RU2398185C2 - Устройство и способ использования встречно-распространяющегося сигнала для локализации событий - Google Patents

Устройство и способ использования встречно-распространяющегося сигнала для локализации событий Download PDF

Info

Publication number
RU2398185C2
RU2398185C2 RU2007130725/28A RU2007130725A RU2398185C2 RU 2398185 C2 RU2398185 C2 RU 2398185C2 RU 2007130725/28 A RU2007130725/28 A RU 2007130725/28A RU 2007130725 A RU2007130725 A RU 2007130725A RU 2398185 C2 RU2398185 C2 RU 2398185C2
Authority
RU
Russia
Prior art keywords
signals
counterpropagating
mach
polarization
waveguide
Prior art date
Application number
RU2007130725/28A
Other languages
English (en)
Other versions
RU2007130725A (ru
Inventor
Эдвард Е. ТАПАНЕС (AU)
Эдвард Е. ТАПАНЕС
Джим КАТСИФОЛИС (AU)
Джим КАТСИФОЛИС
Ли Дж. МАКИНТОШ (SE)
Ли Дж. МАКИНТОШ
Original Assignee
Фьючер Файбе Текнолоджиз Пти Лтд
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2005900109A external-priority patent/AU2005900109A0/en
Application filed by Фьючер Файбе Текнолоджиз Пти Лтд filed Critical Фьючер Файбе Текнолоджиз Пти Лтд
Publication of RU2007130725A publication Critical patent/RU2007130725A/ru
Application granted granted Critical
Publication of RU2398185C2 publication Critical patent/RU2398185C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/18Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
    • G08B13/181Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using active radiation detection systems
    • G08B13/183Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using active radiation detection systems by interruption of a radiation beam or barrier
    • G08B13/186Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using active radiation detection systems by interruption of a radiation beam or barrier using light guides, e.g. optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/39Testing of optical devices, constituted by fibre optics or optical waveguides in which light is projected from both sides of the fiber or waveguide end-face
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2753Optical coupling means with polarisation selective and adjusting means characterised by their function or use, i.e. of the complete device
    • G02B6/2793Controlling polarisation dependent loss, e.g. polarisation insensitivity, reducing the change in polarisation degree of the output light even if the input polarisation state fluctuates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/2935Mach-Zehnder configuration, i.e. comprising separate splitting and combining means
    • G02B6/29352Mach-Zehnder configuration, i.e. comprising separate splitting and combining means in a light guide

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Burglar Alarm Systems (AREA)

Abstract

Способ локализации события включает формирование волновода с первым и вторым плечами с формированием интерферометра Маха-Цендера, имеющего встречно-распространяющиеся оптические сигналы, модифицированные посредством события. С помощью устройства осуществляют контроль модифицированных встречно-распространяющихся оптических сигналов и определение разности по времени между ними для определения местоположения события. Протяженности первого и второго плеч интерферометра рассогласованы. С помощью контроллера управляют состояниями поляризации встречно-распространяющихся оптических сигналов, вводимых в волновод, для обеспечения согласования амплитуды и фазы встречно-распространяющихся сигналов из волновода и обеспечения возмущения длины волны введенного света на величину, которая обеспечивает возмущение разности фаз в плечах интерферометра, и поддерживают как согласованность по фазе, так и контрастности интерференционных полос на выходе интерферометра Маха-Цендера. Технический результат - повышение точности определения местоположения события. 2 н. и 8 з.п. ф-лы, 18 ил.

