RU2372281C1 - Способ получения экстракционной фосфорной кислоты - Google Patents

Способ получения экстракционной фосфорной кислоты Download PDF

Info

Publication number
RU2372281C1
RU2372281C1 RU2008123784/15A RU2008123784A RU2372281C1 RU 2372281 C1 RU2372281 C1 RU 2372281C1 RU 2008123784/15 A RU2008123784/15 A RU 2008123784/15A RU 2008123784 A RU2008123784 A RU 2008123784A RU 2372281 C1 RU2372281 C1 RU 2372281C1
Authority
RU
Russia
Prior art keywords
pulp
decomposition
phosphate
zone
cooling
Prior art date
Application number
RU2008123784/15A
Other languages
English (en)
Inventor
Анатолий Владимирович Гриневич (RU)
Анатолий Владимирович Гриневич
Евгений Михайлович Кузнецов (RU)
Евгений Михайлович Кузнецов
Александр Марткович Кержнер (RU)
Александр Марткович Кержнер
Андрей Алексеевич Киселев (RU)
Андрей Алексеевич Киселев
Владимир Анатольевич Гриневич (RU)
Владимир Анатольевич Гриневич
Евгений Юрьевич Шибанов (RU)
Евгений Юрьевич Шибанов
Original Assignee
Открытое Акционерное Общество "Научно-Исследовательский Институт По Удобрениям И Инсектофунгицидам Им. Проф. Я.В. Самойлова"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое Акционерное Общество "Научно-Исследовательский Институт По Удобрениям И Инсектофунгицидам Им. Проф. Я.В. Самойлова" filed Critical Открытое Акционерное Общество "Научно-Исследовательский Институт По Удобрениям И Инсектофунгицидам Им. Проф. Я.В. Самойлова"
Priority to RU2008123784/15A priority Critical patent/RU2372281C1/ru
Application granted granted Critical
Publication of RU2372281C1 publication Critical patent/RU2372281C1/ru

Links

Landscapes

  • Paper (AREA)

Abstract

Изобретение относится к дигидратным методам получения экстракционной фосфорной кислоты (ЭФК), используемой в производстве минеральных удобрений. Способ получения экстракционной фосфорной кислоты дигидратным методом включает разложение фосфатного сырья смесью серной и фосфорной кислот в присутствии рециркулируемой пульпы и кристаллизацию сульфата кальция в многосекционном экстракторе с выделением стадий разложения и дозревания пульпы, охлаждение экстракционной пульпы вакуумным методом, разделение пульпы фильтрацией с получением продукционной фосфорной кислоты, противоточную промывку сульфата кальция с возвратом промывного раствора на стадию разложения фосфата. При этом стадию разложения ведут позонно, причем в зонах ввода фосфатного сырья, основного разложения фосфата с кристаллизацией сульфата кальция и охлаждения пульпы содержание SO3 в жидкой фазе пульпы поддерживают на уровне 17÷22; 22÷25 и 25÷30 г/л при объемном соотношении реакционных масс в этих зонах 1:(2÷5):(1÷2), соответственно, а циркуляцию пульпы из зоны охлаждения в зону ввода фосфатного сырья поддерживают в объеме 5000÷12000 м3/ч. Фосфатное сырье вводят в виде смеси с раствором разбавления или экстракционной пульпой. Серную кислоту в зону охлаждения вводят в поток охлажденной пульпы. Способ позволяет интенсифицировать процесс получения ЭФК с увеличением производительности системы, повысить эффективность переработки фосфатного сырья, стабилизировать и упростить ведение технологического процесса. 3 з.п. ф-лы, 1 табл.

