asparaginase // Methods Enzymol. - 1970. - Vol.17A. - P. 732-742.
8. Howard J.B., Carpenter, F.H. L-asparaginase from Erwinia carotovora. Substrate specificity and enzymatic properties // J. Biol. Chem. - 1972. - Vol.247. - P.1020-1030.
9. Gulati R. et al. A rapid plate assay for screening L-asparaginase producing micro-organisms // Letters in Applied Microbiology. - 1997. - Vol.24. - P.23-26.
10. Мазин А.В., Кузнеделов К.Д., Краев А.С. и др. Методы молекулярной генетики и генной инженерии. - Новосибирск: «Наука». - 1990. - 248 с.
11. Maniatis G. Molecular Cloning, A Laboratory manual. 1 st edition. - 1987. - P.68.
12. Bertani G. Studies on Lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli // L Bacteriology. - 1952. - Vol.62. - P.293-300.
13. Guennadi S., Joseleau-Petit D., D'Ari R. Escherichia coli Physiology in Luria-Bertani Broth // J. Bacteriology. - 2007. - Vol.189. - P.8746-8749.
Таблица.
Сравнительная характеристика тест-штаммов микроорганизмов на предлагаемой диагностической среде на основе стандартных сред LB и М9
Номер штамма Тестируемые штаммы Цвет отдельных колоний Время инкубации до появления цвета при высеве истощающим мазком в диагностической среде на основе М9 Время инкубации до появления цвета при высеве истощающим мазком в диагностической среде на основе LB Активность с реактивом Несслера МЕ/мг белка
1 E.coli BL-21(DE3) / pBAD/ ECARLANS Красный с индукцией, розовый без индукции 24 12-15 28
2 E.coli BL-21(DE3) / pACYC177-LANS Красный с индукцией и без индукции* 24 13-16 34
3 E.coli XL-blue Розовый 48 16-18 4,3
4 E.coli JM-109 Розовый 48 16-18 0,12
5 E.coli BL-21 (DE3) Розовый 48 16-18 5,2
6 E.coli DH-52 Розовый 48 16-18 3,4
7 E.coli MC 1061 Розовый 48 16-18 3,2
8 Bacillus megaterium Белый 48 48 0,007
9 Bacillussubtilis Белый 48 48 0,006
10 Erwinia carotovora Белый 48 48 0,3
11 Lactobacillus plantarium Белый 48 48 0,003
12 Lactobacillus casei varrhamnosus Белый 48 48 0,005
* Примечание. Красный ореол вокруг колоний, наблюдаемый в отсутствие индуктора, связан с подтеканием промотора. В присутствии индуктора ореол значительно больше, чем без него

Claims (1)

  1. Способ выявления штаммов бактерий-продуцентов L-аспарагиназы, предусматривающий высев исследуемых штаммов на поверхность дифференциальной среды, приготовленной на основе стандартных сред LB или М9 с добавлением 1,5% агара, дополнительно содержащих 0,3 М L-аспарагина и диагностические компоненты - 0,0057 М или 0,0083 М сульфата меди CuSO4·5H2O и 0,0024 М или 0,0032 М гексацианоферрата калия K3Fe(CN)6, соответственно, инкубацию при оптимальной температуре роста штамма в течение 12-20 или 24-48 ч на соответствующей дифференциальной среде, и последующий учет результатов по окраске выросших колоний, при этом красный цвет колоний и красный ореол вокруг них указывают на наличие L-аспарагиназной активности исследуемого штамма.
RU2008122007/10A 2008-06-03 2008-06-03 Способ выявления штаммов бактерий-продуцентов l-аспарагиназы RU2398876C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2008122007/10A RU2398876C2 (ru) 2008-06-03 2008-06-03 Способ выявления штаммов бактерий-продуцентов l-аспарагиназы

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2008122007/10A RU2398876C2 (ru) 2008-06-03 2008-06-03 Способ выявления штаммов бактерий-продуцентов l-аспарагиназы

Publications (2)

Publication Number Publication Date
RU2008122007A RU2008122007A (ru) 2009-12-10
RU2398876C2 true RU2398876C2 (ru) 2010-09-10

Family

ID=41489051

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008122007/10A RU2398876C2 (ru) 2008-06-03 2008-06-03 Способ выявления штаммов бактерий-продуцентов l-аспарагиназы

Country Status (1)

Country Link
RU (1) RU2398876C2 (ru)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GULARI R. et al. A rapid plate assay for screening L-asparaginase producing micro-organisms, Lett. Appl. Microbiol., 1997, Jan., 24 (1), p.23-26. WADE H.E. et al. Automated determination of bacterial asparaginase and glutaminase, Anal. Biochem. 1971, v.44, p.89-94. *

Also Published As

Publication number Publication date
RU2008122007A (ru) 2009-12-10

Similar Documents

Publication Publication Date Title
US5541082A (en) Microbiological medium
US6046021A (en) Comparative phenotype analysis of two or more microorganisms using a plurality of substrates within a multiwell testing device
JP2831474B2 (ja) サルモネラ菌の同定法および培地
JPS5817598B2 (ja) 微生物の迅速検出方法
EP1789573B1 (fr) Procede de detection de streptococcus agalactiae en utilisant l'activite alpha-glucosidase
CN108060142A (zh) 一种降解酱油中生物胺的酶
CN108048522A (zh) 具有对碳青霉烯类的抗性的细菌的检测
EP1600514B1 (en) Selective culture medium for the isolation and/or detection of species in the streptococcus genus
KR102310337B1 (ko) 복합 소화 효소 생산능 및 항균 활성을 갖는 락토코커스 락티스 q1 균주 및 이의 용도
CN101970682B (zh) 检测和/或鉴别艰难梭状芽孢杆菌的方法
EP1300471B1 (en) Nutritional mixture and method for early identification and count of gram-negative organisms
US6130057A (en) Method for differentiating microorganisms in a sample
RU2398876C2 (ru) Способ выявления штаммов бактерий-продуцентов l-аспарагиназы
EP1088896A2 (en) Chromogenic media containing blood or hemin
Chauhan et al. Microbiological culture media: types, role and composition
EP1196625B1 (en) Composition and method for detecting and early and differentiated counting of gram-negative microorganisms
JP5823390B2 (ja) 新規ニトロレダクターゼ酵素基質
RU2707118C1 (ru) Способ повышения продуктивности бактерий escherichia coli
RU2715329C1 (ru) Питательная среда для выделения и идентификации неферментирующих бактерий
JP5730304B2 (ja) 新規ニトロレダクターゼ酵素基質
Sarwat Isolation and Identification of Tannase producing bacteria from environmental soil sample
AL-Juhaishy et al. Optimization of L-Glutaminase Enzyme Production by Staphylococcus Aureus Clinical Samples.
JP4544714B2 (ja) 微生物検出用培地
Kassab Screening and Industry of Bacterial L-glutaminase as an Anticancer Agent from Different Soil Environments in Egypt
Rana et al. Isolation and identification of protease producing bacteria

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170604