RU2391591C2 - Устройство для регулирования потока текучей среды - Google Patents

Устройство для регулирования потока текучей среды Download PDF

Info

Publication number
RU2391591C2
RU2391591C2 RU2007134150A RU2007134150A RU2391591C2 RU 2391591 C2 RU2391591 C2 RU 2391591C2 RU 2007134150 A RU2007134150 A RU 2007134150A RU 2007134150 A RU2007134150 A RU 2007134150A RU 2391591 C2 RU2391591 C2 RU 2391591C2
Authority
RU
Russia
Prior art keywords
seal
fluid
valve seat
sealing surface
regulating element
Prior art date
Application number
RU2007134150A
Other languages
English (en)
Other versions
RU2007134150A (ru
Inventor
Рэймонд В. МАЙЧИЛ (US)
Рэймонд В. МАЙЧИЛ
Дэйвид Дж. ВЕСТУОТЕР (US)
Дэйвид Дж. ВЕСТУОТЕР
Original Assignee
Фишер Контролз Интернешнел Ллс
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Фишер Контролз Интернешнел Ллс filed Critical Фишер Контролз Интернешнел Ллс
Publication of RU2007134150A publication Critical patent/RU2007134150A/ru
Application granted granted Critical
Publication of RU2391591C2 publication Critical patent/RU2391591C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K25/00Details relating to contact between valve members and seats
    • F16K25/04Arrangements for preventing erosion, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K3/00Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing
    • F16K3/22Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with sealing faces shaped as surfaces of solids of revolution
    • F16K3/24Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with sealing faces shaped as surfaces of solids of revolution with cylindrical valve members
    • F16K3/246Combination of a sliding valve and a lift valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K47/00Means in valves for absorbing fluid energy
    • F16K47/08Means in valves for absorbing fluid energy for decreasing pressure or noise level and having a throttling member separate from the closure member, e.g. screens, slots, labyrinths
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86493Multi-way valve unit
    • Y10T137/86718Dividing into parallel flow paths with recombining
    • Y10T137/86734With metering feature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86493Multi-way valve unit
    • Y10T137/86718Dividing into parallel flow paths with recombining
    • Y10T137/86759Reciprocating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86493Multi-way valve unit
    • Y10T137/86718Dividing into parallel flow paths with recombining
    • Y10T137/86759Reciprocating
    • Y10T137/86791Piston
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86493Multi-way valve unit
    • Y10T137/86718Dividing into parallel flow paths with recombining
    • Y10T137/86759Reciprocating
    • Y10T137/86791Piston
    • Y10T137/86799With internal flow passage
    • Y10T137/86807Sequential opening or closing of serial ports in single flow line

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lift Valve (AREA)
  • Sliding Valves (AREA)