Description

Изобретение относится к дигидратным методам получения экстракционной фосфорной кислоты (ЭФК), используемой в производстве минеральных удобрений.
Известен способ получения ЭФК дигидратным методом, включающий разложение фосфатного сырья смесью серной и фосфорной кислот в присутствии рециркулируемой пульпы и кристаллизацию сульфата кальция в многосекционном реакторе, охлаждение пульпы вакуумным методом, разделение продукционной пульпы фильтрацией с получением продукционной фосфорной кислоты, водную противоточную промывку кека сульфата кальция с получением промывного раствора и возвратом его на стадию разложения.
По этому способу фосфатное сырье подается в головную секцию реактора, а серная кислота - в две или три головных секции реактора (как правило, во вторую и третью секции). Пульпа последовательно движется в хвостовую часть реактора. Процесс разложения и кристаллизации дигидрата сульфата кальция проводят практически при одинаковых содержаниях H2SO4 в жидкой фазе пульпы. Охлаждение пульпы вакуумным методом осуществляется путем забора пульпы из хвостовой части экстрактора. Часть охлажденной пульпы отбирается из хвостовой части экстрактора и в качестве продукционной подается на фильтрацию, а остальная часть рециркулируется в голову процесса. При этом рециркуляцией охвачен весь объем реактора.
Указанный способ характеризуется низкой единичной мощностью технологических систем (до 350 т Р2О5/сутки), требует, как правило, предварительного разбавления и охлаждения исходной серной кислоты (усложняет и удорожает схему производства), характеризуется относительно низкой степенью использования фосфатного сырья и большим расходом электроэнергии. Интенсификация работы реактора практически невозможна вследствие того, что циркуляция пульпы осуществляется во всем реакционном объеме. Поэтому повышение производительности увеличивает «проскок» неразложенного фосфатного сырья непосредственно с пульпой, подаваемой на фильтрацию (Копылев Б.А. «Технология экстракционной фосфорной кислоты». Л.: Химия, 1972, с.175-178).
Наиболее близким к предложенному по технической сущности и достигаемому эффекту является способ получения ЭФК дигидратным методом в многосекционном экстракторе (Технология фосфорных и комплексных удобрений. / Под ред. С.Д.Эвенчика и А.А.Бродского. М.: Химия, 1987, с.72-74). Способ включает разложение апатитового концентрата смесью серной и фосфорной кислот в присутствии рециркулируемой пульпы и кристаллизацию дигидрата сульфата кальция в многосекционном экстракторе, охлаждение пульпы вакуумным методом, разделение продукционной пульпы фильтрацией с получением продукционной фосфорной кислоты, противоточную водную промывку кека сульфата кальция с возвратом промывного раствора на стадию разложения. Для улучшений условий разложения фосфата и кристаллизации дигидрата сульфата кальция в данном способе выделяют стадии разложения и дозревания пульпы с разным уровнем содержания SO3 в жидкой фазе пульпы. Разложение ведут в двенадцатисекционном экстракторе (восемь секций на стадии разложения и четыре секции на стадии дозревания пульпы). При этом циркуляцию пульпы проводят только на стадии разложения (объем циркуляции пульпы не более 4800 м3/ч). Исходное фосфатное сырье вводят на стадии разложения в одну из секций реактора (как правило, в виде порошкового продукта). Разложение апатитового концентрата и кристаллизация дигидрата сульфата кальция протекает в зоне ввода сырья, за счет серной кислоты, которая приходит с рециркулирующей пульпой. Специально H2SO4 в секцию, предшествующую зоне ввода сырья, не вводят. Серная кислота вводится в последующие за зоной ввода фосфата две секции стадии разложения. В последующих за этим пяти секциях зоны разложения осуществляется доразложение фосфата и кристаллизация сульфата кальция. В последних двух секциях осуществляется охлаждение пульпы в вакуум-испарительной установке. Продукционная часть охлажденной пульпы передается на стадию дозревания. В начальную секцию стадии дозревания вводят серную кислоту для оптимизации уровня SO3 в жидкой фазе пульпы. На стадии дозревания, в основном, осуществляется снятие остаточного пересыщения жидкой фазы пульпы по сульфату кальция и примесным фазам (кремнефторидам калия и натрия). Реализация данного способа позволила достигнуть производительности системы до 1000 т Р2О5/сутки, Кизвл=98,3-98,4%, Kотм=98,6-98,7%.
