RU2379775C1 - Способ переработки ураносодержащих композиций - Google Patents

Способ переработки ураносодержащих композиций Download PDF

Info

Publication number
RU2379775C1
RU2379775C1 RU2008149317A RU2008149317A RU2379775C1 RU 2379775 C1 RU2379775 C1 RU 2379775C1 RU 2008149317 A RU2008149317 A RU 2008149317A RU 2008149317 A RU2008149317 A RU 2008149317A RU 2379775 C1 RU2379775 C1 RU 2379775C1
Authority
RU
Russia
Prior art keywords
uranium
temperature
ratio
heat treatment
oxide
Prior art date
Application number
RU2008149317A
Other languages
English (en)
Inventor
Валентин Петрович Денискин (RU)
Валентин Петрович Денискин
Сергей Дмитриевич Курбаков (RU)
Сергей Дмитриевич Курбаков
Сергей Иванович Мозжерин (RU)
Сергей Иванович Мозжерин
Владимир Геннадьевич Небогин (RU)
Владимир Геннадьевич Небогин
Александр Игоревич Соловей (RU)
Александр Игоревич Соловей
Original Assignee
Федеральное государственное унитарное предприятие Научно-исследовательский институт Научно-производственное объединение "Луч"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие Научно-исследовательский институт Научно-производственное объединение "Луч" filed Critical Федеральное государственное унитарное предприятие Научно-исследовательский институт Научно-производственное объединение "Луч"
Priority to RU2008149317A priority Critical patent/RU2379775C1/ru
Application granted granted Critical
Publication of RU2379775C1 publication Critical patent/RU2379775C1/ru

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Изобретение относится к области металлургии, в частности к способам переработки топливных композиций в виде невостребованных твэлов и брака и отходов их производства с целью получения оксида урана и последующего его использования в производстве. Способ переработки ураносодержащих композиций включает смешение ураносодержащих композиций с углеграфитовым материалом в соотношении 1,0:0,1-0,3, первичную термическую обработку композиции при температуре 450-650°С в течение 0,5-2 часа, измельчение образовавшегося продукта до крупности менее 1 мм, смешение с окислителем в соотношении 1,0:0,3-0,5, повторную термическую обработку на воздухе при температуре не менее 500°С в течение не менее часа. После повторной термической обработки растворение образовавшейся закиси-окиси урана в 5-7-молярной азотной кислоте при температуре 50-75°С при соотношении твердой и жидкой фаз 1,0:1,5-2,0 и обжиг отфильтрованного продукта при температуре 850-950°С в течение 4-6 часов. Технический результат изобретения: повышение степени извлечения из композиций ураносодержащего компонента - закиси-окиси урана. 1 табл.