Description

Область техники
Настоящее изобретение относится к способу и устройству для определения местоположения событий, таких как вторжение в охраняемое помещение, или авария, или другие происшествия, связанные с конструкциями, чтобы местоположение происшествия могло быть определено.
Уровень техники
Устройство и способ для локализации событий представлены в Патентах США 6621947 и 6778717. Содержание этих двух патентов включено в данную заявку в качестве ссылки.
Система, использованная в упомянутых патентах США, использует интерферометр Маха-Цендера (МЦ), в котором предусмотрены встречно-распространяющиеся сигналы. Местоположение события вдоль чувствительного устройства, образованного интерферометром Маха-Цендера (МЦ), может быть определено посредством измерения обусловленного событием временного различия возмущенных сигналов.
Таким образом, когда событие вызывает возмущение участка датчика МЦ системы, различие во времени вступления встречно-распространяющихся сигналов на детекторах может быть использовано для расчета точного местоположения возмущения на МЦ датчике. Датчик такого типа может быть применен по периметру или инфраструктуре применений безопасности, при типичных длинах чувствительности, превышающих 50 км.
Сущность изобретения
Задача изобретения заключается в том, чтобы улучшить систему и способ, представленные в упомянутых патентах, для предоставления возможности более точного определения местоположения события.
Изобретение предусматривает устройство для обнаружения и локализации возмущений, содержащее:
Устройство для локализации местоположения события, содержащее:
источник света;
волновод для приема света от источника света, так чтобы свет распространялся в обоих направлениях вдоль волновода, тем самым обеспечивая встречно-распространяющиеся оптические сигналы в волноводе, причем волновод выполнен имеющим встречно-распространяющиеся оптические сигналы, модифицированные посредством события, для предоставления модифицированных встречно-распространяющихся оптических сигналов которые продолжают распространяться вдоль волновода; при этом волновод содержит первое плечо для приема встречно-распространяющихся сигналов и второе плечо для приема встречно-распространяющихся сигналов, причем первое плечо и второе плечо образуют интерферометр Маха-Цендера, и
средство обнаружения для обнаружения модифицированных встречно-распространяющихся оптических сигналов и для определения различия моментов времени приема модифицированных встречно-распространяющихся оптических сигналов для определения местоположения события; отличающееся тем, что содержит контроллер для управления состояниями поляризации встречно-распространяющихся оптических сигналов таким образом, чтобы амплитуда и фаза сигналов были согласованы; при этом первое плечо интерферометра Маха-Цендера имеет протяженность, отличающуюся от протяженности второго плеча интерферометра Маха-Цендера, чтобы протяженности первого плеча и второго плеча были рассогласованы, и контроллер содержит элемент возмущения сигнала для обеспечения возмущения длины волны света от источника света на величину, которая обеспечивает возмущение разности фаз в плечах Маха-Цендера, по меньшей мере, на 360° для получения искусственных интерференционных полос так, что выходные встречно-распространяющиеся сигналы дрейфующей рабочей точки Маха-Цендера всегда отображают контрастность своих истинных интерференционных полос, при этом контроллер выполнен с возможностью поддержания согласованности по фазе и контрастности интерференционных полос.
Посредством согласования встречно-распространяющихся сигналов по амплитуде и фазе на выходе формируются интерференционные полосы, которые легко обнаруживаются, и таким образом различие во времени приема между двумя модифицированными встречно-распространяющимися сигналами может быть точно зарегистрировано, для последующего точного определения местоположения события. Что позволяет повысить чувствительность системы и способа.
В предпочтительном варианте реализации изобретения обеспечивают управление входными состояниями поляризации встречно-распространяющихся сигналов, что обеспечивает достижение максимальных выходных интерференционных полос. Однако в другом варианте реализации предусматривают управление состояниями поляризации, которые приводят к согласованным амплитуде и фазе выходных сигналов, но с контрастными интерференционными подмаксимумами.
Контроллер может включать в себя процессор, связанный с драйвером управления поляризацией, и драйвер управления поляризацией связан с контроллерами поляризации для управления контроллерами поляризации, тем самым устанавливая поляризацию сигналов, подаваемых от источника света на первое плечо и второе плечо интерферометра Маха-Цендера (МЦ) для, в свою очередь установления поляризации встречно-распространяющихся сигналов.
Средство обнаружения может содержать первый детектор для одного из встречно-распространяющихся сигналов и второй детектор для другого из встречно-распространяющихся сигналов.
Источник света содержит лазерный источник света, имеющий брэгговские решетки и регулятор для управления брэгговскими решетками, и/или лазерный резонатор лазерного источника света для изменения длины волны выходного светового сигнала от лазерного источника света для получения встречно-распространяющихся сигналов.
Изобретение также предусматривает способ для обнаружения и локализации возмущений, содержащий:
формирование волновода с первым плечом и вторым плечом с формированием интерферометра Маха-Цендера,
введение света в волновод таким образом, чтобы вызвать его распространение в обоих направлениях, в качестве встречно-распространяющихся сигналов через первое плечо и второе плечо интерферометра Маха-Цендера, причем волновод выполнен имеющим встречно-распространяющиеся оптические сигналы, модифицированные посредством события, для предоставления модифицированных встречно-распространяющихся оптических сигналов, которые продолжают распространяться вдоль волновода;
контроль, по существу непрерывных и одновременных, модифицированных встречно-распространяющихся оптических сигналов так, что когда происходит событие, то оба модифицированных встречно-распространяющихся оптических сигнала, подвергнутых воздействию внешнего параметра, оказываются обнаруженными;
определение разности по времени между обнаруженными модифицированными сигналами для определения местоположения события; отличающийся тем, что дополнительно содержит этапы обеспечения протяженности первого плеча и второго плеча интерферометра (10) Маха-Цендера рассогласованными, и
управление состояниями поляризации встречно-распространяющихся оптических сигналов, вводимых в волновод, для обеспечения согласования амплитуды и фазы встречно-распространяющихся сигналов из волновода и обеспечения возмущения длины волны введенного света на величину, которая обеспечивает возмущение разности фаз в плечах интерферометра Маха-Цендера, по меньшей мере, на 360° для получения искусственных интерференционных полос так, что выходные встречно-распространяющиеся сигналы дрейфующей рабочей точки Маха-Цендера отображают контрастность своих истинных интерференционных полос, и непрерывное управление состояниями поляризации таким образом, чтобы поддерживать как согласованности по фазе, так и контрастности интерференционных полос на выходе интерферометра Маха-Цендера.
Предпочтительно состояния поляризации встречно-распространяющихся сигналов обеспечивают согласованные по амплитуде и фазе встречно-распространяющиеся сигналы из волновода, что обеспечивает достижение максимальных выходных интерференционных полос. Однако в другом варианте реализации предусматривают управление состояниями поляризации, которые приводят к согласованным по фазе интерференционным подмаксимумам.
Предпочтительно этап управления состояниями поляризации содержит произвольное изменение входных состояний поляризации встречно-распространяющихся сигналов при контроле встречно-распространяющихся выходных оптических сигналов из интерферометра Маха-Цендера для обнаружения состояния по существу нулевой интенсивности, или состояния максимальной интенсивности встречно-распространяющихся сигналов, и выбор входных поляризаций, которые обеспечивают по существу нулевую или по существу максимальную интенсивности.
Краткое описание чертежей
Предпочтительные варианты реализации изобретения рассматриваются на примере со ссылкой на соответствующие чертежи, на которых:
Фиг.1 изображает схему основной компоновки стандартной однонаправленной системы МЦ;
Фиг.2 - сфера Пуанкаре, показывающая состояния поляризации, при которых достигается максимальная контрастность интерференционных полос в стандартном однонаправленном МЦ;
Фиг.3 - схема, показывающая выходные сигналы по Фиг.1, обусловленные разностью фаз в плечах МЦ;
Фиг.4 - схема системы в соответствии с предпочтительными вариантами реализации изобретения;
Фиг.5 - схема сферы Пуанкаре, относящаяся к варианту реализации по Фиг.4;
Фиг.6А и 6В - графики, показывающие максимальную контрастность интерференционных полос на выходе в соответствии с вариантом реализации по Фиг.4;
Фиг.7А и 7В - иллюстративные графики, показывающие нефазовое согласование интерференционных максимумов на выходе;
Фиг.8 - схема сферы Пуанкаре, показывающая различные состояния поляризации одного встречно-распространяющегося сигнала для обеспечения различной контрастности интерференционных полос в соответствии с вариантами реализации изобретения;
Фиг.9 - схема, аналогичная схеме на Фиг.8, относящаяся к другому встречно-распространяющемуся сигналу;
Фиг.10 - график, показывающий эффект возмущения длины волны источника света на выходе МЦ, использованный в одном варианте реализации изобретения;
Фиг.11 - график, показывающий эффект дрейфа рабочей точки на выходе МЦ, причем дрейф в и вне квадратуры, на стимулированных интерференционных полосах, полученных интерферометром Маха-Цендера;
Фиг.12 - схема, аналогичная схеме на Фиг.11, но показывающая возмущение разности фаз в 360° между плечами МЦ для дрейфующего выхода МЦ;
Фиг.13 - блок-схема первого варианта реализации изобретения;
Фиг.14 - схема типичного интерферометра Маха-Цендера, использованного в предпочтительных вариантах реализации;
Фиг.15 - схема, показывающая контроллер варианта реализации на Фиг.13;
Фиг.16 - схематический вид второго варианта реализации изобретения;
Фиг.17 - блок-схема контроллера варианта реализации на Фиг.16; и
Фиг.18 - блок-схема третьего варианта реализации изобретения.
Подробное описание предпочтительных вариантов реализации
На Фиг.1 показаны оба выхода стандартного однонаправленного МЦ (выходные сигналы показаны на Фиг.3), дополняющие друг друга, дрейфующие и изменяющиеся приблизительно синусоидально со временем из-за окружающей среды и других эффектов. Максимально возможная амплитуда, или контрастность интерференционных полос, интенсивности обоих МЦ выходов может быть связана с ориентацией состояний поляризации интерферирующих сигналов в плечах интерферометра МЦ. Можно управлять ориентацией состояний поляризации интерферирующих сигналов и, следовательно, контрастностью интерференционных полос МЦ, управляя поляризацией светового сигнала на входе подводящего волокна. Фактически имеется два возможных состояния поляризации на входе волокна МЦ, для которых контрастность интерференционных полос выходных сигналов однонаправленного МЦ достигает максимума. Это показано на Фиг.2 для однонаправленного МЦ с использованием сферы Пуанкаре для иллюстрации входных поляризационных состояний максимальных интерференционных полос.