Однако данный способ делает невозможным интенсификацию процесса получения экстракционной фосфорной кислоты, что выражается в снижении стабильности проведения процесса и эффективности переработки фосфатного сырья при увеличении производительности системы. Это связано с тем, что в зоне ввода фосфатного сырья разложение протекает при наличии значительного уровня локальных пересыщений фосфорнокислого раствора по сульфату кальция, что приводит к частичной блокировке крупных зерен фосфата сульфатными пленками (вследствие подачи сырья «сухим» способом). Кристаллизация дигидрата сульфата кальция протекает при низких содержаниях SO3 в жидкой фазе пульпы (до 12-16 г/л), что приводит к получению мелких кристаллов дигидрата сульфата кальция и снижению Кизвл за счет увеличения внедрения в кристаллическую решетку ионов НРО42- (увеличиваются потери Р2О5). Принятая система ввода серной кислоты в зону разложения в две секции непосредственно за подачей фосфатного сырья не обеспечивает оптимальное содержание SO3 по зонам стадии разложения (это приводит к снижению Кизвл). Относительно небольшой объем циркуляции пульпы на стадии разложения не обеспечивает полную гомогенность состава жидкой фазы пульпы в головных секциях реактора (стадия разложения), что способствует снижению однородности кристаллов CaSО4·2H2О и Кизвл. Способ не позволяет увеличить часовую нагрузку по апатитовому концентрату свыше 105 т/ч вследствие значительного снижения Кизвл при переработке апатитового концентрата как стандартного, так и затрубленного помола.
Нами поставлена задача интенсификации процесса получения экстракционной фосфорной кислоты с увеличением производительности системы, повышения эффективности переработки фосфатного сырья, стабилизации и упрощении ведения технологического процесса.
Поставленная задача решается в предложенном способе получения экстракционной фосфорной кислоты дигидратным методом, включающим разложение фосфатного сырья смесью серной и фосфорной кислот в присутствии рециркулируемой пульпы и кристаллизацию сульфата кальция в многосекционном экстракторе с выделением стадий разложения и дозревания пульпы, охлаждение экстракционной пульпы вакуумным методом, разделение пульпы фильтрацией с получением продукционной фосфорной кислоты, противоточную промывку сульфата кальция с возвратом промывного раствора на стадию разложения фосфата. В предложенном способе стадию разложения ведут позонно, причем в зонах ввода фосфатного сырья, основного разложения фосфата с кристаллизацией сульфата кальция и охлаждения пульпы содержание SO3 в жидкой фазе пульпы поддерживают на уровне 17÷22; 22÷25 и 25÷30 г/л при объемном соотношении реакционных масс в этих зонах 1:(2÷5):(1÷2) соответственно, а циркуляцию пульпы из зоны охлаждения в зону ввода фосфатного сырья поддерживают в объеме 5000÷12000 м3/ч.
Возможно фосфатное сырье вводить в виде смеси с раствором разбавления или экстракционной пульпой. Целесообразно серную кислоту в зону охлаждения вводить в поток охлажденной пульпы. В зависимости от условий проведения процесса 4-15% от общего расхода H2SO4 непосредственно вводят в зону загрузки фосфатного сырья.
Сущность способа заключается в следующем. Нами предлагается процесс получения ЭФК в дигидратном режиме на стадии разложения проводить позонно, в условиях оптимального поддержания содержания SO3 в жидкой фазе пульпы выделяемых зон ввода фосфатного сырья, основного разложения фосфата с кристаллизацией сульфата кальция и охлаждения пульпы на уровне 17÷22; 22÷25 и 25÷30 г/л при объемном соотношении реакционных масс 1:(2÷5):(1÷2) соответственно, что создаст наилучшие условия для максимального разложения фосфатного сырья, а также для кристаллизации дигидрата сульфата кальция в условиях минимальных локальных пересыщений фосфорнокислого раствора по сульфату кальция. Повышение гомогенности экстракционной пульпы достигается и посредством увеличения объема рециркулируемой пульпы в интервале 5000÷12000 м3/ч.