Abstract

Изобретение относится к трубопроводной арматуре. Устройство для регулирования потока текучей среды содержит корпус, имеющий вход, выход и проходящий от входа до выхода канал для формирования траектории текучей среды. К корпусу присоединено кольцо седла клапана, имеющее отверстие, через которое проходит траектория потока текучей среды. Кроме того, к корпусу присоединена клетка, имеющая внутренний канал, при этом клетка содержит, по меньшей мере, один проход, через который проходит траектория потока текучей среды. С внутренним каналом клетки согласован по размеру регулирующий элемент, установленный с возможностью перемещения по оси между открытым и запирающим положениями. Указанный элемент задает уплотнительную поверхность, ориентированную, по существу, параллельно оси. Уплотнение выполнено с возможностью взаимодействия с уплотнительной поверхностью, когда регулирующий элемент находится, по существу, в положении запирания. Таким образом, ограничивается прохождение текучей среды через отверстие кольца седла клапана. 3 н. и 17 з.п. ф-лы, 4 ил.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к устройствам для регулирования потока текучей среды, более конкретно к уплотнению, предназначенному для взаимодействия с применяемым в указанных устройствах регулирующим (дроссельным) элементом.
Уровень техники
Для регулирования параметров потока текучей среды, проходящего через трубу, обычно применяют специальные устройства соответствующего назначения. К указанным устройствам относятся, например, регулирующие клапаны и регуляторы. Типичное устройство такого типа содержит корпус клапана, имеющий вход, выход и проходящий от входа до выхода канал для формирования траектории текучей среды. К корпусу присоединено кольцо седла клапана с отверстием, через которое проходит траектория потока. Кроме того, имеется регулирующий элемент, например затвор, позиционируемый (переставляемый) относительно кольца седла и изменяющий, таким образом, поток текучей среды через указанное отверстие.
В известных устройствах, предназначенных для регулирования потока текучей среды, используется узел в виде стакана, в котором так называемая клетка служит для направленного перемещения регулирующего элемента. Клетка имеет внутренний канал, в который может быть установлен регулирующий элемент, а также, по меньшей мере, один проход, через который проходит траектория потока. Для регулирующего элемента предусмотрена возможность перемещения к положению запирания, в котором он перекрывает, по меньшей мере, один проход через клетку. Однако между наружной поверхностью регулирующего элемента и поверхностью внутреннего канала клетки вследствие допусков при механической обработке образуется тонкий кольцевой зазор, через который может произойти утечка текучей среды. Тем самым в ситуации, когда устройство считается находящимся в положении запирания, образуется потенциальный источник утечки. Как правило, для полного запирания устройства на нижней кромке регулирующего элемента создают закрывающее усилие, прикладываемое исполнительным механизмом к кольцу седла. Тем самым в устройстве обеспечивается наличие главного уплотнения.
Обычные главные уплотнения, сформированные посредством вдавливания регулирующего элемента в кольцо седла клапана, имеют тенденцию к протечкам. Основной путь утечки, который образуется в воздушном промежутке между регулирующим элементом и клеткой, идет от прохода клетки до отверстия кольца седла. Давление текучей среды перед главным уплотнением создает на нем перепад давлений. В результате любой дефект сопрягаемых поверхностей или какие-либо другие повреждения уплотнения создадут возможность утечки текучей среды в ситуации, когда регулирующий элемент находится в положении запирания. Такие утечки могут приводить к эрозии седла клапана, увеличивая тем самым поток утечки, а это в свою очередь усиливает эрозию седла.
Проблемы утечки и эрозии проявляются даже в большей степени, когда устройство для регулирования текучей среды применяют в эрозионной среде. В определенных приложениях, например при использовании клапанов для регулирования водяного потока, поступающего в паровой котел на электростанции, имеет место тенденция ускорения эрозии главного уплотнения. На предыдущих этапах развития отрасли, когда процедура запуска электростанции производилась в течение каждого года всего лишь несколько раз, причем станция работала обычно 24 часа в сутки, приложения, связанные с электростанциями, носили фактически неэрозионный характер. В более поздние годы запуски станций стали производиться ежедневно, причем станции функционируют только во время часов пиковой нагрузки в дневное время. В результате при расширении и сжатии труб во время периодов ежедневных нагревов и охлаждений образовавшиеся внутри труб отложения имеют тенденцию разрыхляться и обваливаться. Частицы таких разрыхленных отложений имеют высокую твердость и могут увлекаться потоком текучей среды при его прохождении через трубу и сквозь любые устройства для регулирования указанной среды, размещенные в системе. Скорость воды, которая приходит через трубы, используемые для подачи в паровые котлы, относительно велика. Поэтому частицы отложений, увлекаемые водой, ударяются о поверхности главного уплотнения и тем самым ускоряют эрозию седла клапана. Эрозия седла не позволяет клапану перекрыть поток воды, понижает эффективность электростанции и вызывает разрушение устройства, регулирующего поток текучей среды.
Один из традиционных подходов к решению проблемы эрозии заключался в применении более твердых материалов как для седла, так и для регулирующего элемента. Хотя для определенных приложений эта идея себя оправдывала, с недавних пор на многих электростанциях для обработки воды, которая подается в паровые котлы, начали использовать химические препараты, имеющие коррозионные свойства. Кроме того, в режиме многократно повторяющейся циклической операции контроль химического состава воды становится более трудным. В общем случае более твердые материалы более восприимчивы к коррозии, т.е. такой подход можно применять только в ограниченном числе приложений.