На Фиг.2 показано, что имеется два уникальных состояния поляризации на входе МЦ 10, для которых любой выход стандартного однонаправленного МЦ будет иметь максимальную контрастность интерференционных полос. При нанесении на сферу Пуанкаре эти два состояния поляризации оказываются диаметрально противоположными.
Относительно Фиг.4 - изобретатели показали экспериментально, что двунаправленный МЦ 10 можно рассматривать как два раздельных однонаправленных МЦ, по одному на каждое направление распространения. Вместе с тем, два встречно-распространяющихся МЦ не полностью независимы и характеризуются важным свойством, связанным с поляризацией.
Встречно-распространяющиеся выходные сигналы двунаправленного МЦ также дрейфуют и изменяются таким же образом. Для каждого направления также имеются два входных поляризационных состояния, для которых на выходе МЦ достигается максимальные выходные интерференционные полосы. Хотя выбором одного из этих входных состояний поляризации достигаются максимальные выходные интерференционные полосы и, таким образом, максимальная чувствительность для стандартного МЦ, в случае двунаправленного МЦ, использованного для определения местоположения события, выбор входного состояния поляризации для каждого направления имеет важное значение. В данном рассмотрении предполагается, что для каждого направления использован только один выход МЦ (CWout и CCWout).
Пусть имеются два возможных входных состояний поляризации для каждого направления, при которых достигается максимальная контрастность интерференционных полос, тогда имеются четыре возможных пары встречно-распространяющихся входных состояний поляризации, при которых одновременно достигаются максимальные выходные контрастности интерференционных полос для обоих направлений.
Двунаправленный интерферометр МЦ 10, показанный на Фиг.4, включает в себя ответвитель С4 для введения подводящего отрезка волокна 12 в датчик МЦ, Llead2. Это представляет собой один из практических вариантов установки системы для размещения оптоэлектронных элементов и соответствующих оптических компонентов на один блок 20 контроллера. Также включены и два контроллера поляризации, PCcw 43 и PCCCW 44, которые могут быть использованы для управления входным состоянием поляризации на МЦ, 10 для CW (по часовой стрелке) и CCW (против часовой стрелки) направлений, соответственно. Управляя входным состоянием поляризации в волоконном соединении МЦ можно достичь максимальных выходных интерференционных полос. Это может быть применено независимо к обоим направлениям на двунаправленном МЦ 10 для одновременного достижения максимальных выходных интерференционных полос для обоих направлений. Различные многопластинчатые, управляемые напряжением контроллеры поляризации могут быть использованы для управления входным состоянием поляризации и могут включать в себя контроллеры поляризации на основе жидкого кристалла или пьезоэлектрические контроллеры поляризации.
Для направления распространения CW имеется два возможных входных состояния поляризации, которые дают максимальные выходные интерференционные полосы - SOP1a и SOP1b. Аналогично, для направления распространения CCW, два возможных входных состояния поляризации, дающих максимальные выходные интерференционные полосы - SOP2a и SОР2b. Эти состояния поляризации могут быть представлены на сфере Пуанкаре, как показано на Фиг.5.
Хотя имеется 4 возможных образования пар, которые одновременно приводят к максимальным интерференционным полосам для обоих встречно-распространяющихся выходных сигналов CWout и CCWout двунаправленного МЦ (SOP1a и SOP2a, или SOP1a и SOP2b, или SOP1b и SOP2a, или SOP1b и SOP2b,), только два из этих образований пар приводят к выходным сигналам, которые имеют и максимальную контрастность интерференционных полос, и точно согласованы по фазе.
Для примера, показанного на Фиг.4, согласованные по фазе максимальные интерференционные встречно-распространяющиеся входные состояния поляризации: (SOP1a и SOP2a) и (SOP1b и SOP2b). Это показано на Фиг.6А и 6В.
На Фиг.6А и 6В показаны две волны, которые полностью перекрываются, а именно: SOP1a и SOP2a на Фиг.6А и SOP1b и SOP2b на Фиг.6В.
Это условие согласования фазы и амплитуды является важным для системы обнаружения, поскольку оно позволяет наиболее точно определить местоположение событий на чувствительном кабеле. Это означает, что существенно, чтобы не было временного различия между встречно-распространяющимися дрейфующими выходными сигналами МЦ тогда, когда датчик МЦ пребывает в состоянии покоя (возмущение отсутствует). Если встречно-распространяющиеся выходные сигналы не согласованы по фазе, то это приведет к введению ошибки в расчет временного различия и, таким образом, в расчет местоположения.
На Фиг.7А и 7В показаны встречно-распространяющиеся выходные сигналы МЦ для не согласованных по фазе максимальных интерференционных встречно-распространяющихся входных состояний поляризации, а именно SOP1a и SОР2b на Фиг.7А и SOP1b и SOP2a на Фиг.7В.
Достижение встречно-распространяющихся, согласованных по фазе максимальных интерференционных выходных сигналов приводит к двум важным результатам для системы. Это позволяет точно определить местоположение события, а также обеспечивает максимальную чувствительность двунаправленного МЦ.
Вместе с тем, входные состояния поляризации, приводящие к согласованным амплитуде и фазе встречно-распространяющихся выходных сигналов, не ограничиваются только входными состояниями поляризации, при которых достигаются максимальные выходные интерференционные полосы. Имеется также множество других пар состояний входной поляризации, которые также приводят к согласованным по амплитуде и фазе выходным сигналам, но с контрастными интерференционными подмаксимумами. Например, возможно отрегулировать оба контроллера 43 и 44 поляризации так, что контрастность интерференционных полос обоих выходных сигналов одинакова и меньше теоретического максимума в 100%, но при согласованной фазе. Хотя снижение контрастности интерференционных полос приведет к снижению чувствительности двунаправленного МЦ 10, пока контрастность интерференционной полосы остается сравнительно высокой (например, >75%), то для системы все еще возможен точный расчет местоположения, при поддержании приемлемого уровня чувствительности.
Изменение контрастности интерференционных полос выходного сигнала МЦ для каждого направления в двунаправленном МЦ можно графически отобразить на сфере Пуанкаре для демонстрации соотношения между входными состояниями поляризации и контрастностью интерференционных полос МЦ выходного сигнала. Типичный результат приведен на Фиг.8 и 9.
Два уникальных входных состояния поляризации, которые приводят к максимальной контрастности интерференционных полос, образуют два противоположных "полюса" на сфере, SOPcw1 и SOPcw2 (Фиг.8). Для не максимальной контрастности интерференционных полос состояния поляризации равной контрастности интерференционных полос образуют широтные пояса, с экваториальным поясом Е, отображающим состояния поляризации минимальной контрастности интерференционных полос. При перемещении от полюсов к экваториальному поясу, через B1 и В2, которые находятся между двумя полюсами, контрастность интерференционных полос уменьшается и становится минимальной на экваториальном поясе Е. Оба "полушария" по существу являются зеркальными отражениями друг друга.
Положение противоположных полюсов максимальной контрастности интерференционных полос и, следовательно, широтные и экваториальные пояса изменятся в соответствии с двойным лучепреломлением двунаправленной системы МЦ, а именно: подводящий отрезок волокна 12 и плечи МЦ 14 и 15 для направления CW. Это можно представить как вращение полюсов контрастности интерференционных полос и широтных поясов вокруг сферы. Минимальная контрастность интерференционных полос не всегда обязательно нулевая, как следовало бы ожидать в идеальном МЦ 10, но может быть и ненулевой. Фактическая величина минимальной контрастности интерференционных полос также изменится с двойным лучепреломлением системы МЦ 10 для этого направления. Так, в итоге, изменение двойного лучепреломления в системе МЦ 10, которое для направления CW может включать в себя изменение двойного лучепреломления на подводящем отрезке волокна 12, и/или МЦ плечах датчика 14 и 15, может вызвать не только вращение для каждого направления полюсов контрастности интерференционных полос и широтных поясов, но может также изменить пределы возможной контрастности интерференционных полос. Важно все же, что максимальная контрастность интерференционных полос всегда достигает единицы, не зависимо от двойного лучепреломления системы МЦ.
Рассматривая направление распространения CCW (показанное на Фиг.9) в двунаправленном МЦ 10, можно видеть аналогичное соотношение между контрастностью интерференционных полос выходных сигналов МЦ 1, 2 и входными состояниями поляризации. Положение противоположных полюсов максимальной контрастности интерференционных полос и, следовательно, широтных и экваториальных поясов изменяется в соответствии с двойным лучепреломлением двунаправленной системы МЦ, которая включает в себя отрезок входного соединения (Llead1) и плечи МЦ 14 и 15. Фактически, минимальная и максимальная величина контрастности интерференционных полос такие же, как и для направления CW в любой момент времени, только абсолютное положение состояний максимальной контрастности интерференционных полос, SOPccw1 и SOPccw2, отличаются относительно направления CW.
Оптоволоконные кабели, которые используются в устройствах предпочтительных вариантов реализации изобретения, фактически устанавливаются в разнообразных окружающих средах, где они могут подвергаться изменяющимся и произвольным условиям, таким как, ветер, дождь, механические вибрации, напряжение и деформация и изменения температуры. Как отмечено ранее, эти эффекты могут изменить двойное лучепреломление оптического волокна в кабелях, что, в свою очередь, может изменить контрастность интерференционных полос обоих выходных сигналов МЦ Системы Обнаружения посредством эффекта поляризационно-индуцированного затухания интерференционных полос (PIFF). Так, в реальной установке, когда факторы влияния окружающей среды приводят к произвольным изменениям двойного лучепреломления вдоль волокон системы Обнаружения, контрастность интерференционных полос соответствующей выходной мощности МЦ может произвольным образом изменяться во времени.
В устройстве предпочтительных вариантов реализации изобретения необходимо искать и находить входные состояния поляризации для направлений CW и CCW двунаправленного МЦ 10, которые соответствуют тому, чтобы на обоих МЦ выходах имелась бы одинаковая контрастность интерференционных полос и фазы были бы согласованы. Один вариант выполнения этого - контроль двух МЦ выходных сигналов Системы Обнаружения при скремблировании контроллеров поляризации. Можно использовать любой из алгоритмов скремблирования, если только он достигает покрытия большинства возможных входных состояний поляризации за относительно короткое время.
Как только эти входные состояния поляризации найдены, они должны быть установлены для достижения согласования амплитуды и фазы выходной мощности МЦ. Для поддержания выходных сигналов МЦ при согласованных амплитуде и фазе необходимо также продолжать регулировать входные состояния поляризации для компенсации любых PIFF, которые могут привести к несогласованной контрастности интерференционных полос встречно-распространяющихся выходных сигналов и, следовательно, к несогласованным по фазе выходным сигналам МЦ. Это требует знания фактической контрастности интерференционных полос встречно-распространяющихся выходных сигналов двунаправленного МЦ.
