RU2294569C1 - Микротвэл ядерного реактора - Google Patents

Микротвэл ядерного реактора Download PDF

Info

Publication number
RU2294569C1
RU2294569C1 RU2005135216/06A RU2005135216A RU2294569C1 RU 2294569 C1 RU2294569 C1 RU 2294569C1 RU 2005135216/06 A RU2005135216/06 A RU 2005135216/06A RU 2005135216 A RU2005135216 A RU 2005135216A RU 2294569 C1 RU2294569 C1 RU 2294569C1
Authority
RU
Russia
Prior art keywords
layer
pyc
sic
silicon carbide
thickness
Prior art date
Application number
RU2005135216/06A
Other languages
English (en)
Inventor
Сергей Михайлович Башкирцев (RU)
Сергей Михайлович Башкирцев
Валентин Петрович Денискин (RU)
Валентин Петрович Денискин
Сергей Дмитриевич Курбаков (RU)
Сергей Дмитриевич Курбаков
Иван Иванович Федик (RU)
Иван Иванович Федик
Геннадий Алексеевич Филиппов (RU)
Геннадий Алексеевич Филиппов
Альберт Семенович Черников (RU)
Альберт Семенович Черников
Original Assignee
Федеральное государственное унитарное предприятие "Научно-исследовательский институт Научно-производственное объединение "Луч"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Научно-исследовательский институт Научно-производственное объединение "Луч" filed Critical Федеральное государственное унитарное предприятие "Научно-исследовательский институт Научно-производственное объединение "Луч"
Priority to RU2005135216/06A priority Critical patent/RU2294569C1/ru
Application granted granted Critical
Publication of RU2294569C1 publication Critical patent/RU2294569C1/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

Изобретение относится к области ядерной энергии, в частности к микротвэлам ядерного реактора. Сущность изобретения заключается в том, что первый слой микротвэла с четырехслойным защитным покрытием выполнен из SiC-PyC композиции с содержанием 1,0-10,0 мас.% карбида кремния при толщине слоя 0,02-0,2 диаметра топливной микросферы, второй слой выполнен из SiC-PyC композиции с содержанием 20,0-45,0 мас.% карбида кремния при толщине слоя 0,02-0,40 диаметра топливной микросферы, третий слой выполнен из карбида кремния, а четвертый слой выполнен из нитрида титана толщиной 0,01-0,08 диаметра топливной микросферы. Изобретение позволяет повысить ресурс эксплуатации ядерного реактора за счет повышения коррозионной стойкости и радиационной стабильности. 3 ил., 1 табл.