Description

Изобретение относится к области металлургии, в частности к способам переработки топливных композиций в виде невостребованных твэлов и брака и отходов их производства с целью получения оксида урана и последующего его использования в производстве ядерного топлива.
Известен способ гидрометаллургической переработки, например, уран-циркониевых, уран-алюминиевых, уран-молибденовых и других композиций, заключающийся в растворении композиций в кислотах или щелочах, проведении процессов экстракции и реэкстракции с использованием органических экстрагентов и последующем рафинировании урана с помощью оксалатной или пероксидной переочистки, осаждении урана и получении закиси-окиси в качестве готовой товарной продукции (Переработка топлива энергетических реакторов. Сб. статей. М.: Атомиздат, 1972).
Недостатком известных способов переработки ураносодержащих композиций является низкая степень извлечения урана из композиций, составляющая не более 80% из-за неполного растворения оксида урана кислотами или щелочами в присутствии металлических составляющих композиции (Zr, Al, Mo и др.).
Известен способ переработки ураносодержащей композиции, например, цирконийсодержащих твэлов, заключающийся в термической обработке композиции в атмосфере водорода при температуре 850°С (гидрировании), растворении полученной смеси гидридов урана и циркония в азотной кислоте и последующей экстракции урана известными методами (Переработка ядерного горючего. М.: Атомиздат, 1964, с.98-99).
Недостатками такого способа переработки ураносодержащей композиции являются низкое извлечение урана из композиции, составляющее 63% из-за неполного растворения гидрида урана в азотной кислоте, и взрывоопасность процесса, связанная с применением водорода.
Наиболее близким к предлагаемому способу переработки ураносодержащих композиций по технической сущности и достигаемому эффекту - прототипом - является способ переработки урансодержащей композиции (уран-бериллий), заключающийся в первичной термической обработке композиции при температуре 1500-1550°С в вакууме не ниже 1·10-4 тор, повторной термической обработке урансодержащей составляющей композиции на воздухе при температуре не ниже 500°С в течение не менее 1 часа, растворении образовавшейся закиси-окиси урана в азотной кислоте при температуре кипения, ее пероксидной очистке путем переосаждения из раствора перекисью водорода, фильтрации раствора и обжиге пероксида на воздухе при 750-800°С с получением товарной закиси-окиси урана (Патент RU №2106029, кл. G01C 19/44,1966).
Недостатком этого способа переработки урансодержащих композиций является низкая степень извлечения из композиций урансодержащего компонента - закиси-окиси урана, составляющая до 80%.
Низкая степень извлечения урана из композиций, таких как UN, UC, (UZr)CxNy, UC-ZrC и др., связана с неполнотой растворения указанных соединений урана в азотной кислоте и соответственно потерей урана при пероксидном переосаждении раствора уранилнитрата.
Целью данного изобретения является повышение степени извлечения из композиций урансодержащего компонента - закиси-окиси урана.
Поставленная цель достигается тем, что в способе переработки урансодержащих композиций, включающем первичную и повторную термическую обработку композиций на воздухе при температуре не ниже 500°С в течение не мене 1 часа, растворение образовавшейся закиси-окиси урана в азотной кислоте при повышенной температуре, пероксидное переосаждение полученного раствора уранилнитрата, фильтрацию раствора и обжиг твердого остатка на воздухе, перед первичной термической обработкой композицию смешивают с углеграфитовым материалом в соотношении 1,0:0,1-0,3, первичную термическую обработку проводят при температуре 450-650°С в течение 0,5-2 часов, перед повторной термической обработкой образовавшийся продукт измельчают до крупности менее 1 мм и смешивают с окислителем (KMnO4 или K2Cr2O7) в соотношении 1,0:0,3-05, после повторной термической обработки образовавшуюся закись-окись урана растворяют в 5-7-молярной азотной кислоте при температуре 50-75°С при соотношении Т:Ж=1,0:1,5-2,0, а обжиг отфильтрованного продукта проводят при температуре 850-950°С в течение 4-6 часов.
Причинно-следственная связь между существенными признаками и техническим результатом заключается в следующем. Перед первичной термической обработкой урансодержащую композицию смешивают с углеграфитовым материалом в соотношении 1,0:0,1-0,3, первичную термическую обработку проводят при температуре 450-650°С в течение 0,5-2,0 часов. В процессе первичной термической обработки композиции, состоящей из ураносодержащего материала и углеграфитового материала, происходит охрупчивание металлических компонентов смеси за счет образования оксикарбидных фаз. Это позволяет достаточно эффективно перед повторной термической обработкой осуществить процесс измельчения продукта до крупности менее 1 мм. При соотношении урансодержащей композиции и углеграфитового материала меньше 1,0:0,1 не реализуется достаточное для карбидизации парциальное давление оксида углерода, а получаемый при этом продукт обладает достаточно высокой пластичностью, что затрудняет его измельчение. При соотношении компонентов больше 1:0,3 процесс карбидизации протекает полностью, но на выжигание избыточного углерода требуются дополнительные непроизводственные затраты, а выход целевой ураносодержащей композиции за один цикл уменьшается.
