RU2376319C2 - Способ получения сверхвысокомолекулярного полиакрилонитрила - Google Patents

Способ получения сверхвысокомолекулярного полиакрилонитрила Download PDF

Info

Publication number
RU2376319C2
RU2376319C2 RU2007146341/04A RU2007146341A RU2376319C2 RU 2376319 C2 RU2376319 C2 RU 2376319C2 RU 2007146341/04 A RU2007146341/04 A RU 2007146341/04A RU 2007146341 A RU2007146341 A RU 2007146341A RU 2376319 C2 RU2376319 C2 RU 2376319C2
Authority
RU
Russia
Prior art keywords
polymer
dimethylformamide
mol
initiator
mixture
Prior art date
Application number
RU2007146341/04A
Other languages
English (en)
Other versions
RU2007146341A (ru
Inventor
Анна Валентиновна Новоселова (RU)
Анна Валентиновна Новоселова
Валерий Владимирович Шаманин (RU)
Валерий Владимирович Шаманин
Людмила Викторовна Виноградова (RU)
Людмила Викторовна Виноградова
Original Assignee
Институт Высокомолекулярных соединений Российской Академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Институт Высокомолекулярных соединений Российской Академии наук filed Critical Институт Высокомолекулярных соединений Российской Академии наук
Priority to RU2007146341/04A priority Critical patent/RU2376319C2/ru
Publication of RU2007146341A publication Critical patent/RU2007146341A/ru
Application granted granted Critical
Publication of RU2376319C2 publication Critical patent/RU2376319C2/ru

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Изобретение относится к технологии получения сверхвысокомолекулярных волокнообразующих полимеров, которые могут служить сырьем для получения сверхпрочных и высокомодульных углеродных волокон. Описан способ получения сверхвысокомолекулярного полиакрилонитрила, основанный на использовании механизма анионной полимеризации, включающий подготовку исходных реагентов, синтез анионного инициатора, проведение процесса полимеризации, выделение и сушку полученного полимера, причем полимеризацию проводят в атмосфере аргона с использованием свежеперегнанных растворителя - диметилформамида в количестве 350-460 мл и мономера - акрилонитрила в количестве 60-70 мл, обеспечивают температурный режим процесса, создавая начальную температуру реакционной смеси -50÷-20°С, вводят количество инициатора 1,2-бис-диэтиламино-2-оксоэтанолата лития, не превышающее 0.52·10-3 молей, реакционную смесь дезактивируют через 15-60 с после начала процесса смесью диметилформамида и уксусной кислоты в соотношении по объему 10:1, полимер высаживают в воду, выделяют фильтрованием, промывают водой и сушат при температуре 60°С, получают полимер с выходом от 80 до 100% и характеристиками сверхвысокомолекулярного полиакрилонитрила.

