RU2368966C1 - Микротвэл ядерного реактора с двухслойным защитным покрытием топливной микросферы - Google Patents

Микротвэл ядерного реактора с двухслойным защитным покрытием топливной микросферы Download PDF

Info

Publication number
RU2368966C1
RU2368966C1 RU2008117489/06A RU2008117489A RU2368966C1 RU 2368966 C1 RU2368966 C1 RU 2368966C1 RU 2008117489/06 A RU2008117489/06 A RU 2008117489/06A RU 2008117489 A RU2008117489 A RU 2008117489A RU 2368966 C1 RU2368966 C1 RU 2368966C1
Authority
RU
Russia
Prior art keywords
layer
fuel
microsphere
nuclear reactor
double
Prior art date
Application number
RU2008117489/06A
Other languages
English (en)
Inventor
Валентин Петрович Денискин (RU)
Валентин Петрович Денискин
Сергей Дмитриевич Курбаков (RU)
Сергей Дмитриевич Курбаков
Иван Иванович Федик (RU)
Иван Иванович Федик
Альберт Семенович Черников (RU)
Альберт Семенович Черников
Original Assignee
Федеральное государственное унитарное предприятие "Научно-исследовательский институт Научно-производственное объединение "Луч"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Научно-исследовательский институт Научно-производственное объединение "Луч" filed Critical Федеральное государственное унитарное предприятие "Научно-исследовательский институт Научно-производственное объединение "Луч"
Priority to RU2008117489/06A priority Critical patent/RU2368966C1/ru
Application granted granted Critical
Publication of RU2368966C1 publication Critical patent/RU2368966C1/ru

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

Изобретение относится к области ядерной энергетики, в частности к микротвэлам ядерного реактора с двухслойными защитными покрытиями. Микротвэл ядерного реактора с двухслойным защитным покрытием топливной микросферы содержит два слоя защитного покрытия. Первый от топливной микросферы слой выполнен из низкоплотного пироуглерода. Второй слой защитного покрытия выполнен из титанокремнистого карбида Ti3SiC2. Изобретение направлено на уменьшение повреждаемости слоя по механизму образования сквозных трещин.