Для устройства, которое использует CW лазер в качестве источника, невозможно непрерывно контролировать контрастность интерференционных полос двух выходных сигналов МЦ, особенно при отсутствии возмущений. Дело в том, что время, принятое для прохождения интенсивностей выходных сигналов МЦ по полному размаху амплитуды интерференционных полос, будет изменяться со временем и будет зависеть от случайных флуктуаций фазы в обоих плечах 14 и 15 системы МЦ 10, а также от PIFF из-за произвольных изменений двойного лучепреломления в волокнах вдоль длины двунаправленной системы МЦ.
Вместе с тем, можно определить, что максимальное состояние интерференционных полос существует для каждого выходного сигнала МЦ, если они проходят через или очень близко к нулевому или максимальному уровню интенсивности. Дело в том, что нулевой или максимальный уровень интенсивности уникальны для максимальной контрастности интерференционных полос. Так, для двунаправленной системы МЦ с контроллерами поляризации на входах двунаправленного МЦ, как показано на Фиг.4, один способ для определения необходимых входных состояний поляризации, которые связаны с контрастностью максимумов интерференционных полос согласованных по фазе выходных сигналов МЦ, представляет собой методику скремблирования поляризации для произвольного изменения входного состояния поляризации при одновременном контроле выходных сигналов МЦ. Когда интенсивность выходных сигналов МЦ достигает нуля (или находится вблизи нуля), или максимального уровня, то соответствующие входные поляризации могут быть использованы для установления интенсивности выходных сигналов МЦ до максимальной контрастности интерференционных полос.
Пусть имеется 2 возможных состояния входной поляризации, которые одновременно дают максимальную контрастность интерференционных полос для каждого направления в двунаправленном МЦ, и только два из 4 возможных образований пар состояний поляризации встречно-распространяющихся входных сигналов дадут согласованные по фазе выходные сигналы МЦ, тогда необходимо проверить, что выбранные два состояния поляризации дают согласованные по фазе выходные сигналы МЦ. Это может быть сделано посредством простого контроля выходных сигналов МЦ в течение предварительно заданного времени. Если они не в фазе, то может быть использовано скремблирование поляризации для нахождения двух поляризационных состояний входных сигналов и их соответствующих выходных сигналов максимальных интерференционных полос для продолжения поиска согласования фаз.
Как только согласованные по фазе состояния максимальных интерференционных полос найдены и установлены, может быть использован следящий алгоритм для поддержания выходных сигналов МЦ согласованными по фазе регулировкой приводов напряжения для отдельных пластин обоих контроллеров поляризации, соответственно.
Эта методика подробнее рассматривается в связи с Фиг.14 и 15. Один из недостатков использования этой методики заключается в том, что даже если непрерывно контролировать выходные сигналы МЦ, выходная контрастность интерференционных полос выходных сигналов МЦ непрерывно не контролируется. Для обнаружения максимальной интерференционной полосы необходимо дождаться, пока выходная интенсивность МЦ не дойдет или окажется очень близка к нулевому или максимальному уровню интенсивности. Поскольку выходные сигналы МЦ произвольно изменяются по скорости и амплитуде, время обнаружения максимальной выходной интерференционной полосы для любого из выходов МЦ также изменится. Другой недостаток заключается в том, что если на выходе МЦ находится в состоянии максимальной интерференционной полосы, но не на нулевом или максимальном уровне интенсивности, то не возможно обнаружить эту ситуацию с использованием только этой методики.
Более прямая методика должна была бы содержать непрерывный контроль контрастности интерференционных полос на выходах МЦ. Для этого требуется, чтобы интерференционные полосы создавались в системе искусственным образом.
Интерференционные полосы могут быть искусственно созданы в МЦ 10 с помощью преобразователя в одном из чувствительных плеч для модуляции фазы света, распространяющегося через волокно. Вместе с тем, для системы обнаружения местоположения события, для которой предпочтительнее, чтобы чувствительные кабели были полностью пассивными, это не представляется практическим решением.
Другая методика возбуждения интерференционных полос в волокне МЦ заключается в модуляции или возмущении длины волны лазерного источника 16. Поскольку имеется несогласование протяженностей плеч МЦ 14 и 15, то модуляция оптической длины волны (которая может также быть выражена как оптическая частота) приведет к созданию интерференционных полос. Это происходит из-за зависимой от длины волны разности фаз в плечах МЦ, обусловленной несогласованием их протяженностей. Для интерферометра Маха-Цендера 10 с несовпадением протяженности ΔL разность фаз Δφ между плечами может быть выражена как:
Figure 00000001
где nсо - показатель преломления сердцевины волокна, с - скорость света в вакууме и Δν - изменение оптической частоты лазера. В случае двунаправленного МЦ, как показано на Фиг.4, разность фаз Δφ между плечами МЦ будет одинаковой для каждого направления распространения. Следует отметить, что данная разность фаз дополнительна к разности фаз между плечами, которая порождается возмущением в датчике МЦ из-за события.
Для МЦ с рабочей точкой в квадратуре полный размах интерференционных полос может быть достигнут, для несогласованности данной протяженности, модуляцией частоты/длины волны лазерного источника на величину, которая приводит к Δφ=пс. Для типичного показателя преломления волоконной сердцевины nсо=1,46, несогласованности протяженности ΔL=1m, и полной интерференционной полосы Δφ=пc, возмущение оптической частоты будет:
Figure 00000002
Для центральной длины волны 1550 нм, это соответствует возмущению длины волны в ~0,8 пкм.
Один из самых простых вариантов модуляции длины волны стандартного лазерного диода заключается в модуляции управляющего тока лазера. Вместе с тем, лазеры этих типов обычно не достаточно когерентны для того, чтобы быть пригодными для рассматриваемых здесь применений.
Накачиваемый волоконный лазерный источник 16 требует механической модуляции волоконного лазерного резонатора, или волоконные брэгговские решетки, для получения модуляции длины волны. Этого можно достигнуть либо использованием метода температурной настройки, либо использованием механического метода пьезо-настройки, с пьезопреобразователем (PZT). Поскольку температурная настройка очень медленная, то метод пьезо-настройки больше подходит к такому лазеру для получения возмущения или модуляции длины волны.
При использовании возмущения длины волны лазера для непрерывного контроля контрастности интерференционной полосы МЦ необходимо создать, по меньшей мере, 2 полные искусственные интерференционные полосы на цикл PZT модуляции. Это требование определяется тем, как отмечено ранее, что рабочая точка МЦ дрейфует в квадратуру, и из квадратуры со временем, и создание только одной полной интерференционной полосы, то есть Δφ=180°, не будет достаточным для непрерывной демонстрации истинной контрастности интерференционной полосы. Это проиллюстрировано на Фиг.11.
На Фиг.10 показано, что для статического выхода МЦ рабочая точка, которая помещается точно в квадратуре, будучи подверженной синусоидальной фазовой (Δφ) модуляции с 180°-м размахом, приведет к полной интерференционной полосе на цикл фазовой модуляции. Другими словами, контрастность интерференционной полосы может быть непрерывно проконтролирована. Следует отметить, что поскольку передаточная функция МЦ представляет собой приподнятый косинус и она модулируется около квадратурной точки синусоидальным сигналом, то результирующие возбужденные интерференционные полосы будут дополнительно содержать гармоники основной частоты модуляции.
Вместе с тем, в реальном МЦ 10 выходная рабочая точка МЦ дрейфует в квадратуру и из квадратуры. Это проиллюстрировано на Фиг.11.
Вместе с тем, если возмущение использовано, для достижения, по меньшей мере, 360° модуляции фазы в любое время, то истинная контрастность интерференционной полосы возбужденных интерференционных полос может быть непрерывно проконтролирована, независимо от дрейфа рабочей точки выхода МЦ. Это проиллюстрировано на Фиг.12.
Если используется 360° модуляция фазы (или более), то есть возбуждены 2 интерференционные полосы за цикл модуляции, то это гарантирует, что истинная контрастность интерференционной полосы всегда будет измерима, независимо от дрейфа на выходе МЦ. По существу это производит более высокие гармоники в возбужденных интерференционных полосах. Если выходная рабочая точка дрейфует влево или вправо от квадратуры, то это приведет к более высоким гармоникам возмущающей частоты (2-я, 3-я, 4-я и т.д.), вместе с основной возмущающей частотой, присутствующей в возбужденных интерференционных полосах.
Для уверенности в том, что возбужденные интерференционные полосы не интерферируют с интерференционными полосами, обусловленными событиями, которые должны быть зарегистрированы устройством, частота возбужденных интерференционных полос должна быть вне частотного диапазона сигналов, детектируемых устройством при событии. Например, в типичной установке, где используемый частотный диапазон может быть 0-20 кГц, основная частота возбужденных интерференционных полос должна быть выше, например, 50кГц.
На Фиг.11 показано, что при дрейфе МЦ выходной рабочей точки 21 и фазовом возмущении 22, показанном на Фиг.11, полный возбужденный ряд интерференционных полос 23 не будет достигнут из-за дрейфа. На Фиг.12 показано, что при использовании полного 360°-го возмущения 25 истинная контрастность интерференционных полос 26 всегда присутствует в возбужденных интерференционных полосах независимо от дрейфа рабочей точки 21. При этом также удваивается частота для модуляции фазы 360°. На Фиг.10 статическая рабочая точка 15, находящаяся в квадратуре, и фазовое возмущение 25 всегда производят возбужденную полную интерференционную полосу 26, показанную на Фиг.10. На Фиг.10-12 фазовое возмущение осуществляется на частоте около 40 кГц. Частота интерференционных полос 26 на Фиг.10 составляет 40 кГц. На Фиг.11 можно видеть начало удвоения частоты 23, пока выходные интерференционные полосы на Фиг.12 включают в себя четные гармоники основной частоты, не исключая основную возмущающую частоту. Вообще говоря, выходные интерференционные полосы включают в себя соотношение нечетных и четных гармоник основной возмущающей частоты. Амплитуда нечетных и четных гармоник в любой момент времени зависит от того, где точно находится дрейфующая МЦ выходная рабочая точка в данный момент времени.