Другой известный подход заключался в использовании мягкого порошкового седла на кольце и твердого металлического седла на регулирующем элементе, так что указанный элемент вдавливается в кольцо с мягким седлом с усилием, достаточным для того, чтобы при каждом введении регулирующего элемента в положение запирания формировалось новое седло. Однако такой подход применим для ограниченного числа приложений, причем он имеет несколько недостатков. Прежде всего, все, что попадает между опорными поверхностями во время перевода регулирующего элемента в положение запирания, будет препятствовать полному перекрыванию, а это выражается в высокой скорости протекания текучей среды через седло, что приводит к быстрой эрозии мягкого материала. Если указанный элемент удается закрыть полностью, продукты износа будут создавать вмятины в мягком материале седла. Если после этого открыть клапан, продукты износа смываются, и на месте царапин в седле образуется путь утечки. В результате при последующем переводе регулирующего элемента в положение запирания снова будут иметь место высокая скорость протекания текучей среды и эрозия материала седла.
Краткое описание чертежей
На фиг.1 на виде сбоку в сечении представлено устройство для регулирования потока текучей среды, снабженное уплотнением, которое предотвращает протекание через основной путь утечки.
На фиг.2 в сечении представлен увеличенный фрагмент устройства, показанного на фиг.1.
На фиг.3 на виде сбоку в сечении представлен другой вариант указанного устройства, снабженного уплотнением, которое ограничивает протекание через основной путь утечки.
На фиг.4 представлен увеличенный фрагмент устройства, показанного на фиг.3.
Осуществление изобретения
Далее приведено описание уплотнения, предназначенного для ограничения протекания текучей среды через основной путь утечки. Указанное уплотнение расположено на этом пути и взаимодействует (входит в контакт) с регулирующим элементом, когда он находится в положении запирания. В результате протекание текучей среды через путь утечки уменьшается или полностью предотвращается. Предусмотрена возможность использования указанного уплотнения вместо обычных уплотнений, сформированных за счет взаимодействия регулирующего элемента и кольца седла клапана (качество такого уплотнения зависит от усилия, прикладываемого исполнительным механизмом к регулирующему элементу), или в добавление к ним. В одном из вариантов осуществления изобретения уплотнение контактирует с внутренним периметром регулирующего элемента, так что при нахождении указанного элемента в открытом положении оно расположено вне обычной траектории потока текучей среды.
На фиг.1 и 2 представлен первый вариант осуществления устройства для регулирования потока текучей среды. Указанное устройство состоит из регулирующего клапана 10 с уплотнением 12, взаимодействующим (входящим в контакт) с наружным периметром регулирующего элемента 14. Клапан 10 имеет корпус 16 с входом 18, выходом 20 и каналом 22 для текучей среды, проходящим между входом и выходом. К корпусу присоединено кольцо 24 седла клапана, задающее отверстие 26, через которое проходит траектория потока текучей среды. Верхняя часть кольца 24 снабжена контактной поверхностью 28.
К корпусу 16 присоединена клетка 30, которая находится в контакте с кольцом 24 седла. Указанная клетка образует внутренний канал 32 и, по меньшей мере, один проход 34, пролегающий через нее. Через этот проход проходит траектория 22 потока текучей среды.
Регулирующий элемент 14 имеет наружную поверхность 36, размеры которой выбраны из условия обеспечения введения данного элемента со скольжением во внутренний канал 32 клетки. К элементу 14 присоединен шток 38, присоединенный также к исполнительному механизму (не показан). Указанный механизм перемещает шток 38 и прикрепленный к нему элемент 14 возвратно-поступательным образом по оси 40. В представленном варианте регулирующий элемент 14 имеет опорную поверхность 41, взаимодействующую с контактной поверхностью 28 кольца седла клапана, когда элемент 14 находится в положении запирания. Проиллюстрированный регулирующий элемент 14 дополнительно содержит балансирующее отверстие 42, известным образом уравновешивающее давления текучей среды, воздействующие на противоположные стороны элемента 14.
Чтобы обеспечить для регулирующего элемента 14 возможность свободного перемещения по оси 40, предусмотрено наличие воздушного зазора 44 между наружной поверхностью 36 данного элемента 14 и внутренним каналом 32 клетки. Указанный зазор, ширина которого для наглядности изображена на фиг.2 в увеличенном масштабе, охватывает элемент 14 и, таким образом, имеет в данном примере осуществления изобретения кольцевую форму. В случае когда текучая среда течет по траектории 22 сверху вниз, проходя через отверстие 26 кольца седла, как это показано на фиг.1 и 2, зазор 44 создает два потенциальных пути утечки. Первый (основной) путь 46 идет от проходов 34 клетки и далее между контактной поверхностью 28 кольца седла и опорной поверхностью 41 клетки к отверстию 26. Второй (дополнительный) путь утечки 48 идет от проходов 34 клетки между клеткой 30 и регулирующим элементом 14 по направлению к верхнему участку указанного элемента. В представленном варианте элемент 14 снабжен узлом 50 уплотнения дополнительного пути утечки, причем этот узел находится в скользящем контакте с внутренним каналом 32 клетки, предотвращая протекание текучей среды через дополнительный путь 48 утечки.
Для уменьшения или предотвращения протекания текучей среды через основной путь 46 утечки в устройстве предусмотрено наличие уплотнения 12. Оно расположено на пути 46 и находится в контакте с уплотнительной поверхностью 52, выполненной отдельно от опорной поверхности 41 и сформированной на наружном периметре элемента 14. В проиллюстрированном варианте осуществления клетка 30 и кольцо 24 седла образуют полость 54, размеры которой рассчитаны на введение в него уплотнения 12. Тем самым обеспечивается удерживание уплотнения 12 на месте. Уплотнительная поверхность 52 регулирующего элемента отделена от опорной поверхности 41 и расположена, по существу, параллельно оси 40. Поверхность 52 может иметь такой аксиальный размер (размер вдоль оси устройства), который позволяет ей входить в контакт с уплотнением 12 в интервале положений регулирующего элемента при его приближении к позиции полного запирания. Хотя на чертежах изображено кольцевое уплотнение 12 с С-образным поперечным сечением, должно быть понятно, что можно использовать и другие типы уплотнений. Для варианта с проиллюстрированным С-образным поперечным сечением преимуществом является возможность активирования уплотнения 12 давлением текучей среды, имеющим место в зазоре 44. Уплотнение 12 можно изготовить из металла, пластика или каких-либо других уплотняющих материалов с покрытием или без него.