Description

Изобретение относится к технологии получения сверхвысокомолекулярных волокнообразующих полимеров, которые могут служить сырьем для получения сверхпрочных и высокомодульных углеродных волокон.
Полиакрилонитрил (ПАН) является важнейшим промышленным полимером, который широко известен как волокнообразующий полимер. Промышленное производство ПАН основано на использовании процессов полимеризации, протекающих по свободно-радикальному механизму. Основным и наиболее существенным недостатком этих процессов является протекание неизбежных побочных реакций, приводящих к образованию полидисперсных (неоднородных) полимеров со сравнительно низкими средними молекулярными массами. Эти методы не могут обеспечить образование монодисперсных линейных полимеров с молекулярными массами, приближающимися к 500·103.
Современные методы контролируемой "живой" радикальной полимеризации и методы ARGET ATRP (Activators regenerated by electron transfer (ARGET) atom transfer radical polymerization (ATRP), разработанные в лабораторных условиях, позволяют получать ПАН с молекулярной массой около 100·103 и полидисперсностью Mw/Mn менее 1.5 [Min К., Gao H., Matyjaszewski К. // Macromolecules. 2007. V.40. №8. P.1789.]. Полимеры с более высокими молекулярными массами до 280·103, которые могут быть также получены этими способами, обладают более высокой полидисперсностью Mw/Mn=1.8 [Dong H., Tang W., Matyjaszewski К. // Macromolecules. 2007. V.40. №9. P.2974.] К недостатками методов ARGET ATRP также относится необходимость соблюдения специальных экспериментальных условий и использования сложных комплексных инициаторов. Полимеризация акрилонитрила протекает медленно (до 288 час) и только при высокой температуре (65°С) в среде диметилсульфоксида или этиленкарбоната. Даже при этих условиях конверсия мономера не бывает полной (от 50 до 70%).
Наиболее близким по технической и химической сущности является известный способ получения высокомолекулярного ПАН с молекулярной массой более 300·103 методом анионной полимеризации акрилонитрила в среде диметилформамида под действием алкоголятов лития (производных металлического лития и различных спиртов) [Коротков А.А., Красулина В.Н., Новоселова А.В. Авторское свидетельство №227582 СССР. // Бюллетень изобретений. 1974. №25. С.174.]. Недостатки этого метода заключаются в необходимости поддержания в течение всего процесса низких температур в реакционной смеси (-60°С), чтобы снизить роль реакций обрыва цепей, интенсивно протекающих при резком выделении тепла во время полимеризации; в трудоемкости при синтезе, очистке и приготовлении растворов инициаторов; в нестабильности инициаторов при хранении (разложение). Существенными недостатками являются также очень высокие скорости процессов, не позволяющие осуществлять контроль за полимеризацией, а также осложнения, связанные с образованием гелеобразных растворов (студней) и с процессами циклизации нитрильных групп ПАН под действием избытка инициатора после завершения полимеризации.
Технической задачей и технологическим результатом данного изобретения является разработка метода синтеза высокомолекулярного ПАН с молекулярной массой до 840·103, который может быть рекомендован в качестве сырья для получения сверхпрочных и высокомодульных углеродных волокон. К технологическим результатам следует также отнести оптимизацию условий подготовки реагентов и проведения укрупненных синтезов ПАН в лабораторных условиях. Используется легкий и удобный способ получения анионного инициатора 1,2-бис(диэтиламино)-2-оксоэтанолата лития путем взаимодействия металлического лития с диметилформамидом в атмосфере инертного газа. После отстаивания реакционной смеси раствор сразу же может быть использован для инициирования полимеризации. Найдена возможность проведения полимеризации при высокой концентрации мономера (до 2.8 моль/л) в условиях умеренно низких температур (до -20°С). При этом удается максимально ограничить протекание побочных реакций и избежать процессов циклизации и гелеобразования.
Указанная техническая задача и положительный результат в изобретении достигается за счет того, что для реализации процессов используют свежеперегнанные растворитель (диметилформамид) и мономер (акрилонитрил), используют инициатор - 1,2-бис(диэтиламино)-2-оксоэтанолат лития в виде раствора в диметилформамиде, концентрацию мономера и инициатора варьируют в пределах 2.0-2.8 моль/л и (0.6-1)·10-3 моль/л соответственно, проводят процессы полимеризации в атмосфере инертного газа, начальную температуру процессов поддерживают в интервале от -50 до -20°С. После завершения полимеризации и дезактивации смеси получают готовые бесцветные высоковязкие растворы полимера. Полимеры выделяют высаживанием в воду, отделяют фильтрованием, затем промывают водой и высушивают при 60°С.
Для реализации процессов используют следующие компоненты и реагенты:
растворитель (диметилформамид) (350-460 мл);
мономер (акрилонитрил) (60-70 мл);
инициатор 1,2-бис(диэтиламино)-2-оксоэтанолат лития (1.6-2.6 мл, концентрация 0.2 моль/л);
дезактивирующая смесь 10 мл диметилформамида и уксусной кислоты (соотношение по объему 10:1);
осадитель - вода.
Используемые количества реагентов и выбранные условия позволяют получить непосредственно после проведения реакции бесцветный раствор полимера с высокой вязкостью.
Способ получения сверхвысокомолекулярного ПАН раскрывается далее на приводимых примерах его осуществления.