На Фиг.13 схематически показана блок-схема первого варианта реализации изобретения, в котором контроллер 20 отделен от интерферометра Маха-Цендера, который образует чувствительную систему различных вариантов реализации изобретения. На Фиг.14 показан двунаправленный МЦ 10 и подводящий отрезок волокна 12, как отмечено ранее. Подводящее волокно соединяется с ответвителем С4 так, чтобы первый сигнал был подан в плечо 14 интерферометра Маха-Цендера 10 и второй сигнал был подан в плечо 15 интерферометра Маха-Цендера 10. Интерферометр Маха-Цендера 10 имеет чувствительную протяженность Ls, которая обычно составляет несколько километров или более. Плечи 14 и 15 соединяются со следующим ответвителем С5 так, чтобы введенные в плечи 14 и 15 сигналы вновь объединились в С5 и были приняты в волокне 31 как выходной сигнал CW. Одновременно встречно-распространяющийся сигнал принимается в волокне 31, которое, в свою очередь, проходит на ответвитель С5 и затем подается в плечи 14 и 15 так, чтобы два сигнала вновь объединились в С4 и вышли из ответвителя С4 в подводящий отрезок волокна 12. Таким образом, встречно-распространяющиеся сигналы принимаются в обоих плечах 14 и 15. Выходной, распространяющийся сигнал, принятый в подводящем отрезке волокна 12, проходит через ответвитель С2 на первый детектор 40 и другой встречно-распространяющийся сигнал проходит через волокно 31 и через ответвитель С3 на второй детектор 50. Таким образом, если имеется возмущение, как показано на Фиг.14, в части чувствительной протяженности Ls интерферометра Маха-Цендера 10, то модифицированные встречно-распространяющиеся сигналы продолжают распространяться через чувствительные плечи 14 и 15 в соответствующие детекторы 40 и 50. Временное различие между приемом модифицированных встречно-распространяющихся сигналов подается детекторами 40 и 50 на выходной монитор 60 и затем на процессор 62, которые образуют блок обнаружения предпочтительного варианта реализации так, чтобы событие могло быть распознано и местоположение события было бы определено по временному различию между приемом модифицированных встречно-распространяющихся сигналов, обнаруженных детекторами 40 и 50.
На Фиг.15 показано, что контроллер 20 включает в себя полностью когерентный лазер 16, который вырабатывает выходной световой сигнал, расщепляемый на два ответвителем С1. Разделенные сигналы затем поступают на контроллеры поляризации PCCW и PCCCW через волокна 37 и 38. Контроллеры поляризации подключены, соответственно, к ответвителям С2 и С3 так, чтобы встречно-распространяющиеся сигналы были введены в интерферометр Маха-Цендера 10, как указано ранее. Контроллеры поляризации управляют входными состояниями поляризации сигналов, вводимых в плечи 14 и 15.
Для нахождения входных состояний поляризации, которые производят согласованные выходные сигналы на детекторах 40 и 50, контроллеры поляризации 43 и 44 могут быть скремблированы для произвольного изменения входных состояний поляризации так, чтобы максимально возможное число состояний перекрывалось по возможности за наиболее короткое время. При непрерывном контроле выходные сигналы на детекторах 40 и 50, состояния поляризации, соответствующие выходным сигналам, проходящим через нуль или вблизи нулевого уровня, или через максимумы, загружаются в микропроцессор 62. Когда выходной сигнал достигает нулевого или максимального уровня, то соответствующее входное состояние поляризации считается таким, что оно позволяет достичь максимальной контрастности интерференционных полос для этого выходного сигнала. Когда достаточное количество входных состояний поляризации загружено, скремблирование прекращается. Выходные сигналы из плеч 14 и 15, принятые детекторами 40 и 50, затем сравниваются для объединения входных состояний поляризации, и определяется степень фазового согласования между встречно-распространяющимися выходными сигналами. Если степень согласования фазы заранее задается приемлемым уровнем, то соответствующие состояния входной поляризации, для которых степень согласования фазы приемлема, устанавливаются для поддержания согласованных по фазе выходных сигналов, обнаруженных детекторами 40 и 50. Если приемлемая степень фазового согласования не достигнута, то процедура скремблирования и сравнения, указанная выше, повторяется снова, пока приемлемые степени фазового согласования не будут достигнуты.
Контроллеры поляризации 43 и 44 управляются PC драйвером 60 так, чтобы непрерывно изменять поляризацию сигналов в волокнах 37 и 38 и, следовательно, поступающих через ответвители С2 и С3 встречно-распространяющихся входных сигналов на плечи 14 и 15.
Когда найдены необходимые входные состояния поляризации, которые достигают согласованной по фазе максимальной контрастности интерференционных полос для выходных сигналов, обнаруженных детекторами 40 и 50, то эти необходимые входные состояния поляризации устанавливаются, и выходные сигналы, обнаруженные детекторами 40 и 50, непрерывно контролируются и микропроцессор 62 регулирует контроллеры поляризации через PC драйвер 63 для поддержания условия фазового согласования.
Выходной монитор 60 определяет событие посредством прохождения сигналов, обнаруженных детекторами 40 и 50, через полосовой фильтр, с полосой частот пропускания, например, от 1 кГц до 20 кГц (что представляет собой ожидаемую частоту для реального события, или возмущения в устройстве, которые должны быть обнаружены). Поступление модифицированных распространяющихся сигналов в пределах этой полосы пропускания и разность по времени принятых встречно-распространяющихся сигналов позволяют обнаружить событие, а также определить его местоположение.
Таким образом, отфильтрованные полосовым фильтром сигналы подаются от монитора 60 на процессор 62 для определения местоположения события.
Для установления состояний поляризации полный выходной сигнал от детекторов 40 и 50, относящийся к обоим встречно-распространяющимся сигналам, принимается монитором 60. Фактически это необработанный сигнал от обоих детекторов 40 и 50, который отфильтрован по нижним частотам и используется для отыскания максимальных интерференционных полос при скремблировании поляризации посредством обнаружения нулевых или максимальных уровней интенсивности. Когда максимальные интерференционные полосы найдены, процессор 62 проверяет также фазовое согласование. Когда желаемые состояния поляризации установлены, они непрерывно загружаются на PC драйвер и, в свою очередь, PC драйвер управляет контроллерами поляризации 43 и 44 для поддержания этих состояний поляризации во время использования системы. Контроль может выполняться непрерывно, или с перерывами, для проверки того, что необходимые состояния поляризации поддерживаются.
На Фиг.16 показан второй вариант реализации изобретения. Этот вариант реализации аналогичен показанному на Фиг.14, за исключением того, что интерферометр Маха-Цендера 10 имеет такую несогласованность длин ΔL плеч 14 и 15, что одно из плеч, 14, имеет длину Ls-ΔL, а плечо 15 имеет длину Ls. Несогласованность длин требуется для достижения возбуждения искусственных интерференционных полос посредством возмущения длины волны лазерного источника 16. Один вход ответвителя С4 используется как вход по часовой стрелке на интерферометр Маха-Цендера 10, а другой вход ответвителя С4 не используется, как и в ранее описанном варианте реализации. Аналогично, один из входов ответвителя С5 подключен к волокну 13 и обеспечивает ввод встречно-распространяющегося сигнала, а другое плечо ответвителя С5 также не используется.
На Фиг.17 показан контроллер 20 в соответствии с этим вариантом реализации изобретения, причем подобные ссылочные позиции соответствуют подобным компонентам, приведенным на Фиг.15.
В этом варианте реализации изобретения лазер 16 представляет собой диодный лазер накачки на легированном волокне с брэгговской решеткой. Для возмущения длины волны лазера 16 используется пьезоэлектрический преобразователь (не показан), например, на внутренних брэгговских решетках в волоконном лазере для модуляции выходной длины волны лазера 16.
Для создания искусственных интерференционных полос возмущающий сигнал, имеющий частоту, которая выше частот возмущений вызванных событием, которые ожидаются на интерферометре Маха-Цендера 10 и регистрируемые интерферометром Маха-Цендера 10, подается на лазер 16 от источника 70 возмущающего сигнала. Это возмущает длину волны лазера и эффективно создает интерференционные полосы, частота которых состоит из частоты возмущения и гармоник возмущающей частоты (как было рассмотрено подробно в связи с Фиг.10-12).
Использованием подходящего рассогласования длин ΔL, указанного ранее, и регулировкой амплитуды возмущения создаются непрерывные интерференционные полосы на выходах интерферометра Маха-Цендера 10, которые подаются на детекторы 40 и 50. Принимаемые детекторами 40 и 50 выходные сигналы будут состоять из частоты возмущающего сигнала, а также из гармоник частоты возмущения. Монитор 80 контрастности интерференционных полос подключен к детекторам 40 и 50 для обнаружения искусственных интерференционных полос и определения контрастности интерференционных полос для каждого направления. Частотный диапазон искусственных интерференционных полос выше частотного диапазона сигнала происшествия, обусловленного возмущением от происшествия. Микропроцессор 62 использует подходящий алгоритм управления, например алгоритм модельной «закалки», управлением для поиска и регулировки контроллеров входной поляризации PCCW и PCCCW через драйвер 60 так, чтобы возбужденные искусственные интерференционные полосы имели максимальную контрастность. Фазовое согласование между возбужденными интерференционными полосами также обнаруживается микропроцессором 62, причем каждый раз, когда подходящее входное состояние поляризации от каждого из контроллеров достигается, то есть когда состояние поляризации установлено. Алгоритм управления используется для регулировки входных контроллеров поляризации PCCW и PCCCW для противодействия любому PIFF так, чтобы поддерживалось условие согласования по фазе для максимальной контрастности интерференционных полос.
На Фиг.18 показан еще один вариант реализации изобретения. При этом подобные ссылочные позиции использованы для указания подобных элементов, описанных ранее. Вариант реализации на Фиг.18 является модификацией рассмотренного выше варианта реализации на Фиг.17. Здесь также выходная длина волны лазера 16 возмущается описанным выше образом. Также входные состояния поляризации встречно-распространяющихся сигналов, подаваемых на волокна 12 и 31, управляются контроллерами поляризации 43 и 44, соответственно. Контроллеры 43 и 44 подключены к поляриметрам 46 и 47, которые измеряют, соответственно, состояние поляризации выходных сигналов контроллеров поляризации 43 и 44. Входные световые сигналы, имеющие состояния поляризации, подаются затем на волокна 12 и 31 через ответвители С2 и С3 так же, как описано выше. Поляриметры 46 и 47 позволяют соотносить контрастность интерференционных полос выходных сигналов от контроллеров 43 и 44 с их соответствующими входными состояниями поляризации. Поляриметры 46 и 47 также допускают возможность перехода определенным образом от одного входного состояния поляризации на другое для обоих направлений распространения, если это желательно. Фактически это дает вариант реализации управления поляризацией, который может быстро идентифицировать, где на сфере текущее входное состояние поляризации соотносится с двумя состояниями SOP максимально контрастных интерференционных полос для каждого направления распространения, а также как изменить контроллеры поляризации, чтобы было возможно найти и поддерживать входные состояния поляризации SOPCW и SOPCCW, которые производят согласованные по фазе двунаправленные выходные сигналы из интерферометра Маха-Цендера 10, обозначенные как CWout и CCWout на чертежах.
Поскольку модификации в объеме настоящего изобретения могут легко быть осуществлены специалистами в данной области техники, то должно быть ясно, что данное изобретение не ограничивается конкретным вариантом реализации, описанной выше в качестве примера.
В нижеследующих пунктах формулы изобретения и в предшествующем описании изобретения, исключая случаи, когда контекст требует другого выражения или необходимого смысла, слово "содержит", или его варианты, например "содержат" или "содержащий", использовано в значении включения, то есть для определения присутствия установленных признаков, но не для исключения присутствия или добавления дополнительных признаков в различных вариантах реализации изобретения.