Description

Изобретение относится к области ядерной энергии, в частности к микротвэлам ядерного реактора.
Микротвэл (МТ) ядерного реактора - это топливная микросфера (ТМ) из ядерного материала со слоями защитного покрытия из пироуглерода (PyC) и карбида кремния (SiC) (Бедениг Д. Газоохлаждаемые высокотемпературные реакторы. Пер. с нем. М.: Атомиздат, 1975, 224 с).
Защитные покрытия микротвэлов ядерного реактора выполняют многоцелевые функции:
- Удержание газообразных и твердых продуктов деления в пределах микротвэла, снижая, таким образом, стоимость защиты и эксплуатации конструкций, находящихся вне активной зоны реактора.
- Компенсация несоответствий в коэффициентах линейного расширения материала топливной микросферы и высокоплотных слоев покрытия.
- Защита топливного материала от охрупчивания, коррозионного воздействия на него теплоносителя и примесей материала твэла.
- Создание «свободного» объема для локализации газообразных продуктов деления в пределах частицы в ходе облучения - эту функцию выполняет буферный пироуглерод (первый от топливной микросферы защитный высокопористый слой).
Толщины покрытий микротвэлов оптимизируются применительно к конкретным условиям работы ядерного реактора.
В процессе облучения каждый из защитных слоев микротвэла ядерного реактора взаимосогласованно противодействует выходу газообразных (ГПД) и твердых продуктов деления (ТПД) за пределы частицы: высокопористый PyC защищает высокоплотный слой PyC от прямой бомбардировки ядрами отдачи и локализует газообразные продукты деления; внутренний высокоплотный PyC является первым диффузионным барьером по отношению к газообразным и твердым продуктам деления, одновременно защищая SiC от коррозионного воздействия на него ТПД; в силу своих превосходных физико-механических и теплофизических характеристик SiC является основным силовым слоем МТ и диффузионным барьером по отношению, прежде всего, ТПД.
Целостность многослойного покрытия МТ в процессе облучения зависит, в первую очередь, от степени структурных изменений пироуглерода. Поведение PyC покрытий при облучении быстрыми нейтронами во многом аналогично поведению других углеграфитовых материалов: анизотропия свойств приводит к различным размерным изменениям в зависимости от направления осей кристаллографической ориентации.
В плоскости осаждения PyC происходит значительная усадка, зависящая от температуры облучения и исходной плотности материала. В направлении, перпендикулярном плоскости осаждения, происходит первоначальная усадка, которая с увеличением флюенса нейтронов переходит в распухание.
Степень размерной стабильности PyC связана с изотропностью материала, Анизотропия радиационно-размерных изменений под облучением приводит к росту напряжений в PyC. В результате в точке, расположенной на внутренней стороне PyC, где развиваются максимальные напряжения, появляются трещины (фиг.1). Помимо нарушения взаимосогласованного сосуществования системы слоев покрытий МТ, образующиеся копьевидные усадочные трещины (фиг.1, а), открывают прямой доступ к основному силовому слою конструкции МТ-SiC твердых продуктов деления, лимитирующих его целостность за счет коррозии (фиг.1, б).
Карбид кремния при температурах эксплуатации 1000°С и более является превосходным диффузионным барьером по отношению к большинству ТПД, обладает высокой прочностью и теплопроводностью, в существенно меньшей степени, чем PyC, подвержен радиационным размерным изменениям.
Известен микротвэл ядерного реактора с топливной микросферой из смеси ThO2-UO2 диаметром 450 мкм, включающий в качестве защитных покрытий: низкоплотный буферный PyC толщиной 104 мкм, внутренний плотный PyC толщиной 5 мкм и внешний слой карбид кремния в смеси с PyC (SiC-С композиция) с содержанием 33 мас.% кремния (Каае J.L., Sterling S.A., Yang L. Improvements in the performance of Nuclear fuel particles offered by silicon - alloyed carbon coatings. - Nucl. Technol, vol. 35, № 2, 1977, р.544).
Недостатком указанного микротвэла ядерного реактора является то, что по мере облучения в структуре защитных покрытий протекают заметные превращения: усадка низкоплотного буферного PyC, образование трещин в нем, выход трещин на внутреннюю поверхность высокоплотного PyC с последующим его разрушением и образованием каналов прямого доступа продуктов деления к композиции SiC-C, которая затем разрушается под коррозионным воздействием твердых продуктов деления и внутреннего давления ГПД. Ситуация по радиационной стойкости PyC и работоспособности микротвэлов усугубляется в случае высоких интегральных доз облучения быстрыми нейтронами. Для PyC высокой плотности при флюенсах, превышающих (2-4)·1021 н/см2, суммарные силы приводят к разрушению материала, а при флюенсах выше (1-2)·1022 н/см2 они вызывают образование новых трещин и разрушение покрытий МТ, содержащего PyC слои.