Заявленное нами содержание SO3 в жидкой фазе пульпы в зоне загрузки фосфатного сырья на уровне 17÷22 г/л обусловлено, с одной стороны, минимизацией потерь Р2О5 за счет внедрения в кристаллическую решетку CaSО4·2H2О ионов НРО42-, а с другой - предотвращением блокирования крупных частиц апатита сульфатными пленками. Содержание SO3 в жидкой фазе пульпы в зоне основного разложения фосфата с кристаллизацией сульфата кальция на уровне 22÷25 г/л обусловлено оптимальными условиями доразложения фосфатного сырья и роста кристаллов дигидрата сульфата кальция. Содержание SO3 в жидкой фазе пульпы в зоне охлаждения пульпы на уровне 25÷30 г/л обусловлено необходимостью поддержания оптимального режима в зоне дозревания экстрактора для эффективного снятия остаточного пересыщения фосфорнокислого раствора по сульфату кальция и примесям кремнефторидов натрия и калия, а также улучшением системы ввода серной кислоты в зону разложения фосфата (снижение локальных пересыщений фосфорнокислого раствора по сульфату кальция).
Заявленное нами объемное соотношение реакционных масс по зонам на уровне 1:(2÷5):(1÷2) обусловлено обеспечением необходимого времени пребывания пульпы в соответствующей зоне для протекания в достаточно полной мере процессов растворения и разложения фосфатного сырья, кристаллизации дигидрата сульфата кальция, охлаждения пульпы с последующим ее направлением на стадию дозревания, а также подготовку пульпы посредством подачи серной кислоты для ее рециркуляции в зону ввода фосфатного сырья. Соотношение реакционных масс менее 1:2:1 не обеспечит полного растворения и разложения фосфатного сырья в первой зоне, образование и рост кристаллов дигидрата сульфата кальция во второй зоне, что приведет к снижению Кизвл. Увеличение соотношения зон основного разложения фосфата с кристаллизацией сульфата кальция и охлаждения пульпы по сравнению с зоной ввода фосфатного сырья более 1:5:2 не приводит к увеличению эффективности переработки фосфатного сырья (увеличивает капитальные затраты на проведение процесса).
Принятый нами объем циркуляции пульпы 5000÷12000 м3/ч обеспечивает оптимальные условия разложения апатита и кристаллизации дигидрата сульфата кальция, ввода и распределения серной кислоты по зонам стадии разложения. При объеме циркуляции менее 5000 м3/ч ухудшается гомогенность состава экстракционной пульпы по зонам стадии разложения, уменьшается количество серной кислоты, приходящей в зону ввода фосфатного сырья, что увеличивает потери Р2О5 за счет сокристаллизации и блокирования зерен апатита сульфатными пленками. Увеличение объема циркуляционной пульпы выше 12000 м3/ч практически не улучшает показатели производства ЭФК и существенно усложняет технику циркуляции пульпы и устройство экстрактора.
Способы ввода фосфатного сырья в виде смеси с раствором разбавления или экстракционной пульпой и серной кислотой в зону охлаждения в поток охлажденной пульпы также способствуют улучшению гомогенности состава экстракционной пульпы.
Подача серной кислоты в зону ввода фосфатного сырья в количестве 4-15% от ее общего расхода определяется необходимостью поддержания оптимального содержания SO3 в жидкой фазе пульпы зоны ввода фосфатного сырья на уровне 17÷22 г/л в зависимости от нагрузки по апатитовому концентрату и объема циркуляции пульпы.
Способ проиллюстрирован следующими примерами.
Пример 1. Технологический процесс получения ЭФК из хибинского апатитового концентрата (39,0% Р2О5, содержание фракции +0,16 мм 13%) осуществляют посредством разложения фосфата смесью фосфорной и серной кислот в присутствии рециркулируемой пульпы и кристаллизации дигидрата сульфата кальция в многосекционном экстракторе, включающем стадию разложения (8 секций рабочим объемом 200 м3 каждая) и стадию дозревания пульпы (4 секции по 150 м3 каждая) с выделением на стадии разложения трех зон.
В секцию №1 (секция №1 - зона ввода фосфатного сырья, зона I) стадии разложения подают 110 т/ч апатитового концентрата в смеси с 419 т раствора разбавления со стадии фильтрации (19,3% Р2О5), 5000 м3/ч циркулируемой из зоны охлаждения пульпы (содержание Р2О5 и SO3 в жидкой фазе 28% и 29,5 г/л соответственно) и 6 м3 серной кислоты концентрацией 93% H2SO4. В зоне I разложение апатитового концентрата проводят при температуре 77°С и содержании Р2О5 28%. Содержание
SO3 в жидкой фазе пульпы в зоне I поддерживают на уровне 19,5 г/л.
Из секции №1 пульпа перетекает в секцию №2 (секции №2-6 - зона основного разложения фосфата и кристаллизации CaSО4·2H2О, зона II), в которую подают 29 м3 серной кислоты (93% H2SO4), и далее пульпа последовательно перетекает в секции 3-6. Процесс разложения апатита и кристаллизации дигидрата сульфата кальция в зоне II протекает при температуре 78-79°С, соотношении Т:Ж 1:2,5 и содержании Р2О5 28%. Содержание SO3 в жидкой фазе пульпы в зоне 2 поддерживают на уровне 23 г/л.