Claims (10)

1. Устройство для локализации местоположения события, содержащее:
источник света;
волновод для приема света от источника света так, чтобы свет распространялся в обоих направлениях вдоль волновода, тем самым обеспечивая встречно-распространяющиеся оптические сигналы в волноводе, причем волновод выполнен имеющим встречно-распространяющиеся оптические сигналы, модифицированные посредством события для предоставления модифицированных встречно-распространяющихся оптических сигналов, которые продолжают распространяться вдоль волновода, при этом волновод содержит первое плечо для приема встречно-распространяющихся сигналов и второе плечо для приема встречно-распространяющихся сигналов, причем первое плечо и второе плечо образуют интерферометр Маха-Цендера, и
средство обнаружения для обнаружения модифицированных встречно-распространяющихся оптических сигналов и для определения различия моментов времени приема модифицированных встречно-распространяющихся оптических сигналов для определения местоположения события, отличающееся тем, что содержит контроллер для управления состояниями поляризации встречно-распространяющихся оптических сигналов таким образом, чтобы амплитуда и фаза сигналов были согласованы; при этом первое плечо интерферометра Маха-Цендера имеет протяженность, отличающуюся от протяженности второго плеча интерферометра Маха-Цендера, чтобы протяженности первого плеча и второго плеча были рассогласованы, и контроллер содержит элемент возмущения сигнала для обеспечения возмущения длины волны света от источника света на величину, которая обеспечивает возмущение разности фаз в плечах Маха-Цендера, по меньшей мере, на 360° для получения искусственных интерференционных полос так, что выходные встречно-распространяющиеся сигналы дрейфующей рабочей точки Маха-Цендера всегда отображают контрастность своих истинных интерференционных полос, при этом контроллер выполнен с возможностью поддержания согласованности по фазе и контрастности интерференционных полос.
2. Устройство по п.1, отличающееся тем, что контроллер дополнительно обеспечивает поддержание максимальных выходных интерференционных полос на выходе интерферометра Маха-Цендера.
3. Устройство по п.1 или 2, отличающееся тем, что контроллер содержит контроллер поляризации для каждого из встречно-распространяющихся сигналов.
4. Устройство по п.3, в котором контроллер включает в себя процессор, связанный с драйвером управления поляризацией, и драйвер управления поляризацией связан с контроллерами поляризации для управления контроллерами поляризации, тем самым устанавливая поляризацию сигналов, подаваемых от источника света на первое плечо и второе плечо интерферометра Маха-Цендера (МЦ) для в свою очередь установления поляризации встречно-распространяющихся сигналов.
5. Устройство по п.1, в котором источник света содержит лазерный источник света, имеющий брегговские решетки и регулятор для управления брегговскими решетками, и/или лазерный резонатор лазерного источника света для изменения длины волны выходного светового сигнала от лазерного источника света для получения встречно-распространяющихся сигналов.
6. Устройство по п.1, в котором средство обнаружения подключено к выходному монитору Маха-Цендера для контроля встречно-распространяющихся сигналов, обнаруженных средством обнаружения так, что когда модифицированные встречно-распространяющиеся сигналы обнаруживаются средством обнаружения (40, 50), выходной монитор МЦ обеспечивает сигналы для процессора для определения местоположения события.
7. Способ локализации события, содержащий этапы:
формирования волновода с первым плечом и вторым плечом с формированием интерферометра Маха-Цендера,
введения света в волновод таким образом, чтобы вызвать его распространение в обоих направлениях в качестве встречно-распространяющихся сигналов через первое плечо и второе плечо интерферометра Маха-Цендера, причем волновод выполнен имеющим встречно-распространяющиеся оптические сигналы, модифицированные посредством события для предоставления модифицированных встречно-распространяющихся оптических сигналов, которые продолжают распространяться вдоль волновода;
контроля, по существу, непрерывного и одновременного, модифицированных встречно-распространяющихся оптических сигналов так, что когда происходит событие, то оба модифицированных встречно-распространяющихся оптических сигнала, подвергнутых воздействию внешнего параметра, оказываются обнаруженными;
определения разности по времени между обнаруженными модифицированными сигналами для определения местоположения события, отличающийся тем, что дополнительно содержит этапы обеспечения протяженности первого плеча и второго плеча интерферометра Маха-Цендера рассогласованными, и
управления состояниями поляризации встречно-распространяющихся оптических сигналов, вводимых в волновод, для обеспечения согласования амплитуды и фазы встречно-распространяющихся сигналов из волновода и обеспечения возмущения длины волны введенного света на величину, которая обеспечивает возмущение разности фаз в плечах интерферометра Маха-Цендера, по меньшей мере, на 360° для получения искусственных интерференционных полос так, что выходные встречно-распространяющиеся сигналы дрейфующей рабочей точки Маха-Цендера отображают контрастность своих истинных интерференционных полос, и непрерывное управление состояниями поляризации таким образом, чтобы поддерживать как согласованности по фазе, так и контрастности интерференционных полос на выходе интерферометра Маха-Цендера.
8. Способ по п.7, в котором состояния поляризации встречно-распространяющихся сигналов обеспечивают согласованные по амплитуде и фазе встречно-распространяющиеся сигналы из волновода.
9. Способ по п.8, в котором этап управления состояниями поляризации содержит произвольное изменение входных состояний поляризации встречно-распространяющихся сигналов при контроле встречно-распространяющихся выходных оптических сигналов из интерферометра Маха-Цендера для обнаружения состояния, по существу, нулевой интенсивности или состояния максимальной интенсивности встречно-распространяющихся сигналов и выбор входных поляризаций, которые обеспечивают, по существу, нулевую или, по существу, максимальную интенсивности.
10. Способ по п.9, в котором этап управления состояниями поляризации содержит управление, по меньшей мере, одним контроллером поляризации, тем самым устанавливая входное состояние поляризации сигналов, подаваемых от источника света на каждый вход двунаправленного интерферометра Маха-Цендера для обеспечения согласованных по фазе встречно-распространяющихся выходных сигналов.
RU2007130725/28A 2005-01-11 2005-12-15 Устройство и способ использования встречно-распространяющегося сигнала для локализации событий RU2398185C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AU2005900109 2005-01-11
AU2005900109A AU2005900109A0 (en) 2005-01-11 Apparatus and method for using a counter-propagating signal method for locating events