Пример 1. В двугорлую колбу, снабженную механической мешалкой, в атмосфере аргона вливают предварительно выдержанные над гидридом кальция и свежеперегнанные растворитель - диметилформамид 390 мл и мономер - акрилонитрил 65 мл (0.98 мол). Смесь охлаждают при энергичном перемешивании до температуры -50°С и быстро вводят с помощью прибора Шленка раствор инициатора с концентрацией 0.2 моль/л в количестве 2.3 мл (0.46·10-3 мол). Концентрация мономера и инициатора в смеси составляют 2.5 моль/л и 1·10-3 моль/л соответственно. Через 20 с реакционную смесь дезактивируют введением 10 мл смеси диметилформамида и уксусной кислоты (соотношение по объему 10:1). Полимер выделяют высаживанием в воду, промывают водой на фильтрах Шотта и сушат при 60°С. Выход полимера 52 г (100%). Характеристическая вязкость [η]=5.5, средневязкостная молекулярная масса M[η]=700·103.
Пример 2. Смесь растворителя и мономера готовят аналогично примеру 1 в атмосфере аргона. Используют 460 мл свежеперегнанного диметилформамида и 70 мл (1.06 мол) перегнанного акрилонитрила. Смесь охлаждают при энергичном перемешивании до температуры -50°С и быстро вводят с помощью шприца раствор инициатора с концентрацией 0.2 моль/л в количестве 1.6 мл (0.32·10-3 мол). Концентрация мономера и инициатора в смеси составляют 2.3 моль/л и 0.6·10-3 моль/л соответственно. Через 15 с реакционную смесь дезактивируют введением 10 мл смеси диметилформамида и уксусной кислоты. Полимер выделяют высаживанием в воду, промывают водой и сушат при 60°С. Выход полимера 56 г (100%). Характеристическая вязкость [η]=6.0, средневязкостная молекулярная масса М[η]=800·103.
Пример 3. Смесь растворителя и мономера готовят аналогично примеру 1 в атмосфере аргона. Используют 450 мл свежеперегнанного диметилформамида и 60 мл (0.91 мол) перегнанного акрилонитрила. Смесь охлаждают при энергичном перемешивании до температуры -40°С и быстро вводят с помощью прибора Шленка раствор инициатора с концентрацией 0.2 моль/л в количестве 2.6 мл (0.52·10-3 мол). Концентрация мономера и инициатора в смеси составляют 2.0 моль/л и 1·10-3 моль/л соответственно. Через 1 мин реакционную смесь дезактивируют введением 10 мл смеси диметилформамида и уксусной кислоты. Полимер выделяют высаживанием в воду, промывают водой на фильтрах Шотта и сушат при 60°С. Выход полимера 48 г (100%). Характеристическая вязкость [η]=5.0, средневязкостная молекулярная масса M[η]=570·103.
Пример 4. Смесь растворителя и мономера готовят аналогично примеру 1 в атмосфере аргона. Используют 420 мл свежеперегнанного диметилформамида и 69 мл (1.04 мол) перегнанного акрилонитрила. Смесь охлаждают при энергичном перемешивании до температуры -20°С и быстро вводят с помощью шприца раствор инициатора с концентрацией 0.2 моль/л в количестве 2.5 мл (0.50·10-3 мол). Концентрация мономера и инициатора в смеси составляют 2.5 моль/л и 1·10-3 моль/л соответственно. Через 1 мин реакционную смесь дезактивируют введением 10 мл смеси диметилформамида и уксусной кислоты. Полимер выделяют высаживанием в воду, промывают водой на фильтрах Шотта и сушат при 60°С. Выход полимера 46.9 г (85%). Характеристическая вязкость [η]=5.5, средневязкостная молекулярная масса
M[η]=650·103.
Пример 5. Смесь растворителя и мономера готовят аналогично примеру 1 в атмосфере аргона. Используют 350 мл свежеперегнанного диметилформамида и 65 мл (0.98 мол) перегнанного акрилонитрила. Смесь охлаждают при энергичном перемешивании до температуры -20°С и быстро вводят с помощью шприца раствор инициатора с концентрацией 0.2 моль/л в количестве 2.1 мл (0.42·10-3 мол). Концентрация мономера и инициатора в смеси составляют 2.8 моль/л и 1·10-3 моль/л соответственно. Через 1 мин реакционную смесь дезактивируют 10 мл смеси диметилформамида и уксусной кислоты (соотношение по объему 10:1). Полимер выделяют высаживанием в воду, промывают водой на фильтрах Шотта и сушат при 60°С. Выход полимера 41.6 г (80%). Характеристическая вязкость [η]=6.6, средневязкостная молекулярная масса М[η]=840·103.
Пример 6. Смесь растворителя и мономера готовят аналогично примеру 1 в атмосфере аргона. Используют 360 мл свежеперегнанного диметилформамида и 65 мл (0.98 мол) перегнанного акрилонитрила. Смесь охлаждают при энергичном перемешивании при 0°С, т.е при температуре, существенно превышающей температуру в примерах 1-5. Раствор инициатора с концентрацией 0.2 моль/л вводят с помощью шприца в количестве 2.1 мл (0.42·10-3 мол). Концентрация мономера и инициатора в смеси составляют 2.8 моль/л и 1·10-3 моль/л соответственно. Через 1 мин реакционную смесь дезактивируют 10 мл смеси диметилформамида и уксусной кислоты (соотношение по объему 10:1). Полимер выделяют высаживанием в воду, промывают водой на фильтрах Шотта и сушат при 60°С. Выход полимера 20.8 г (40%). Характеристическая вязкость [η]=2.15, средневязкостная молекулярная масса M[η]=195·103.
Изменение температурного режима процесса полимеризации при прочих равных условиях влечет за собой такие негативные последствия, как резкое снижение выхода полимерного продукта, уменьшение характеристической вязкости и молекулярной массы полимера, т.е. не позволяет осуществить получение полимера с характеристиками, отвечающими сверхмолекулярному ПАН. Аналогичное ухудшение характеристик образующихся полимеров наблюдается при выходе за пределы интервала использованных концентраций мономера (2.0-2.8) моль/л и инициатора (0.6-1)·10-3 моль/л.
Таким образом, экспериментально доказано, что эффективность предлагаемого метода существенно превосходит возможности известных способов получения ПАН и обеспечивает получение сверхвысокомолекулярных ПАН с молекулярными массами (570-840)·103 при осуществлении регламента получения полимеров в указанных интервалах концентраций реагентов и сопутствующих материалов, при выполнении рекомендаций при подготовке растворителя и мономера и при соблюдении указанного температурного режима.