В процессе работы, когда регулирующий элемент приближается к положению полного запирания, его уплотнительная поверхность 52 входит в контакт с уплотнением 12. В результате текучая среда, стремящаяся пройти по основному пути 46 утечки, блокируется указанным уплотнением. Если уплотнение изготовлено из гибкого материала, текучая среда входит с ним в контакт и деформирует, увеличивая его давление на уплотнительную поверхность 52 регулирующего элемента. В результате протекание текучей среды по пути 46 уменьшается. Таким образом, уплотнение 12 может выполнять функцию резервного уплотнения, дополняющего контакт между опорной поверхностью 41 регулирующего элемента и контактной поверхностью 28 кольца седла. В альтернативном варианте указанный контакт, т.е. главное уплотнение, можно вообще заменить уплотнением 52. В любом случае, протекание текучей среды по основному пути 46 утечки ослабляется или исключается вообще, в результате чего повреждение кольца 24 седла сводится к минимуму. В дополнение к сказанному следует отметить, что для регулирующего клапана 10 усилие, прилагаемое исполнительным механизмом для создания надежного уплотнения между регулирующим элементом 14 и кольцом 24 седла, больше не является принципиально важным фактором, т.е. требования к рабочим характеристикам указанного механизма понижаются.
На фиг.3 и 4 представлен альтернативный пример осуществления регулирующего клапана 110. В указанном клапане уплотнение 112 взаимодействует (входит в контакт) с регулирующим элементом 114, создавая тем самым главное уплотнение, которое предотвращает протекание текучей среды по основному пути 146 утечки. Клапан 110 содержит корпус 116, имеющий вход 118, выход 120 и проходящий между входом и выходом канал, задающий траекторию 122 потока текучей среды. К корпусу присоединено кольцо 124 седла клапана, задающее отверстие 126, через которое проходит траектория 122 потока. Кольцо 124 образует также ограничивающую поверхность 128.
К кольцу 124 седла присоединена клетка 130, формирующая внутренний канал 136. В ней выполнено множество проходов 134, по которым проходит траектория 122 потока текучей среды.
Регулирующий элемент 114 имеет наружную поверхность 132, размеры которой выбраны из условия обеспечения введения со скольжением в канал 136. К элементу 114 присоединен шток 138, присоединенный также к исполнительному механизму (не показан). Указанный механизм перемещает шток 138 и элемент 114 возвратно-поступательным образом по оси 140 между открытым и запирающим положениями. Кроме того, регулирующий элемент 114 имеет ограничивающую поверхность 141, выполненную с возможностью взаимодействия с ограничивающей поверхностью 128 кольца седла, ограничивая тем самым перемещение регулирующего элемента 114.
Вследствие допусков при механической обработке и других связанных с ней факторов между внутренним каналом 136 клетки и наружной поверхностью 132 регулирующего элемента образуется воздушный зазор 144. Указанный зазор, ширина которого для наглядности изображена на фиг.4 в увеличенном масштабе, представляет собой основной путь 146 утечки, идущий от проходов 134 клетки и далее между ограничивающей поверхностью 141 регулирующего элемента и ограничивающей поверхностью 128 кольца седла к отверстию 126 кольца седла. Соответственно когда регулирующий элемент находится в положении полного запирания, текучая среда может проходить от входа 118 через проходы 134 клетки, зазор 144 и по основному пути 146 утечки к отверстию 126 кольца седла.
Уплотнение 112 выполняет функцию главного уплотнения, уменьшая или предотвращая протекание текучей среды по основному пути 146 утечки. В представленном варианте осуществления кольцо 124 седла имеет часть в форме сальника 156, образующую вырез 158. Указанный вырез открыт со стороны, противоположной оси 140, и рассчитан на введение в него уплотнения 112 с целью фиксации положения этого уплотнения. Регулирующий элемент 114 имеет уплотнительную поверхность 152, расположенную на его внутреннем периметре и ориентированную, по существу, параллельно оси 140. Размеры и положение уплотнения 112 выбраны из условия обеспечения уплотнительного контакта с уплотнительной поверхностью регулирующего элемента, когда указанный элемент приближается к конечной точке перемещения, определяемой контактом поверхностей 128, 141. Указанное уплотнение изображено в виде кольца с круглым поперечным сечением, однако предусмотрена возможность применять и другие типы уплотнений, изготовленных из пластика или штампованного металла. Как и в предыдущем варианте осуществления, уплотнительная поверхность 152 регулирующего элемента имеет такой аксиальный размер (т.е. размер вдоль оси устройства), при котором любая точка этой поверхности в пределах указанного размера может взаимодействовать (входить в контакт) с уплотнением 112.
В процессе работы устройства уплотнение 112 эффективно минимизирует протекание текучей среды по основному пути 146 утечки и восприимчивость к эрозии. Когда регулирующий элемент 114 приближается к положению полного запирания, его внутренняя уплотнительная поверхность 152 входит в контакт с уплотнением 112, уменьшая или предотвращая протекание текучей среды по основному пути 146 утечки. Поскольку уплотнительная поверхность 152 расположена на внутреннем периметре элемента 114, она не находится на траектории 122 потока текучей среды и поэтому в меньшей степени подвергается разрушению под воздействием способствующих эрозии частиц, увлеченных текучей средой. Кроме того, предотвращение уплотнением 112 протекания текучей среды через основной путь 146 утечки не зависит от усилия, приложенного исполнительным механизмом к регулирующему элементу 114. Следует отметить также, что возможная эрозия ограничивающей поверхности 141 регулирующего элемента не приводит к разрушающим процессам в уплотнении 112, т.к. соответствующий участок главного уплотнения сформирован не поверхностью 141, а уплотнительной поверхностью 152. В этом отношении ограничивающую поверхность 141 можно специально удлинить, чтобы увеличить срок службы регулирующего элемента 114.
Хотя в настоящем описании приведены варианты осуществления изобретения с определенными входами и выходами, задающими конкретную траекторию потока, следует иметь в виду, что, не выходя из границ изобретения, вход и выход можно поменять местами. В частности, кроме описанного выше варианта, текучая среда может подниматься вверх через отверстие кольца седла, проходя мимо затвора к выходу через клетку. В приложениях, использующих такое обратное направление потока, описанные уплотнения обеспечат те же перечисленные выше преимущества.
Назначение приведенного подробного описания состоит только в облегчении понимания изобретения, и его не следует интерпретировать как вносящее какие-либо излишние ограничения, поскольку для специалистов в данной области будет очевидна возможность различных модификаций описанного устройства.