Из секции №6 экстракционная пульпа перетекает последовательно в секции №7 и №8 (секции №7-8 - зона охлаждения пульпы, зона III). Из секции №8 пульпа в объеме 5400 м3/ч подается циркуляционными пульповыми насосами на охлаждение в вакуум-испарительную установку. В охлажденный поток пульпы вводят 24 м3/ч 93%-ной серной кислоты. После чего продукционная часть пульпы (616 т) передается на стадию дозревания в секцию №9, а остальная часть поступает в секцию №7. В зоне охлаждения продолжается доразложение фосфата и кристаллизация CaSО4·2H2О при температуре 77°С. Содержание SO3 в жидкой фазе пульпы поддерживают на уровне 29,5 г/л. Из зоны охлаждения пульпа рециркулируется низконапорным циркулятором пульпы в секцию №1 в количестве 5000 м3/ч.
На стадии дозревания пульпа последовательно перетекает из секции №9 в секции №10-12. На этой стадии, в основном, за счет выдерживания пульпы при некотором снижении температуры (на 1-2°С) осуществляется снятие остаточного пересыщения по сульфату кальция и кремнефторидам Na и К.
Вызревшая пульпа подается на разделение на два карусельных вакуум-фильтра с получением 153 т/ч продукционной ЭФК (без учета механических потерь) с содержанием Р2О5 27,3%. После отделения продукционного фильтрата осадок на фильтре подвергается двухкратной противоточной промывке горячей водой. Образованный смешением промывного раствора с частью продукционного фильтрата раствор разбавления в количестве 419 т/ч подают на смешение с вводимым на стадию разложения апатитовым концентратом. Фосфогипс в количестве 255 т (общее влагосодержание 44%) удаляется в отвал.
Коэффициенты извлечения и отмывки Р2О5 составляют 98,6% и 98,8% соответственно, технологический выход 97,4%.
Пример 2. Получение ЭФК осуществляется из хибинского апатитового концентрата (39,0% Р2О5, содержание фракции +0,16 мм - 16%). Организация технологического процесса и характеристика экстрактора (количество и объем секций по зонам, направление движения пульпы) аналогичны примеру 1.
В секцию №1 (секция №1 - зона ввода фосфатного сырья, зона I) стадии разложения подают 120 т/ч апатитового концентрата в смеси с 600 м3 экстракционной пульпы и 9000 м3/ч циркулируемой из зоны охлаждения пульпы (содержание Р2О5 и SO3 в жидкой фазе 28,5% и 25,6 г/л соответственно). В зоне I разложение апатитового концентрата проводят при температуре 78°С и содержании Р2О5 28,5%. Содержание SO3 в жидкой фазе пульпы поддерживают на уровне 18 г/л.
Из секции №1 пульпа перетекает в секцию №2 (секции №2-6 - зона основного разложения фосфата и кристаллизации CaSО4·2H2О, зона II), в которую подают 36,6 м3 серной кислоты (95% H2SO4) в смеси с 417 т/ч (19,1% Р2О5) раствора разбавления с узла фильтрации. Далее пульпа последовательно перетекает в секции 3-6. Процесс в зоне II протекает при температуре 79-80°С, соотношении Т:Ж 1:2,3 и содержании Р2О5 28,5%. Содержание SO3 в жидкой фазе пульпы поддерживают на уровне 22 г/л.
Из секции №6 экстракционная пульпа перетекает последовательно в секции №7 и №8 (секции №7-8 - зона охлаждения пульпы, зона III). Из секции №8 пульпа насосами подается на охлаждение в вакуум-испарительную установку (из данного потока отбирают 600 м3 пульпы для смачивания апатита перед подачей в секцию №1). В охлажденный поток пульпы вводят 26,3 м3/ч 95%-ной серной кислоты. После чего продукционная часть пульпы (634 т) передается на стадию дозревания в секцию №9, а остальная часть поступает в секцию №7. В зоне охлаждения процесс ведут при температуре 78°С. Содержание SO3 в жидкой фазе пульпы поддерживают на уровне 25 г/л. Из зоны охлаждения пульпа рециркулируется в секцию №1 в количестве 9000 м3/ч.
Осуществление процесса на стадии дозревания аналогично примеру 1.
Вызревшая пульпа из секции №12 подается на разделение на два карусельных вакуум-фильтра с получением 164 т/ч продукционной ЭФК (без учета механических потерь) с содержанием Р2О5 27,8%. Промывка осадка - двухкратная противоточная. Количество образующегося фосфогипса 284 т/ч (влагосодержание 45%). Раствор разбавления в количестве 417 т/ч (19,1% Р2О5) подают на смешение с серной кислотой, вводимой в зону II.
Коэффициенты извлечения и отмывки Р2О5 составляют 98,6% и 99,0% соответственно, технологический выход 97,6%.
Эти и другие примеры способа получения ЭФК в дигидратном режиме приведены в таблице.
Figure 00000001