Claims (1)

  1. Способ получения сверхвысокомолекулярного полиакрилонитрила, основанный на использовании механизма анионной полимеризации, включающий подготовку исходных реагентов, синтез анионного инициатора, проведение процесса полимеризации, выделение и сушку полученного полимера, отличающийся тем, что полимеризацию проводят в атмосфере аргона с использованием свежеперегнанных растворителя - диметилформамида в количестве 350-460 мл и мономера - акрилонитрила в количестве 60-70 мл, обеспечивают температурный режим процесса, создавая начальную температуру реакционной смеси (-50)÷(-20)°С, вводят количество инициатора 1,2-бис-диэтиламино-2-оксоэтанолата лития, не превышающее 0,52·10-3 молей, реакционную смесь дезактивируют через 15-60 с после начала процесса смесью диметилформамида и уксусной кислоты в соотношении по объему 10:1, полимер высаживают в воду, выделяют фильтрованием, промывают водой и сушат при температуре 60°С, получают полимер с выходом от 80 до 100% и характеристиками сверхвысокомолекулярного полиакрилонитрила.
RU2007146341/04A 2007-12-13 2007-12-13 Способ получения сверхвысокомолекулярного полиакрилонитрила RU2376319C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2007146341/04A RU2376319C2 (ru) 2007-12-13 2007-12-13 Способ получения сверхвысокомолекулярного полиакрилонитрила