Claims (20)

1. Устройство для регулирования потока текучей среды, содержащее
корпус, имеющий вход, выход и проходящий от входа до выхода канал для формирования траектории текучей среды, кольцо седла клапана, присоединенное к корпусу и задающее отверстие, через которое проходит траектория потока текучей среды, клетку, присоединенную к корпусу и имеющую внутренний канал, при этом клетка содержит, по меньшей мере, один проход, через который проходит траектория потока текучей среды, регулирующий элемент, выполненный с возможностью введения во внутренний канал клетки и перемещения по оси между открытым и запирающим положениями, при этом регулирующий элемент задает уплотнительную поверхность, ориентированную, по существу, параллельно оси, и уплотнение, установленное с возможностью взаимодействия с уплотнительной поверхностью, когда регулирующий элемент находится, по существу, в положении запирания, с ограничением тем самым потока текучей среды через отверстие кольца седла клапана.
2. Устройство по п.1, отличающееся тем, что регулирующий элемент имеет опорную поверхность, выполненную с возможностью взаимодействия с кольцом седла клапана, когда регулирующий элемент находится в положении запирания, причем уплотнительная поверхность регулирующего элемента выполнена отдельно от его опорной поверхности.
3. Устройство по п.1, отличающееся тем, что, когда регулирующий элемент находится в положении запирания, между регулирующим элементом и клеткой образуется основной путь утечки, идущий между, по меньшей мере, одним проходом клетки и образованным кольцом седла клапана отверстием, через которое проходит поток текучей среды, при этом уплотнение установлено с возможностью, по существу, предотвратить протекание текучей среды через основной путь утечки.
4. Устройство по п.1, отличающееся тем, что уплотнительная поверхность находится на наружном периметре регулирующего элемента.
5. Устройство по п.4, отличающееся тем, что клетка присоединена к кольцу седла клапана, при этом клетка и кольцо седла клапана образуют полость с размерами, рассчитанными на введение в него уплотнения.
6. Устройство по п.1, отличающееся тем, что уплотнительная поверхность находится на внутреннем периметре регулирующего элемента.
7. Устройство по п.6, отличающееся тем, что кольцо седла клапана имеет уплотнительную секцию, задающую канавку, ориентированную по направлению к внутреннему периметру регулирующего элемента и имеющую размеры, рассчитанные на введение в нее уплотнения.
8. Устройство по п.1, отличающееся тем, что уплотнение представляет собой кольцевое уплотнение с С-образным поперечным сечением.
9. Устройство по п.1, отличающееся тем, что уплотнение представляет собой кольцевое уплотнение с круглым поперечным сечением.
10. Устройство по п.1, отличающееся тем, что уплотнительная поверхность регулирующего элемента имеет аксиальный размер, а уплотнение взаимодействует с уплотнительной поверхностью в любой точке в пределах указанного размера уплотнительной поверхности.
11. Устройство для регулирования потока текучей среды, содержащее
корпус, имеющий вход, выход и проходящий от входа до выхода канал для формирования траектории текучей среды, кольцо седла клапана, присоединенное к корпусу и имеющее отверстие, через которое проходит траектория потока текучей среды, клетку, присоединенную к корпусу и имеющую внутренний канал, при этом клетка содержит, по меньшей мере, один проход, через который проходит траектория потока текучей среды, регулирующий элемент, выполненный с возможностью введения во внутренний канал клетки и перемещения по оси между положением запирания, в котором регулирующий элемент взаимодействует с кольцом седла клапана, и открытым положением, при этом регулирующий элемент задает уплотнительную поверхность, расположенную на наружном периметре регулирующего элемента и ориентированную, по существу, параллельно оси, и уплотнение, установленное с возможностью взаимодействия с уплотнительной поверхностью, когда регулирующий элемент находится, по существу, в положении запирания, с ограничением тем самым потока текучей среды через отверстие кольца седла клапана.
12. Устройство по п.11, отличающееся тем, что регулирующий элемент имеет опорную поверхность, выполненную с возможностью взаимодействия с кольцом седла клапана, когда регулирующий элемент находится в положении запирания, причем уплотнительная поверхность регулирующего элемента выполнена отдельно от его опорной поверхности.
13. Устройство по п.11, отличающееся тем, что, когда регулирующий элемент находится в положении запирания, между регулирующим элементом и клеткой образуется основной путь утечки, идущий между, по меньшей мере, одним проходом клетки и образованным кольцом седла клапана отверстием, через которое проходит поток текучей среды, при этом уплотнение установлено с возможностью, по существу, предотвратить протекание текучей среды через основной путь утечки.
14. Устройство по п.11, отличающееся тем, что клетка присоединена к кольцу седла клапана, при этом клетка и кольцо седла клапана образуют полость с размерами, рассчитанными на введение в него уплотнения.
15. Устройство по п.11, отличающееся тем, что уплотнение представляет собой кольцевое уплотнение с С-образным поперечным сечением.
16. Устройство по п.11, отличающееся тем, что уплотнительная поверхность регулирующего элемента имеет аксиальный размер, а уплотнение взаимодействует с уплотнительной поверхностью в любой точке в пределах указанного размера уплотнительной поверхности.
17. Устройство для регулирования потока текучей среды, содержащее
корпус, имеющий вход, выход и проходящий от входа до выхода канал для формирования траектории текучей среды, кольцо седла клапана, присоединенное к корпусу и имеющее отверстие, через которое проходит траектория потока текучей среды, клетку, присоединенную к корпусу и имеющую внутренний канал, при этом клетка содержит, по меньшей мере, один проход, через который проходит траектория потока текучей среды, регулирующий элемент, имеющий наружную поверхность, размеры которой выбраны из условия обеспечения его введения со скольжением во внутренний канал, и выполненный с возможностью перемещения по оси между открытым и запирающим положениями, при этом регулирующий элемент задает уплотнительную поверхность, расположенную на внутреннем периметре регулирующего элемента и ориентированную, по существу, параллельно оси, и уплотнение, установленное с возможностью взаимодействия с уплотнительной поверхностью, когда регулирующий элемент находится, по существу, в положении запирания, с ограничением тем самым потока текучей среды через отверстие кольца седла клапана.
18. Устройство по п.17, отличающееся тем, что, когда регулирующий элемент находится в положении запирания, между регулирующим элементом и клеткой образуется основной путь утечки, идущий между, по меньшей мере, одним проходом клетки и образованным кольцом седла клапана отверстием, через которое проходит поток текучей среды, при этом уплотнение установлено с возможностью, по существу, предотвратить протекание текучей среды через основной путь утечки.
19. Устройство по п.17, отличающееся тем, что кольцо седла клапана имеет часть в форме сальника, образующую вырез, открытый по направлению к внутреннему периметру регулирующего элемента и имеющий размеры, рассчитанные на введение в нее уплотнения.
20. Устройство по п.17, отличающееся тем, что уплотнительная поверхность регулирующего элемента имеет аксиальный размер, а уплотнение взаимодействует с уплотнительной поверхностью в любой точке в пределах указанного размера уплотнительной поверхности.
RU2007134150A 2005-03-17 2006-01-27 Устройство для регулирования потока текучей среды RU2391591C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/082,265 2005-03-17
US11/082,265 US7448409B2 (en) 2005-03-17 2005-03-17 Fluid flow control device having a throttling element seal