Description

Изобретение относится к области ядерной энергетики, в частности к микротвэлам ядерного реактора с двухслойными защитными покрытиями.
Микротвэл ядерного реактора представляет собой топливную микросферу из делящегося материала, в качестве которого применяется двуокись урана, двуокись плутония, нитрид и карбонитрид урана, карбиды урана и тория, со слоями защитного покрытия (см., например, Котельников Р.Б., Башлыков С.Н., Каштанов А.И., Меньшикова Т.С. "Высокотемпературное ядерное топливо", изд. 2-е, "Атомиздат", М., 1978, 432 с.).
В качестве защитных покрытий используют пироуглерод различной плотности, карбиды кремния и циркония (см., например, Дегальцев Ю.Г., Пономарев-Степной Н.Н., Кузнецов В.Ф. "Поведение высокотемпературного ядерного топлива при облучении", "Энергоатомиздат", М., 1987, 208 с.).
В составе микротвэла с двухслойным защитным покрытием первый от топливной микросферы слой выполняется из низкоплотного пироуглерода и служит компенсатором несоответствий в коэффициентах линейного термического расширения материала топливной микросферы и последующего высокоплотного слоя, в качестве материала которого применяется высокоплотный изотропный пироуглерод, служащий диффузионным барьером для газообразных и твердых продуктов деления.
Известен микротвэл с двухслойным защитным покрытием, в котором на топливную микросферу из диоксида урана или тория нанесен слой из пироуглерода низкой плотности (около 1,2 г/см3), а наружный слой выполнен из изотропного пироуглерода плотностью 1,6-2,0 г/см3 (см., например, Luby C.S. et al., Influence of Radiation temperature on the Radiation stability of coated particle fuel, Nucl. Appl. And Technol., v.3, N12, p.728).
Недостаток такого микротвэла заключается в том, что усадка и распухание пироуглерода анизотропны и зависят от температуры облучения, изотропности пироуглерода, его исходной плотности и от равномерности ее распределения по толщине слоя. По мере набора дозы облучения и с увеличением температуры облучения усадка и напряжения в наружном пироуглеродном слое увеличиваются, а компенсация усадки происходит за счет ползучести, вызванной облучением. Таким образом, большая ползучесть при более высокой температуре снижает напряжение в пироуглероде. По мере выгорания топлива возрастающее давление газообразных продуктов деления частично компенсируется радиационно-термической ползучестью пироуглерода, тем не менее, начиная с определенного момента, высокое внутреннее давление газов и наступающее по мере набора дозы вторичное распухание пироуглерода приводит к его разрушению, что ограничивает ресурс эксплуатации микротвэла.
Наиболее близким аналогом-прототипом предлагаемому техническому решению является микротвэл ядерного реактора, состоящий из топливной микросферы и двухслойного защитного покрытия, в котором первый от топливной микросферы слой выполнен из низкоплотного пироуглерода, а второй, наружный, слой выполнен из высокоплотного изотропного пироуглерода (см., например, Каае J.L. The mechanical behavior of BISO - coated fuel particles during irradiation. Part 1: Analysis of stresses and strains generated in the coating of a BISO fuel particle during irradiation - Nuclear Technology, vol.35, September 1977, p.359-367 and Kaae J.L. et al. Part 2 - Nuclear Technology, vol.35, September 1977, p.368-378).
Недостатком указанного микротвэла, как и предыдущего, является низкий ресурс эксплуатации, связанный с повреждаемостью наружного пироуглеродного слоя из-за напряжений, вызванных облучением. Ограничение ресурса эксплуатации микротвэла связано также с тенденцией миграции топливной микросферы в условиях температурного градиента. Наиболее характерна эта тенденция для оксидного топлива (UO2, PuO2 и т.п.). Степень миграции топливной микросферы зависит от абсолютного значения температуры облучения и температурного градиента. При смещении оксидной топливной микросферы до высокоплотного изотропного слоя интенсивно протекает взаимодействие, например, диоксида урана с углеродом, что приводит к повышению вероятности разгерметизации микротвэла. Таким образом, миграция топливного керна приводит к снижению ресурса эксплуатации микротвэла.
Предлагаемый микротвэл с двухслойным защитным покрытием топливной микросферы обеспечивает повышение ресурса эксплуатации вследствие выполнения наружного слоя из титанокремнистого карбида Ti3SiC2.
Каждый из слоев предложенного микротвэла выполняет следующие функции.
Первый слой из низкоплотного пироуглерода служит для локализации газообразных продуктов деления, компенсации несоответствия коэффициентов линейного термического расширения топливной микросферы и последующего слоя из титанокремнистого карбида, защищает второй слой от повреждений высокоэнергетическими осколками деления ядерного материала (ядрами отдачи).
Второй слой из титанокремнистого карбида является основным силовым слоем и диффузионным барьером для газообразных и твердых продуктов деления.
Титанокремнистый карбид Ti3SiC2 является представителем класса наноламинатов. Он имеет гексагональную кристаллическую решетку, в которой каждые три упакованные слои атомов титана чередуются с одним слоем атомов кремния, а атомы углерода занимают октаэдрические поры между атомами титана. В результате элементарная ячейка кристаллической решетки приобретает слоистую (наноламинарную) структуру (а=0,30665 нм, с=1,767 нм). Характерными особенностями кристаллической решетки Ti3SiC2 являются повышенное отношение параметров решетки а/с=5,76 и два типа межатомной связи - жестко направленной ковалентной Ti-С и преимущественно металлической Ti-Si. Следует отметить, что сила связи Si-Si и Ti-Si существенно меньше, чем сила связи Ti-С. Эти особенности кристаллической решетки обуславливают поведение материала под облучением.
В титанокремнистом карбиде в условиях механического воздействия (исследования проведены при комнатной температуре методами микро- и макроиндентирования) образуются, движутся и размножаются в базисных плоскостях краевые дислокации, которые сосредотачиваются в плоских скоплениях. Это приводит к тому, что практически одновременно могут действовать четыре механизма, проявляющиеся при пластической микродеформации. Первый механизм - сдвиг вдоль базисных плоскостей зерна, реализуемый на границе зерна. Его обеспечивают плоские скопления краевых дислокаций в случае, когда базисные плоскости зерна благоприятно ориентированы по отношению к приложенной силе. Второй механизм - микрорасслоение индивидуальных (отдельных) зерен. Внутризеренное и межзеренное расслоение действует, когда базисные плоскости в зерне или в двух соседних зернах параллельны приложенной силе. Третий механизм - образование полос изгиба и сдвига в самих зернах. Этот механизм действует по мере развития микрорасслоения в этих зернах. Четвертый механизм - микрорасслоение в полосах изгиба и сдвига зерна. Таким образом, наблюдающееся в Ti3SiC2 микрорасслоение является одним из основных механизмов релаксации внутренних напряжений, возникающих при нагрузке в слое за счет внутреннего давления газообразных продуктов деления в микротвэле. Несмотря на то, что такая деформация имеет микропластическое происхождение, на макроуровне она является псевдопластической.
Таким образом, введение в качестве 2-го слоя титанокремнистого карбида Ti3SiC2 позволяет существенным образом снизить напряжения в силовом покрытии. Релаксация напряжений происходит за счет радиационно-термической ползучести Ti3SiC2. За счет этого в силовом слое уменьшается вероятность возникновения растягивающих напряжений и, как следствие, уменьшается повреждаемость слоя по механизму образования сквозных трещин.
В качестве примера реализации предлагаемого микротвэла приведем следующие данные.
На навеску топливных микросфер из UO2 диаметром около 500 мкм и массой 70 г в кипящем слое при температуре пиролиза 1450±20°С из смеси С2Н2-Ar осаждают слой низкоплотного пироуглерода. При температуре пиролиза 1300±20°С из смеси С3Н6-SiCl4-TiCl42-Ar осаждают слой титанокремнистого карбида. При этом последовательность подачи реагентов в зону пиролиза (псевдоожиженный слой с низкоплотным пироуглеродом) следующая: С3Н6-Ar (после стабилизации температуры до требуемого уровня), затем требуемого количества Н2, далее TiCl4 и SiCl4.
После завершения процесса осаждения второго слоя подачу реагентов С3Н6, SiCl4, TiCl4 прекращают, а частицы в состоянии псевдоожижения смесью Н2-Ar охлаждают до температуры менее 600°С. Затем прекращают подачу смеси Н2-Ar и производят разгрузку аппарата кипящего слоя.