Publications (2)

Publication Number Publication Date
RU2007130725A RU2007130725A (ru) 2009-02-20
RU2398185C2 true RU2398185C2 (ru) 2010-08-27

Family

ID=36677293

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007130725/28A RU2398185C2 (ru) 2005-01-11 2005-12-15 Устройство и способ использования встречно-распространяющегося сигнала для локализации событий

Country Status (12)

Country Link
US (2) US20060163457A1 (ru)
EP (2) EP2071374B1 (ru)
JP (1) JP5060310B2 (ru)
KR (1) KR101243049B1 (ru)
CN (1) CN100526925C (ru)
CA (1) CA2593628C (ru)
HK (1) HK1113825A1 (ru)
IL (1) IL184304A (ru)
MX (1) MXPA05014099A (ru)
RU (1) RU2398185C2 (ru)
WO (1) WO2006074502A1 (ru)
ZA (1) ZA200705625B (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2761370C1 (ru) * 2020-09-28 2021-12-07 Акционерное Общество "Институт "Оргэнергострой" Извещатель охранный волоконно-оптический с линейной частью с интерферометром с двумя плечами
RU2769886C2 (ru) * 2020-09-28 2022-04-07 Акционерное Общество "Институт "Оргэнергострой" Извещатель охранный волоконно-оптический с линейной частью с совмещенными интерферометрами
RU2778043C2 (ru) * 2020-09-28 2022-08-12 Акционерное Общество "Институт "Оргэнергострой" Комбинированные интерферометры для извещателя охранного волоконно-оптического

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0407386D0 (en) * 2004-03-31 2004-05-05 British Telecomm Monitoring a communications link
US7323677B1 (en) * 2004-07-15 2008-01-29 Mississippi State University Fiber-bragg grating-loop ringdown method and apparatus
WO2006035198A1 (en) * 2004-09-30 2006-04-06 British Telecommunications Public Limited Company Identifying or locating waveguides
GB0421747D0 (en) * 2004-09-30 2004-11-03 British Telecomm Distributed backscattering
ATE498954T1 (de) * 2004-12-17 2011-03-15 British Telecomm Netzwerkbeurteilung
JP5060310B2 (ja) * 2005-01-11 2012-10-31 フューチャー ファイバー テクノロジーズ ピーティーワイ リミテッド 事象の位置を決定するための、対向伝搬信号を使用した装置および方法
US7499176B2 (en) * 2007-02-13 2009-03-03 Future Fibre Technologies Pty Ltd Apparatus and method for using a counter-propagating signal method for locating events
EP1708388A1 (en) * 2005-03-31 2006-10-04 British Telecommunications Public Limited Company Communicating information
EP1713301A1 (en) * 2005-04-14 2006-10-18 BRITISH TELECOMMUNICATIONS public limited company Method and apparatus for communicating sound over an optical link
EP1826924A1 (en) * 2006-02-24 2007-08-29 BRITISH TELECOMMUNICATIONS public limited company Sensing a disturbance
WO2007096579A1 (en) * 2006-02-24 2007-08-30 British Telecommunications Public Limited Company Sensing a disturbance
WO2007096578A1 (en) * 2006-02-24 2007-08-30 British Telecommunications Public Limited Company Sensing a disturbance
CN101410696B (zh) * 2006-04-03 2011-01-05 英国电讯有限公司 干扰位置的估计
WO2008119107A1 (en) * 2007-04-02 2008-10-09 Future Fibre Technologies Pty Ltd Method and apparatus for monitoring a structure
JP2010139253A (ja) * 2008-12-09 2010-06-24 Sumitomo Electric Ind Ltd 光線路監視システムおよびシステムに含まれる監視装置
WO2012018272A1 (pt) 2010-08-02 2012-02-09 Unitelco - Engenharia E Construção Em Telecomunicações, S.A. Sistema de monitorização remota de integridade de redes, e respectivo método de operação
US8873064B2 (en) * 2010-10-14 2014-10-28 Fibersonics Inc. Fiber-optic disturbance detection using combined Michelson and Mach-Zehnder interferometers
FR2966926B1 (fr) * 2010-11-03 2012-12-21 Ixsea Systeme interferometrique apolarise et procede de mesure interferometrique apolarise
EP2690420B1 (en) * 2012-06-14 2014-08-13 Alcatel Lucent Method of estimating a reflection profile of an optical channel
CN103344314B (zh) * 2013-06-15 2018-10-26 威海北洋光电信息技术股份公司 M-z光纤振动传感系统及其断纤检测方法
CN103398731B (zh) * 2013-08-08 2015-09-23 南昌航空大学 基于dsp时间差测量的马赫-泽德光纤传感定位方法
EP3469669A4 (en) * 2016-06-03 2020-02-19 Km Labs Inc. USE OF ELECTRONICALLY CONTROLLED POLARIZATION ELEMENTS FOR LAUNCHING AND OPTIMIZING SYNCHRONIZATION OF LASER MODES
CN109342830B (zh) * 2018-10-23 2021-07-02 山西大学 全光纤马赫曾德尔干涉仪的微波场强原子测量装置
CN110926511B (zh) * 2019-12-06 2021-11-26 北京工业大学 一种宽带高分辨率光谱响应测量方法
JP7419949B2 (ja) * 2020-04-16 2024-01-23 富士通オプティカルコンポーネンツ株式会社 光伝送装置、光合波器及び光伝送方法
US11650340B2 (en) 2020-12-01 2023-05-16 Nokia Solutions And Networks Oy Detection of seismic disturbances using optical fibers