К недостаткам карбида кремния следует отнести его низкую коррозионную стойкость в щелочных средах, а также при контакте с металлами типа Fe, Ni, Cr, Ti, Al и др., взаимодействие с которыми протекает с заметной скоростью при температурах 700°С и более.
Наиболее близким аналогом - прототипом предложенному техническому решению является микротвэл ядерного реактора, содержащий ТМ из UO2 и четырехслойное защитное покрытие (фиг.2), первый слой которого выполнен из высокопористого PyC плотностью ≤1,0 г/см3, толщиной 90 мкм, второй слой из высокоплотного изотропного PyC плотностью ≥1,80 г/см3 и толщиной 60 мкм, третий слой из SiC плотностью 3,20 г/см3 и толщиной 50 мкм и четвертый (наружный) слой из высокоплотного изотропного PyC плотностью ≥1,80 г/см3 и толщиной 50 мкм (А.С.Черников, Л.Н.Пермяков, И.И.Федик, С.С.Гаврилин, С.Д.Курбаков. Твэлы на основе сферических топливных частиц с защитным покрытием для реакторов повышенной безопасности. - Атомная энергия, т.87, вып.6, декабрь 1999, с.451-462).
Недостатком указанного микротвэла ядерного реактора является низкий ресурс эксплуатации, связанный с низкой коррозионной стойкостью по отношению к металлическим конструкционным элементам активной зоны, ограниченной значениями температуры 700°С и низкая радиационная стабильность, ограниченная значениями флюенса быстрых нейтроннов (2,0-4,0)·1021 н/см2.
Эти недостатки связаны с тем, что первый PyC слой, являясь в исходном состоянии высокопористым, в процессе облучения претерпевает существенную усадку и, зародившаяся на его внутренней поверхности трещина с большой скоростью распространяется на всю его толщину. Второй PyC слой, являясь высокоплотным, также усаживается. Находясь по этой причине в напряженном состоянии, он не является существенной преградой для трещины, распространяющейся от низкоплотного PyC слоя. Выходя на границу второй PyC-SiC слой, трещина открывает прямой доступ к карбидному покрытию твердым продуктом деления (Cs, Ag, Pd, Ba, Sr и др.). Последние вызывают коррозию третьего SiC слоя, снижают его прочность и повышают проницаемость через него ТПД и ГПД. После разрушения трех внутренних слоев микротвэла из-за резкого повышения давления ГПД существенно повышается вероятность повреждения последнего четвертного защитного PyC покрытия.
Разгерметизация всех четырех слоев покрытия приводит к полной утечке ГПД и СО из микротвэла и ускорению процесса взаимодействия UO2 топливной микросферы с PyC. Перечисленные факторы ограничивают ресурс эксплуатации микротвэла. Четырехслойная система PyC-SiC микротвэла обладает низкой коррозионной стойкостью при контакте с металлами и ограничена температурой совместимости ~700°С. Связано это с тем, что четвертый PyC слой при нагреве интенсивно растворяет металл (примесь в твэле, элемент конструкции кассеты, контактирующей с микротвэлом). При проникновении металла к третьему SiC-слою с последним образуются легкоплавкие эвтектики, разрушающие покрытие и открывают доступ металлу ко второму PyC слою. Совокупность этих процессов снижает коррозионную стойкость и ресурс эксплуатации микротвэла в целом.
Перед авторами предложенного технического решения стояла задача повышения ресурса эксплуатации микротвэла ядерного реактора за счет повышения коррозионной стойкости и радиационной стабильности.
Поставленная задача решается тем, что в микротвэле ядерного реактора, содержащем топливную микросферу и четырехслойное защитное покрытие, в котором первый, второй и четвертый слой содержит пироуглерод, третий слой содержит карбид кремния, первый слой дополнительно содержит 1,0-10,0 мас.% карбида кремния при толщине слоя 0,02-0,20 диаметра топливной микросферы, второй слой дополнительно содержит 20,0-45,0 мас.% карбида кремния при толщине слоя 0,02-0,40 диаметра топливной микросферы, а четвертый слой выполнен из нитрида титана толщиной 0,01-0,08 диаметра топливной микросферы (фиг.3).
С точки зрения радиационных размерных изменений композиция пироуглерод - карбид кремния под облучением является более стабильной, чем чистый пироуглерод. Этот результат был подтвержден в ходе исследований радиационного изменения свойств этого материала.
Экспериментальные результаты указывают на то, что композиция пироуглерод - карбид кремния обладает большей радиационной стабильностью, чем чистый пироуглерод и стабильность ее возрастает с увеличением содержания кремния. Прочность композиции пироуглерод - карбид кремния выше, чем чистого пироуглерода и также возрастает с ростом содержания кремния.