Publications (2)

Publication Number Publication Date
RU2007134150A RU2007134150A (ru) 2009-04-27
RU2391591C2 true RU2391591C2 (ru) 2010-06-10

Family

ID=36450604

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007134150A RU2391591C2 (ru) 2005-03-17 2006-01-27 Устройство для регулирования потока текучей среды

Country Status (12)

Country Link
US (3) US7448409B2 (ru)
EP (1) EP1869351B1 (ru)
JP (2) JP4897786B2 (ru)
CN (1) CN101142428B (ru)
AR (1) AR052579A1 (ru)
BR (1) BRPI0608832A2 (ru)
CA (1) CA2601074C (ru)
DE (1) DE602006005802D1 (ru)
MX (1) MX2007011439A (ru)
MY (1) MY139754A (ru)
RU (1) RU2391591C2 (ru)
WO (1) WO2006101594A1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA027985B1 (ru) * 2012-09-28 2017-09-29 Хольтер Регельарматурен ГмбХ унд Ко. КГ Клапан высокого давления
RU2659705C2 (ru) * 2013-03-13 2018-07-03 А.Р.И. Флоу Контрол Аксессориз Лтд. Клапан текучей среды
RU207930U1 (ru) * 2021-05-17 2021-11-24 Общество с ограниченной ответственностью "Промавтоматика-Саров" Клапан регулирующий угловой клеточного типа
RU2763812C2 (ru) * 2017-02-02 2022-01-11 Фишер Контролз Интернешнел Ллс Модульные узлы затвора клапана для регулирующих клапанов

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7373951B2 (en) * 2004-09-07 2008-05-20 Fisher Controls International Llc Control valve having “C” seal
US7448409B2 (en) * 2005-03-17 2008-11-11 Fisher Controls International Llc Fluid flow control device having a throttling element seal
US8740179B2 (en) * 2007-04-18 2014-06-03 Fisher Controls International, Llc Two-piece trim for use with fluid regulators
US9581380B1 (en) 2007-07-20 2017-02-28 Carlos Quesada Saborio Flexible refrigeration platform
US20090179169A1 (en) * 2008-01-11 2009-07-16 Fleming Leslie E Seal assembly for use with valves having a two-piece cage
US8281803B2 (en) * 2008-04-18 2012-10-09 Fisher Controls International Llc Balanced port housing with integrated flow conditioning
CN102077005B (zh) * 2008-06-30 2013-06-12 费希尔控制国际公司 通用内件控制阀和制造这种控制阀的方法
GB2479503B (en) * 2009-02-05 2013-03-20 Flowserve Man Co Pressure-balanced control valves
US8714560B2 (en) 2009-04-28 2014-05-06 Fisher Controls International Llc Bidirectional seal assembly for use with valves
US8066258B2 (en) * 2009-05-26 2011-11-29 Fisher Controls International, Llc Valve seat apparatus for use with fluid valves
US8167269B2 (en) * 2009-05-28 2012-05-01 Fisher Controls International, Llc Valve trim apparatus for use with valves
US9285147B1 (en) 2009-09-14 2016-03-15 Carlos Quesada Saborio Relocatable refrigeration system with pendulum within separator and accumulator chambers
US8443838B1 (en) 2009-10-01 2013-05-21 Carlos Quesada Saborio Refrigerant control valves
IT1397828B1 (it) * 2010-02-04 2013-02-04 Omt Off Mecc Tartarini Regolatore di pressione per gas
US8413672B2 (en) * 2010-05-19 2013-04-09 Dresser, Inc. Valve flushing kit
MX336793B (es) 2010-07-30 2016-02-02 Fisher Controls Int Aparato de asiento de valvula para el uso con valvulas para fluidos.
FR2970055A1 (fr) * 2010-12-30 2012-07-06 Michel Emin Dispositif d'etancheite par siege-annulaire
US20130320252A1 (en) * 2011-02-17 2013-12-05 Egc Enterprises, Inc. Control valve assembly
JP5821508B2 (ja) 2011-10-14 2015-11-24 コベルコ建機株式会社 建設機械
US20130248751A1 (en) * 2012-03-26 2013-09-26 Fisher Controls International Llc Control valve seal assembly energized by shape memory alloys and fluid valves comprising same
US20140061527A1 (en) * 2012-08-30 2014-03-06 Jeremy R. Hilsabeck Valve body with improved lower flow cavity
US9046191B2 (en) 2012-08-30 2015-06-02 Fisher Controls International, Llc Valve body with upper flow diverter
US20140182827A1 (en) 2012-11-30 2014-07-03 Carlos Quesada Saborio Tubing Element for a Heat Exchanger
WO2014124437A1 (en) * 2013-02-11 2014-08-14 Fluid Equipment Development Company, Llc Anti-cavitation throttle valve and method of operating the same
US9297469B2 (en) 2013-03-14 2016-03-29 Fisher Controls International Llc Valve seat assemblies
US9267604B2 (en) 2013-03-14 2016-02-23 Fisher Controls International Llc Valve seat apparatus for use with fluid valves
US9605771B2 (en) * 2013-06-19 2017-03-28 California Institute Of Technology Flow cage assemblies
US9395009B2 (en) 2013-10-18 2016-07-19 Fisher Controls International Llc Fluid flow device that provides a seal by exploiting differential thermal expansion
JP6163129B2 (ja) * 2014-03-31 2017-07-12 アズビル株式会社 ケージ弁
US9759348B2 (en) * 2015-05-18 2017-09-12 Fisher Controls International Llc Aerodynamic noise reduction cage
WO2017063187A1 (en) * 2015-10-16 2017-04-20 Emerson Process Management (Tianjin) Valves Co., Ltd. Multiple stage anti-surge valves
CN206386539U (zh) 2015-10-20 2017-08-08 艾默生过程管理调节技术公司 压力调节设备和用于在压力调节设备中控制流体流动的控制组件
CN109154188A (zh) 2016-04-26 2019-01-04 牛津流动有限公司 用于控制流体流动的装置
CN109563937B (zh) 2016-07-28 2023-11-17 芙罗服务管理公司 用于高温压力平衡阀的关闭密封件及相关方法
CN106151538A (zh) * 2016-08-31 2016-11-23 浙江智鹏自控阀门有限公司 衬氟波纹管调节阀
CN106439206A (zh) * 2016-11-08 2017-02-22 上海发电设备成套设计研究院 一种防止高压调节阀密封面冲蚀的结构
CN106763834A (zh) * 2017-03-24 2017-05-31 徐传堂 一种最小流量阀
US10458555B2 (en) * 2017-04-19 2019-10-29 Fisher Controls International Llc Control valve with high performance valve cage
DE102017215250A1 (de) * 2017-08-31 2019-02-28 Siemens Aktiengesellschaft Ventil und Verfahren zur Modernisierung, Wartung oder Reparatur eines Ventils
US10900591B2 (en) * 2017-09-29 2021-01-26 Fisher Controls International Llc High pressure anti-cavitation cage
CN108374900A (zh) * 2018-02-24 2018-08-07 江苏亿阀股份有限公司 一种超临界气体反应堆级调节减压阀
US11339897B2 (en) * 2018-08-30 2022-05-24 Fisher Controls International Llc Valve trim apparatus for use with control valves
US11585456B2 (en) 2019-01-07 2023-02-21 Fisher Controls International Llc Valve assemblies with integrated temperature control
CN112344036B (zh) * 2019-08-07 2023-01-03 中石化石油工程技术服务有限公司 一种节流阀及其阀芯
US11112032B2 (en) * 2019-09-09 2021-09-07 Fisher Controls International Llc Tapered anti-cavitation cage
US11359728B2 (en) * 2020-10-07 2022-06-14 Griswold Industries Anti-cavitation valve assembly
US20230151890A1 (en) * 2021-11-16 2023-05-18 Fisher Controls International Llc High flow/low flow valve
GB2618602A (en) * 2022-05-12 2023-11-15 Goodwin Plc Trim component and valve
CN116988759B (zh) * 2023-09-21 2023-12-08 什邡慧丰采油机械有限责任公司 一种全自动耐高压智能管汇系统及其工作方法