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2007146341/04A RU2376319C2 (ru) 2007-12-13 2007-12-13 Способ получения сверхвысокомолекулярного полиакрилонитрила

Publications (2)

Publication Number Publication Date
RU2007146341A RU2007146341A (ru) 2009-06-20
RU2376319C2 true RU2376319C2 (ru) 2009-12-20

Family

ID=41025510

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007146341/04A RU2376319C2 (ru) 2007-12-13 2007-12-13 Способ получения сверхвысокомолекулярного полиакрилонитрила

Country Status (1)

Country Link
RU (1) RU2376319C2 (ru)

Also Published As

Publication number Publication date
RU2007146341A (ru) 2009-06-20

Similar Documents

Publication Publication Date Title
JP4711685B2 (ja) 制御された重合
EP2970531B1 (en) Polymer derived from acrylonitrile
JP2019520465A (ja) ポリマー材料及び制御ラジカル開始剤を使用した製造方法
Lehnen et al. The difference between photo-iniferter and conventional RAFT polymerization: high livingness enables the straightforward synthesis of multiblock copolymers
EP1697424A1 (en) Polymerisation using chain transfer agents
CN112961278A (zh) 一种功能化乙烯基吡咯烷酮共聚物及其制备方法
RU2376319C2 (ru) Способ получения сверхвысокомолекулярного полиакрилонитрила
WO2018197885A1 (en) Branched polymers
CN114163592B (zh) 路易斯酸碱对在聚合诱导自组装中的应用、纤维形貌两亲性嵌段聚合物及其制备方法和应用
WO2020246902A1 (en) An initiator of atrp radical polymerisation, a method of its synthesis, and a method of synthesis of low-dispersion polymer and copolymer using this initiator
Pham et al. Polymerization of vinyl pivalate in supercritical carbon dioxide and the saponification for the preparation of syndiotacticity-rich poly (vinyl alcohol)
US20200181335A1 (en) Polymers
RU2627264C1 (ru) Способ получения сополимера акрилонитрила
CN1451668A (zh) 可控/活性自由基聚合方法及聚合物、控制剂及制备方法
TWI805253B (zh) 聚合物的製造方法,自由基聚合用組成物及自由基聚合調控劑
RU2697882C1 (ru) Способ получения сополимера акрилонитрила
CN115947883B (zh) 高品质聚丙烯腈及其可控合成方法与应用
CN111491966A (zh) 通过钴介导的自由基聚合进行乙烯的嵌段共聚
CN110204649B (zh) 以过渡金属盐类催化过硫酸盐-可聚合叔胺引发自由基聚合制备高分子聚阳离子电解质
RU2422467C2 (ru) Волокнообразующий сополимер акрилонитрила и способ его получения
KR20140123286A (ko) 원자이동라디칼중합(atrp)을 이용한 폴리비닐아세테이트 합성방법 및 상기 합성방법에 따라 얻어진 폴리비닐아세테이트
JPS59155414A (ja) 高分子多糖グラフト共重合体の製造方法
RU2798656C1 (ru) Способ получения олигомеров акрилонитрила и его соолигомеров в присутствии N-метилморфолин-N-оксида
Lin et al. Kinetics of atom transfer radical polymerization of methyl methacrylate initiated by cellulose chloroacetate in BMIMCl
KR0126240B1 (ko) 메틸 메타크릴레이트 (mma) 기재의 개질 중합체 또는 공중합체의 제조방법

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20151214