Ресурсные облучения показывают, что радиационные размерные изменения SiC изотропны, малы по абсолютной величине, прочностные характеристики стабильны.
Нитрид титана продолжительное время устойчив по отношению к расплавам таких элементов, как Cr, Fe, Ni, Co, Al, а также сплавам: (Fe-Ni (3%), (Ni-С), (Ni (80%) - Cr (20%), сталь Х18Н10 (до 1500°С).
Причинно-следственная связь между существенными признаками и техническим решением заключается в следующем.
Каждый из защитных слоев предложенного микротвэла ядерного реактора выполняет следующие функции:
- слой из PyC + SiC с содержанием SiC 1,0-10,0 мас.% и толщиной 0,02-0,2 диаметра ТМ является объемом для локализации ГПД, компенсирует несоответствия коэффициентов линейного термического расширения между ТМ и последующими слоями, защищает второй слой от повреждаемости осколками деления топливного материала (ядрами отдачи). Содержание в нем SiC менее 1,0 мас.% приводит к уменьшению его радиационной стабильности, увеличение содержания SiC до значений более 10,0 об.% нецелесообразно по причине уменьшения "свободного" объема для локализации ГПД. Толщина менее 0,02 диаметра ТМ приводит к уменьшению "свободного" объема, более 0,2 диаметра ТК - к увеличению сопротивления теплопередаче от ТМ ко второму высокоплотному PyC + SiC слою:
- второй высокоплотный слой из PyC + SiC с содержанием SiC 20,0-45,0 мас.% и толщиной 0,02-0,4 диаметра ТМ является диффузионным барьером для ГПД и ТПД, защищает SiC слой от коррозионного воздействия ТПД. При содержании SiC 20,0-45,0 мас.% слой является эффективным диффузионным барьером для ГПД и ТПД, обладает повышенной радиационной стабильностью по сравнению с чистым PyC и защищает третий SiC слой от коррозионного воздействия на него ТПД. При содержании SiC менее 20,0 мас.% снижается эффективность данного слоя как диффузионного барьера, уменьшается прочность и радиационная стабильность. В том случае, когда содержание SiC более 45,0 масс.% реализуются напряженные слоистые PyC-SiC структуры, обладающие пониженной радиационной стабильностью.
При толщине данного слоя менее 0,02 диаметра топливной микросферы утрачивается функция диффузионного барьера и защиты третьего SiC слоя от коррозионного воздействия ТПД. Увеличение толщины более 0,4 диаметра топливной микросферы приводит к увеличению напряжений в покрытии и повышению вероятности его разрушения при облучении;
- третий SiC является основным силовым покрытием и диффузионным барьером для ТПД;
- четвертый TiN является основным покрытием МТ, защищающим внутренние слои от коррозионного воздействия контактирующих металлов тепловыделяющих элементов или металлических конструкций активной зоны ядерного реактора.
Пример осуществления технического решения.
На топливную микросферу из диоксида урана диаметром 0,5-3,0 мм осаждают в кипящем слое при температуре пиролиза 1450±20°С первый слой из композиции пироуглерод - карбид кремния за счет пиролиза CH3SiH32Н2-Ar смеси. Количество вводимой в состав покрытия кремниевой фазы регулируется соотношением СН3SiH3 и С2Н2, подаваемых на входе в зону пиролиза. После осаждения требуемой толщины композиции пористой пироуглерод - карбид кремния прекращают подачу реакционных газов (СН3SiH3 и С2Н2), а частицы топливных микросфер поддерживают в состоянии псевдоожижения за счет подачи инертного газа-носителя аргона. Путем корректировки подводимой к нагревателю печи электрической мощности снижают температуру псевдоожиженного слоя до 1350±20°С. Осаждение второго слоя из композиции пироуглерод-карбид кремния при этой температуре осуществляют за счет разложения СН3SiH33Н62-Ar смеси.
Третий карбидокремниевый слой осаждают при температуре 1550-1600°С за счет пиролиза СН3SiCl3-H2 смеси.
Наружный (четвертый) слой из нитрида титана осаждают либо за счет процесса химического осаждения из газовой фазы путем пиролиза TiCl4 с NH3, либо с использованием физических методов распыления мишени TiN и осаждения слоя нитрида титана на поверхность частиц, расположенных на вибрирующем противне.
В таблице приведено сопоставление эксплуатационных характеристик известного микротвэла ядерного реактора с микротвэлом по предложенному техническому решению.
Как следует из приведенных в таблице данных, предложенный микротвэл ядерного реактора (примеры 2, 3, 4) в сравнении с известным микротвэлом (пример 1) обеспечивает повышенный ресурс эксплуатации за счет большей коррозионной и радиационной стойкости. При запредельных параметрах микротвэлов (примеры 5 и 6) коррозионная и радиационная стойкость резко снижается.
Figure 00000002
Figure 00000003