Claims (4)

1. Способ получения экстракционной фосфорной кислоты дигидратным методом, включающий разложение фосфатного сырья смесью серной и фосфорной кислот в присутствии рециркулируемой пульпы и кристаллизацию сульфата кальция в многосекционном экстракторе с выделением стадий разложения и дозревания пульпы, охлаждение экстракционной пульпы вакуумным методом, разделение пульпы фильтрацией с получением продукционной фосфорной кислоты, противоточную промывку сульфата кальция с возвратом промывного раствора на стадию разложения фосфата, отличающийся тем, что стадию разложения ведут позонно, причем в зонах ввода фосфатного сырья, основного разложения фосфата с кристаллизацией сульфата кальция и охлаждения пульпы содержание SO3 в жидкой фазе пульпы поддерживают на уровне 17÷22; 22÷25 и 25÷30 г/л при объемном соотношении реакционных масс в этих зонах 1:(2÷5):(1÷2), соответственно, а циркуляцию пульпы из зоны охлаждения в зону ввода фосфатного сырья поддерживают в объеме 5000÷12000 м3/ч.
2. Способ по п.1, отличающийся тем, что фосфатное сырье вводят в виде смеси с раствором разбавления или экстракционной пульпой.
3. Способ по одному из пп.1 и 2, отличающийся тем, что серную кислоту в зону охлаждения вводят в поток охлажденной пульпы.
4. Способ по одному из пп.1 и 2, отличающийся тем, что серную кислоту подают либо в зоны основного разложения фосфата с кристаллизацией сульфата кальция и охлаждения пульпы, либо во все три зоны, при этом при подаче серной кислоты в зону загрузки фосфатного сырья ее вводят в количестве 4-15% от общего расхода серной кислоты.
RU2008123784/15A 2008-06-18 2008-06-18 Способ получения экстракционной фосфорной кислоты RU2372281C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2008123784/15A RU2372281C1 (ru) 2008-06-18 2008-06-18 Способ получения экстракционной фосфорной кислоты