Проведение первичной термической обработки при температуре менее 450°С является неприемлемым, поскольку при этих температурах такие компоненты урансодержащей композиции, как Мо, Zr, Al, нержавеющая сталь и т.п., практически не карбидизируются. Проведение первичной термической обработки при температуре более 650°С также неприемлемо, так как в этих условиях происходит интенсивное разрушение оснастки, в которой размещается ураносодержащая композиция, и элементов нагревательной системы печи из-за локальных перегревов.
Время первичной термообработки должно составлять 0,5-2 часа. При меньшем времени термообработки образование оксикарбидных фаз происходит не в полной мере, что затрудняет последующее извлечение продукта и отрицательно влияет на выход годного при пероксидном переосаждении. Увеличение же времени первичной термообработки более 2 часов не влияет на полноту образования оксикарбидных фаз, но экономически и энергетически не оправдано.
Повторная термическая обработка проводится при температуре не менее 500°С, в течение не менее 1 часа и имеет целью перевод урансодержащего продукта в закись-окись урана. Для интенсификации процесса окисления в измельченный продукт, содержащий композицию в виде оксикарбидных фаз, вводится окислитель (KMnO4 или K2Cr2O7) при соотношении 1,0:0,3-0,5.
При соотношении урансодержащей композиции и окислителя менее 1: 0,3 не достигается полное выжигание (газификация) углерода, а соотношение более 1:0,5 является экономически нецелесообразным.
Растворение закиси-окиси урана, содержащейся в композиции, проводится путем обработки в 5-7-молярной азотной кислоте при температуре 50-75°С при соотношении твердой и жидкой фаз 1,0:(1,5-2,0).
Применение азотной кислоты молярностью менее 5,0 является мало эффективным в связи с низкой скоростью растворения закиси-окиси урана. В случае использования кислоты с молярностью более 7,0 увеличивается скорость растворения металлических оксикарбидных фаз, что приводит к увеличению концентрации примесей в урановом растворе. По аналогичным соображениям определен оптимальный температурный интервал кислотной обработки 50-75°С: при темперутуре менее 50°С мала скорость всех химических процессов в композиции, при температуре более 75°С - резко увеличивается концентрация примесных элементов в растворе. Соотношение твердой и жидкой фаз менее 1:1,5 приводит к недостатку реагента, т.е. азотной кислоты, а при соотношении более 1:2,0 экономически мало эффективно. Заключительный обжиг отфильтрованного продукта при 850-950°С в течение 4-6 часов осуществляют для перевода уранилнитрата в закись-окись урана. Если обжиг проводить при температуре менее 850°С, то он растянется во времени, а сам продукт может содержать избыточное количество азота. При температурах обжига более 950°С происходит частичное спекание продукта, что недопустимо техническими требованиями. Интервал обжига во времени (4-6 часов) снизу обоснован требованиями на получаемый продукт по содержанию примесей, а сверху ограничен производственной практикой и цикличностью обслуживания оборудования.
Пример
Урансодержащие топливные композиции (UC - ZrC в оболочке из нержавеющей стали, UN, UC) в виде фрагментов тепловыделяющих элементов в количестве 300 г смешивали в соотношении 1,0:0,1-0,3 с углеграфитовым материалом - порошком графита типа 30ПГ фракции около 100 мкм и подвергали первичной термической обработке при температуре 450-650°С в течение 0,5-2 часов.
После первичной термической обработки урансодержащую гетерогенную смесь образовавшихся оксикарбидных фаз измельчали в щековой дробилке до крупности менее 1,0 мм.
Смешение порошка урансодержащего материала с окислителем (KMnO4) в соотношении 1,0:0,3-0,5 осуществляли в вибросмесителе.
Повторную термическую обработку смеси осуществляли при температуре 600°С в течение 2,0 часов.
Растворение твердого остатка после повторной термической обработки осуществляли в емкости из нержавеющей стали 5-7-молярной азотной кислотой (600 мл) при соотношении твердой и жидкой фаз 1,0:1,5-2,0 при температуре 50-75°С в течение 4-6 часов
Степень извлечения из композиции урансодержащего компонента - закиси-окиси урана при этом составила 87-93%.
В таблице приведены варианты осуществления предложенного способа переработки урансодержащих композиций на граничные и промежуточные значения параметров, а также на параметры процесса, выходящие за заявленные пределы в сопоставлении с известным способом.
Как следует из приведенных в таблице данных, предложенный способ переработки урансодержащих композиций (п.1-3) в сравнении с известным способом (п.6) обеспечивает повышение степени извлечения из композиции ураносодержащего компонента - закиси-окиси урана.
При осуществлении способа переработки урансодержащих композиций за заявленными пределами параметров процесса (п.4-5) степень извлечения из композиции ураносодержащего компонента (закись-окись урана) снижается.
Figure 00000001