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1497995A (en) * 1976-04-13 1978-01-12 Standard Telephones Cables Ltd Fibre optic acoustic monitoring arrangement
US4635637A (en) * 1984-03-29 1987-01-13 Schreiber Saul N Surgical suture
GB8609732D0 (en) * 1986-04-22 1986-05-29 Plessey Co Plc Optical fibre sensing systems
US5311592A (en) * 1986-06-11 1994-05-10 Mcdonnell Douglas Corporation Sagnac interferometer based secure communication system
US4787741A (en) * 1986-10-09 1988-11-29 Mcdonnell Douglas Corporation Fiber optic sensor
GB2204204B (en) 1987-01-03 1990-10-31 Plessey Co Plc Improvements relating to optical detection systems
US4848906A (en) * 1987-02-02 1989-07-18 Litton Systems, Inc. Multiplexed fiber optic sensor
JPS63319253A (ja) 1987-06-19 1988-12-27 Mitsubishi Electric Corp 低損失酸化物磁性材料
US4915503A (en) * 1987-09-01 1990-04-10 Litton Systems, Inc. Fiber optic gyroscope with improved bias stability and repeatability and method
US4976507A (en) * 1988-06-20 1990-12-11 Mcdonnell Douglas Corporation Sagnac distributed sensor
US4898468A (en) * 1988-06-20 1990-02-06 Mcdonnell Douglas Corporation Sagnac distributed sensor
US4897543A (en) * 1989-01-25 1990-01-30 The United States Of America As Represented By The Secretary Of The Navy Apparatus and method for minimizing polarization-induced signal fading in an interferometric fiber-optic sensor using input-polarization control
SE463385B (sv) * 1989-03-08 1990-11-12 Stefan Karlsson Saett att utnyttja en optisk fiber som sensor
US4940302A (en) * 1989-03-13 1990-07-10 The Boeing Company Integrated optics waveguides with large phase shifts
US5046848A (en) * 1989-09-08 1991-09-10 Mcdonnell Douglas Corporation Fiber optic detection system using a Sagnac interferometer
US5455698A (en) * 1989-12-27 1995-10-03 Mcdonnell Douglas Corporation Secure communication alarm system
US5102421A (en) * 1990-06-14 1992-04-07 Wm. E. Anpach, III Suture anchor and method of forming
US5402231A (en) * 1992-08-24 1995-03-28 Mcdonnell Douglas Corporation Distributed sagnac sensor systems
CA2100532C (en) * 1992-09-21 2004-04-20 David T. Green Device for applying a meniscal staple
US5473459A (en) * 1993-12-03 1995-12-05 Optimux Systems Corporation Optical telecommunications system using phase compensation interferometry
US5466243A (en) * 1994-02-17 1995-11-14 Arthrex, Inc. Method and apparatus for installing a suture anchor through a hollow cannulated grasper
IL111985A (en) * 1994-12-14 1999-04-11 Medical Influence Technologies Staple and thread assembly particularly for use in power-driven staplers for medical suturing
US5796473A (en) * 1995-03-20 1998-08-18 Honda Giken Kogyo Kabushiki Kaisha Method of adjusting optical axis of headlight of vehicle
US5636021A (en) * 1995-06-02 1997-06-03 Udd; Eric Sagnac/Michelson distributed sensing systems
FR2753530B1 (fr) * 1996-09-18 1998-11-13 Alcatel Contracting Sa Dispositif de mesure interferometrique en lumiere polarisee
JP3759798B2 (ja) * 1996-11-15 2006-03-29 財団法人電力中央研究所 落雷点標定方法
JPH10160635A (ja) 1996-12-03 1998-06-19 Nippon Telegr & Teleph Corp <Ntt> 多心光ファイバのスキュー検査方法およびスキュー検査装置
US6149658A (en) * 1997-01-09 2000-11-21 Coalescent Surgical, Inc. Sutured staple surgical fasteners, instruments and methods for minimally invasive vascular and endoscopic surgery
US6027523A (en) * 1997-10-06 2000-02-22 Arthrex, Inc. Suture anchor with attached disk
JP2000048269A (ja) * 1998-07-28 2000-02-18 Furukawa Electric Co Ltd:The 侵入位置検出装置
GB9821956D0 (en) * 1998-10-09 1998-12-02 Univ Southampton Novel system to detect disturbance in optical fibres & cables
US6200330B1 (en) * 1998-11-23 2001-03-13 Theodore V. Benderev Systems for securing sutures, grafts and soft tissue to bone and periosteum
JP4869480B2 (ja) 1998-12-18 2012-02-08 フューチャー ファイバー テクノロジーズ ピーティーワイ リミテッド 対向伝播信号法を用いて構造を監視しイベントの位置を見つけるための装置及び方法
US6600586B1 (en) * 1999-05-10 2003-07-29 Northrop Grumman Corporation Normalization method for acquiring interferometer phase shift from frequency division multiplexed fiber optic sensor arrays
US6575976B2 (en) * 2000-06-12 2003-06-10 Arthrex, Inc. Expandable tissue anchor
US6485504B1 (en) * 2000-06-22 2002-11-26 James A. Magovern Hard or soft tissue closure
US6652563B2 (en) * 2001-10-02 2003-11-25 Arthrex, Inc. Suture anchor with internal suture loop
KR100407824B1 (ko) * 2002-02-21 2003-12-01 한국전자통신연구원 전송광섬유에서 발생하는 편광모드분산을 보상하는 방법및 장치
US7142736B2 (en) * 2004-01-05 2006-11-28 Optellios, Inc. Distributed fiber sensor with interference detection and polarization state management
US7139476B2 (en) * 2004-06-15 2006-11-21 Optellios, Inc. Distributed fiber sensor with detection and signal processing using polarization state management
EP1776784A4 (en) * 2004-06-15 2007-10-17 Optellios Inc FIBER OPTIC SENSOR SENSITIVE TO PHASE
US7499176B2 (en) * 2007-02-13 2009-03-03 Future Fibre Technologies Pty Ltd Apparatus and method for using a counter-propagating signal method for locating events
JP5060310B2 (ja) * 2005-01-11 2012-10-31 フューチャー ファイバー テクノロジーズ ピーティーワイ リミテッド 事象の位置を決定するための、対向伝搬信号を使用した装置および方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2761370C1 (ru) * 2020-09-28 2021-12-07 Акционерное Общество "Институт "Оргэнергострой" Извещатель охранный волоконно-оптический с линейной частью с интерферометром с двумя плечами
RU2769886C2 (ru) * 2020-09-28 2022-04-07 Акционерное Общество "Институт "Оргэнергострой" Извещатель охранный волоконно-оптический с линейной частью с совмещенными интерферометрами
RU2778043C2 (ru) * 2020-09-28 2022-08-12 Акционерное Общество "Институт "Оргэнергострой" Комбинированные интерферометры для извещателя охранного волоконно-оптического
RU2781228C2 (ru) * 2020-09-28 2022-10-07 Акционерное Общество "Институт "Оргэнергострой" Совместные интерферометры для извещателя охранного волоконно-оптического

Also Published As

Publication number Publication date
HK1113825A1 (en) 2008-10-17
EP2071374A2 (en) 2009-06-17
KR20070105319A (ko) 2007-10-30
KR101243049B1 (ko) 2013-03-25
CN100526925C (zh) 2009-08-12
CA2593628A1 (en) 2006-07-20
CN101142506A (zh) 2008-03-12
MXPA05014099A (es) 2006-07-10
EP1836515A4 (en) 2009-07-01
JP5060310B2 (ja) 2012-10-31
IL184304A0 (en) 2007-10-31
WO2006074502A1 (en) 2006-07-20
CA2593628C (en) 2015-06-16
IL184304A (en) 2011-11-30
RU2007130725A (ru) 2009-02-20
US20060163457A1 (en) 2006-07-27
EP2071374A3 (en) 2009-07-15
JP2008527549A (ja) 2008-07-24
US20080291462A1 (en) 2008-11-27
EP1836515A1 (en) 2007-09-26
US7499177B2 (en) 2009-03-03
ZA200705625B (en) 2008-09-25
EP2071374B1 (en) 2016-12-14

Similar Documents

Publication Publication Date Title
RU2398185C2 (ru) Устройство и способ использования встречно-распространяющегося сигнала для локализации событий
US7499176B2 (en) Apparatus and method for using a counter-propagating signal method for locating events
AU2003217614B2 (en) (Fiber) optic sensor with proper modulation
CN106796125B (zh) 具有微分调制相位检测的干涉测定传感器
EP0410057B1 (en) Wavelength meter
AU2005325055B2 (en) Apparatus and method for using a counter-propagating signal method for locating events
EP0124524B1 (en) Interferometer with kerr effect compensation
JPH07128078A (ja) カー効果補償を伴なう干渉計
Terrel Rotation sensing with optical ring resonators
Leandro González et al. High resolution polarization-independent highbirefringence fiber loop mirror sensor