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2008123784/15A RU2372281C1 (ru) 2008-06-18 2008-06-18 Способ получения экстракционной фосфорной кислоты

Publications (1)

Publication Number Publication Date
RU2372281C1 true RU2372281C1 (ru) 2009-11-10

Family

ID=41354667

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008123784/15A RU2372281C1 (ru) 2008-06-18 2008-06-18 Способ получения экстракционной фосфорной кислоты

Country Status (1)

Country Link
RU (1) RU2372281C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2583956C2 (ru) * 2014-09-02 2016-05-10 Открытое акционерное общество "Научно-исследовательский институт по удобрениям и инсектофунгицидам имени профессора Я.В. Самойлова" (ОАО "НИУИФ") Способ получения экстракционной фосфорной кислоты

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
КОПЫЛЕВ Б.А. Технология экстракционной фосфорной кислоты. - Л.: Химия, 1981, с.108-109. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2583956C2 (ru) * 2014-09-02 2016-05-10 Открытое акционерное общество "Научно-исследовательский институт по удобрениям и инсектофунгицидам имени профессора Я.В. Самойлова" (ОАО "НИУИФ") Способ получения экстракционной фосфорной кислоты

Similar Documents

Publication Publication Date Title
FI83209C (fi) Kontinuerligt foerfarande foer framstaellning av fosforsyra och kalciumsulfat.
CN104016384A (zh) 一种制备高纯碳酸铯和高纯碳酸铷的方法
US3632307A (en) Process for the preparation of phosphoric acid and gypsum from phosphate rock
RU2505478C1 (ru) Способ получения экстракционной фосфорной кислоты
US3552918A (en) Process for the production of phosphoric acid
KR102029195B1 (ko) 인산 리튬으로부터 수산화 리튬을 제조하는 방법
RU2372281C1 (ru) Способ получения экстракционной фосфорной кислоты
KR101770814B1 (ko) 디하이드레이트/헤미하이드레이트 유형의 인산 제조 방법
IL26076A (en) Method for the manufacture of phosphoric acid and calcium sulphate hemihydrate
CN104557517A (zh) 一种废柠檬酸钠母液综合处理工艺
CN105366701A (zh) 一种连续生产铯铷矾和钾明矾的工艺
SU1223838A3 (ru) Способ получени фосфорной кислоты
US3745208A (en) Wet process manufacture of phosphoric acid and calcium sulphate
US3472619A (en) Production of phosphoric acid and calcium sulfate
CN217350771U (zh) 通过硝酸磷肥装置联产磷酸的系统
US3835215A (en) Manufacture of phosphoric acid
US3645677A (en) Production of gypsum
RU2373143C1 (ru) Способ получения фосфорной кислоты
CN113148968A (zh) 一种湿法磷加工生产α-半水石膏的方法
RU2261222C1 (ru) Способ получения монокалийфосфата
RU2792097C1 (ru) Способ получения экстракционной фосфорной кислоты
RU2509726C2 (ru) Способ извлечения редкоземельных элементов из фосфогипса
CN112897490B (zh) 多重结晶半水-二水生产湿法磷酸的方法及半水-二水湿法磷酸生产系统
IL26394A (en) Process for the preparation of phosphoric acid and gypsum from phosphate rock
CN108147383A (zh) 湿法磷酸的脱氟方法

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
HE4A Change of address of a patent owner
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200619