Claims (1)

  1. Микротвэл ядерного реактора с двухслойным защитным покрытием топливной микросферы, в котором первый от топливной микросферы слой выполнен из низкоплотного пироуглерода, отличающийся тем, что второй слой защитного покрытия выполнен из титанокремнистого карбида Ti3SiC2.
RU2008117489/06A 2008-04-30 2008-04-30 Микротвэл ядерного реактора с двухслойным защитным покрытием топливной микросферы RU2368966C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2008117489/06A RU2368966C1 (ru) 2008-04-30 2008-04-30 Микротвэл ядерного реактора с двухслойным защитным покрытием топливной микросферы

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2008117489/06A RU2368966C1 (ru) 2008-04-30 2008-04-30 Микротвэл ядерного реактора с двухслойным защитным покрытием топливной микросферы

Publications (1)

Publication Number Publication Date
RU2368966C1 true RU2368966C1 (ru) 2009-09-27

Family

ID=41169700

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008117489/06A RU2368966C1 (ru) 2008-04-30 2008-04-30 Микротвэл ядерного реактора с двухслойным защитным покрытием топливной микросферы

Country Status (1)

Country Link
RU (1) RU2368966C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107119251A (zh) * 2017-04-17 2017-09-01 上海大学 一种用于金属表面的自愈合热障陶瓷涂层材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
КААЕ J.L., THE MECHANICAL BEHAVIOR OF BISO - COATED FUEL PARTICLES DURING IRRADIATION. VOL.35, SEPTEMBER 1977, c.359-367. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107119251A (zh) * 2017-04-17 2017-09-01 上海大学 一种用于金属表面的自愈合热障陶瓷涂层材料及其制备方法

Similar Documents

Publication Publication Date Title
Zhou et al. Nuclear graphite for high temperature gas-cooled reactors
CN109074877B (zh) 微囊化核燃料的提高的韧性
US20120314831A1 (en) Light Water Reactor TRISO Particle-Metal-Matrix Composite Fuel
US3649452A (en) Nuclear reactor fuel coated particles
Ford et al. Recent developments of coatings for GCFR and HTGCR fuel particles and their performance
RU2368966C1 (ru) Микротвэл ядерного реактора с двухслойным защитным покрытием топливной микросферы
GB1254407A (en) Nuclear fuel particles
RU2328783C1 (ru) Микротвэл ядерного реактора
RU2333553C1 (ru) Микротвэл ядерного реактора
Li et al. Innovative accident tolerant fuel concept enabled through direct manufacturing technology
RU2369925C1 (ru) Микротвэл ядерного реактора
Battistini et al. Residual stresses in as-manufactured TRISO Coated Particle Fuel (CPF)
Harmon et al. Development and irradiation performance of LHTGR fuel
RU2368963C1 (ru) Микротвэл ядерного реактора
RU2333555C1 (ru) Микротвэл ядерного реактора
RU2333552C1 (ru) Микротвэл ядерного реактора с трехслойным защитным покрытием топливной микросферы
RU2325711C1 (ru) Микротвэл ядерного реактора
RU2603020C1 (ru) Способ изготовления микротвэлов ядерного реактора
RU2382423C2 (ru) Микротвэл ядерного реактора на быстрых нейтронах
RU2300818C1 (ru) Способ получения микротвэлов ядерного реактора
RU2294569C1 (ru) Микротвэл ядерного реактора
RU2333551C1 (ru) Микротвэл для сверхвысокотемпературного ядерного реактора
RU2325712C1 (ru) Микротвэл ядерного реактора
Lee et al. Fabrication and structural stability of ZrC-SiC double layer TRISO coated particles
Li et al. Comparative Study of Coated Particle Stresses With Different Coating Layer Performance

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200501