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2772068A (en) * 1948-05-15 1956-11-27 Grove Valve & Regulator Co Seal guard
US2927767A (en) * 1956-08-01 1960-03-08 Air Associates Inc Valve with seal construction
US3219059A (en) * 1962-04-18 1965-11-23 Arthur E Williams Dispensing valve
US3648718A (en) * 1970-06-01 1972-03-14 Foxboro Co Valve structure
US3722860A (en) * 1970-06-01 1973-03-27 Foxboro Co Cage valve assembly
US3704726A (en) * 1971-02-02 1972-12-05 Westinghouse Electric Corp Noise suppressing seat for a throttling valve
US3821968A (en) * 1973-01-26 1974-07-02 Acf Ind Inc Control valve structure having double ports
GB1569261A (en) 1976-10-20 1980-06-11 Serck Industries Ltd Fluid control valve
US4132386A (en) * 1977-08-22 1979-01-02 Lee Eugene O Valve mechanism for a control valve
US4397331A (en) * 1978-09-29 1983-08-09 Honeywell Inc. Fluid flow control valve with maximized noise reduction
JPS5920062B2 (ja) * 1980-01-25 1984-05-10 株式会社クボタ スリ−ブ弁
US4471810A (en) * 1980-12-04 1984-09-18 Valve Concepts International Valve apparatus
CA1206924A (en) * 1983-03-30 1986-07-02 Paul F. Roos Tap
US4531545A (en) * 1983-04-04 1985-07-30 Hydril Company Drilling choke valve
JPS6034149U (ja) * 1983-08-12 1985-03-08 株式会社 栗本鉄工所 流量調節弁
US4569370A (en) * 1983-11-14 1986-02-11 Best Industries, Inc. Balanced double cage choke valve
US4669702A (en) * 1984-04-11 1987-06-02 White Consolidated Industries, Inc. Erosion resistant soft seated valve trim
JPS6121484A (ja) 1984-05-21 1986-01-30 Nippon Kousou Kk スクリ−ンバルブおよび抵抗附与装置
JPS6113067A (ja) * 1984-06-27 1986-01-21 Okano Valve Seizo Kk 絞り弁
JPS61137175A (ja) * 1984-12-10 1986-06-24 Toshiba Corp 現像装置の梱包方法
JPS61137175U (ru) * 1985-02-14 1986-08-26
US5018703A (en) * 1988-01-14 1991-05-28 Teledyne Industries, Inc. Valve design to reduce cavitation and noise
JP2628370B2 (ja) * 1989-03-24 1997-07-09 信越半導体 株式会社 単結晶引上装置
US5020571A (en) * 1990-06-15 1991-06-04 Marotta Scientific Controls, Inc. Noise-reducing valve construction
US5113908A (en) * 1990-09-04 1992-05-19 Dresser Industries, Inc. Multistep trim design
US5236014A (en) 1992-06-01 1993-08-17 Fisher Controls International, Inc. Trim for ANSI class V shut off of valves
JPH073263B2 (ja) * 1992-10-09 1995-01-18 日本ベーレー株式会社 高差圧調節弁
ATE147840T1 (de) * 1992-12-12 1997-02-15 Klinger Ag Absperrventil und dichtungsring
JP2819219B2 (ja) * 1993-02-26 1998-10-30 株式会社山武 弁装置
RU2109191C1 (ru) 1993-12-22 1998-04-20 Леонид Дмитриевич Ивановский Запорное устройство
SE9401306L (sv) * 1994-04-15 1995-05-15 Btg Kaelle Inventing Ab Anordning vid en reglerventil
CN2365467Y (zh) * 1999-03-20 2000-02-23 乐山市长江仪表厂 高可靠长寿命放空阀
US6394135B2 (en) * 1999-05-18 2002-05-28 Barber-Colman Balanced plug valve with contour wall
CN2419431Y (zh) * 2000-04-24 2001-02-14 龚仁荣 双密封升降柱塞阀
RU2184897C2 (ru) 2000-06-16 2002-07-10 Государственное унитарное предприятие "АВИАГАЗ-СОЮЗ" (дочернее предприятие КОКБ "СОЮЗ") Запорно-регулирующее устройство
JP4034529B2 (ja) * 2000-07-28 2008-01-16 株式会社山武 単座形弁装置
US6807985B2 (en) * 2002-06-05 2004-10-26 Dresser, Inc. High rangeability control valve
US6805162B2 (en) * 2002-08-15 2004-10-19 Control Components, Inc. Erosion reducing valve plug and seat ring
US6637452B1 (en) * 2002-10-08 2003-10-28 Fisher Controls International, Inc. Valve with self-cleaning trim
US6772993B1 (en) * 2003-02-18 2004-08-10 Control Components, Inc. Plug and seal assembly
US7448409B2 (en) 2005-03-17 2008-11-11 Fisher Controls International Llc Fluid flow control device having a throttling element seal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
П.И.Орлов. Основы конструирования: Справочно-методическое пособие. В 2-х кн. Кн. 1 / Под ред. П.Н.Учаева. - М.: Машиностроение, 1988, книга 1. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA027985B1 (ru) * 2012-09-28 2017-09-29 Хольтер Регельарматурен ГмбХ унд Ко. КГ Клапан высокого давления
RU2659705C2 (ru) * 2013-03-13 2018-07-03 А.Р.И. Флоу Контрол Аксессориз Лтд. Клапан текучей среды
RU2763812C2 (ru) * 2017-02-02 2022-01-11 Фишер Контролз Интернешнел Ллс Модульные узлы затвора клапана для регулирующих клапанов
RU207930U1 (ru) * 2021-05-17 2021-11-24 Общество с ограниченной ответственностью "Промавтоматика-Саров" Клапан регулирующий угловой клеточного типа