Claims (1)

  1. Способ переработки урансодержащих композиций, включающий первичную и повторную термическую обработку композиции на воздухе при температуре не менее 500°С в течение не менее часа, растворение образовавшейся закиси-окиси урана в азотной кислоте при повышенной температуре, пероксидное переосаждение полученного раствора уранилнитрата, фильтрацию раствора и обжиг твердого остатка на воздухе, отличающийся тем, что перед первичной термической обработкой урансодержащую композицию смешивают с углеграфитовым материалом в соотношении 1,0:0,1-0,3, первичную термическую обработку проводят при температуре 450-650°С в течение 0,5-2 ч, перед повторной термической обработкой образовавшийся продукт измельчают до крупности менее 1 мм и смешивают с окислителем в соотношении 1,0:0,3-0,5, после повторной термической обработки образовавшуюся закись-окись урана растворяют в 5-7-молярной азотной кислоте при температуре 50-75°С при соотношении твердой и жидкой фаз 1,0:1,5-2,0, а обжиг отфильтрованного продукта проводят при температуре 850-950°С в течение 4-6 ч.
RU2008149317A 2008-12-15 2008-12-15 Способ переработки ураносодержащих композиций RU2379775C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2008149317A RU2379775C1 (ru) 2008-12-15 2008-12-15 Способ переработки ураносодержащих композиций

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2008149317A RU2379775C1 (ru) 2008-12-15 2008-12-15 Способ переработки ураносодержащих композиций

Publications (1)

Publication Number Publication Date
RU2379775C1 true RU2379775C1 (ru) 2010-01-20

Family

ID=42120978

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008149317A RU2379775C1 (ru) 2008-12-15 2008-12-15 Способ переработки ураносодержащих композиций

Country Status (1)

Country Link
RU (1) RU2379775C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140171724A1 (en) * 2011-07-26 2014-06-19 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for chemically stabilizing uranium carbide compounds, and device implementing the method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140171724A1 (en) * 2011-07-26 2014-06-19 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for chemically stabilizing uranium carbide compounds, and device implementing the method
US9837175B2 (en) * 2011-07-26 2017-12-05 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for chemically stabilizing uranium carbide compounds, and device implementing the method

Similar Documents

Publication Publication Date Title
CN106587046B (zh) 一种人造金刚石的提纯方法
JP6886046B2 (ja) 多段・高度還元による高融点金属粉末の製造方法
KR20140102725A (ko) 희토류 및 산화 지르코늄 물질의 재활용 방법
FR2535305A1 (fr) Procede d'extraction d'uranium a partir de tetrafluorure d'uranium
CN1275532A (zh) 铀金属合金转化成uo2粉末和芯块的生产方法
RU2379775C1 (ru) Способ переработки ураносодержащих композиций
KR20150027259A (ko) 특정 용융염을 함유하는 매질의 사용을 포함하는, 적어도 하나의 제2 화학원소 e2로부터 적어도 하나의 제1 화학원소 e1을 분리하는 방법
Sarsfield et al. The separation of 241Am from aged plutonium dioxide for use in radioisotope power systems
Pee et al. Extraction factor of tungsten sources from tungsten scraps by zinc decomposition process
US9428401B1 (en) Separation of the rare-earth fission product poisons from spent nuclear fuel
US6241800B1 (en) Acid fluxes for metal reclamation from contaminated solids
JP3839431B2 (ja) 白金族金属の回収方法
CH649978A5 (fr) Procede de conversion conjointe d'une solution aqueuse contenant des nitrates de metaux lourds.
Berhe et al. Green extraction of niobium and tantalum from Kenticha tantalite ore using 1-ethyl-3-methyl imidazolium chloride ionic liquid
RU2743383C1 (ru) Способ переработки кислотоупорных урансодержащих материалов
CN109897971B (zh) 一种从放射性玻璃固化体中提取铂族金属的添加剂及方法
RU2343119C1 (ru) Способ переработки урансодержащей композиции
JP4019180B2 (ja) 酸化プルトニウムを含む規格外燃料および/または廃棄物からのプルトニウム回収方法
JPH10114526A (ja) ウラン合金を燃料プレカーサに転化する方法及びそのための装置
CN110643832A (zh) 一种粉煤灰中提取锂方法
US3228748A (en) Process for the preparation of a uranium compound in powder form
CN111690824A (zh) 含钛钨原料酸解提钛提钨及含钛原料酸解提钛的方法
Bray et al. Development of the CEPOD process for dissolving plutonium oxide and leaching plutonium from scrap or wastes
US3948637A (en) Process for class IV-B metals ore reduction
Mousa et al. Study on Vanadium Recovery from Spent Catalyst Used in the Manufacture of Sulfuric Acid