Also Published As

Publication number Publication date
RU2007134150A (ru) 2009-04-27
MY139754A (en) 2009-10-30
US20130221259A1 (en) 2013-08-29
EP1869351B1 (en) 2009-03-18
US7448409B2 (en) 2008-11-11
CA2601074A1 (en) 2006-09-28
EP1869351A1 (en) 2007-12-26
BRPI0608832A2 (pt) 2012-07-31
US8403003B2 (en) 2013-03-26
JP4897786B2 (ja) 2012-03-14
JP2008533406A (ja) 2008-08-21
US20090057595A1 (en) 2009-03-05
JP5204873B2 (ja) 2013-06-05
CN101142428B (zh) 2011-03-23
JP2011226650A (ja) 2011-11-10
US9046184B2 (en) 2015-06-02
CN101142428A (zh) 2008-03-12
MX2007011439A (es) 2007-11-13
US20060207666A1 (en) 2006-09-21
DE602006005802D1 (de) 2009-04-30
WO2006101594A1 (en) 2006-09-28
CA2601074C (en) 2011-01-18
AR052579A1 (es) 2007-03-21

Similar Documents

Publication Publication Date Title
RU2391591C2 (ru) Устройство для регулирования потока текучей среды
CN102971560B (zh) 具有波纹管和c形密封件的浮动球阀密封
EP1509717B1 (en) Control valve
EP2240716B1 (en) Seal assembly for use with valves having a two-piece cage
EP3596369B1 (en) Valve with integral balancing passage
RU2374538C1 (ru) Клапан запорно-регулирующий
KR200387580Y1 (ko) 디스크 기구를 사용한 게이트 밸브
US10260654B2 (en) Valve assembly
US2988105A (en) Throttling valve
RU176507U1 (ru) Клиновая задвижка с цилиндрическими направляющими запорного органа
KR100512578B1 (ko) 밸브를 위한 디스크 기구 및 그를 사용한 게이트 밸브 및글로브 밸브
RU2084734C1 (ru) Запорный узел
RU2234018C1 (ru) Клапан
RU2143625C1 (ru) Затвор клапана
RU2206015C1 (ru) Запорно-дроссельный клапан и его корпус
KR20170078958A (ko) 고용량 글로브 컨트롤 밸브
KR20010063157A (ko) 이중 디스크 구조의 밸브

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Free format text: LICENCE

Effective date: 20131028

QB4A Licence on use of patent

Free format text: LICENCE FORMERLY AGREED ON 20200318

Effective date: 20200318