Claims (1)

  1. Микротвэл ядерного реактора, содержащий топливную микросферу и четырехслойное защитное покрытие, в котором первый, второй и четвертый слой содержат пироуглерод, третий слой содержит карбид кремния, отличающийся тем, что первый слой дополнительно содержит 1,0-10,0 мас.% карбида кремния при толщине слоя 0,02-0,20 диаметра топливной микросферы, второй слой дополнительно содержит 20,0-45,0 мас.% карбида кремния при толщине 0,02-0,40 диаметра топливной сферы, а четвертый слой выполнен из нитрида титана толщиной 0,01-0,08 диаметра топливной микросферы.
RU2005135216/06A 2005-11-15 2005-11-15 Микротвэл ядерного реактора RU2294569C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2005135216/06A RU2294569C1 (ru) 2005-11-15 2005-11-15 Микротвэл ядерного реактора

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2005135216/06A RU2294569C1 (ru) 2005-11-15 2005-11-15 Микротвэл ядерного реактора

Publications (1)

Publication Number Publication Date
RU2294569C1 true RU2294569C1 (ru) 2007-02-27

Family

ID=37990788

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005135216/06A RU2294569C1 (ru) 2005-11-15 2005-11-15 Микротвэл ядерного реактора

Country Status (1)

Country Link
RU (1) RU2294569C1 (ru)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ЧЕРНИКОВ А.С. и др. Твэлы на основе сферических топливных частиц с защитным покрытием для реакторов повышенной безопасности. - Атомная энергия. т.87, вып.6. декабрь 1999, с.451-462. *

Similar Documents

Publication Publication Date Title
US10916352B2 (en) Nuclear reactor having a layer protecting the surface of zirconium alloys
JP2016531080A (ja) SiC基材に放電プラズマにより端栓を焼結させた燃料被覆管
US20120314831A1 (en) Light Water Reactor TRISO Particle-Metal-Matrix Composite Fuel
JP7367020B2 (ja) 軽水炉運転中のSiC被覆管を沈静化させるための被膜及び表面改質
EP1756838B1 (en) Nuclear fuel
Ford et al. Recent developments of coatings for GCFR and HTGCR fuel particles and their performance
US3649452A (en) Nuclear reactor fuel coated particles
EP0015990B1 (en) Nuclear fuel particles
RU2294569C1 (ru) Микротвэл ядерного реактора
RU2328783C1 (ru) Микротвэл ядерного реактора
RU2333553C1 (ru) Микротвэл ядерного реактора
CN113196416A (zh) 包覆燃料颗粒、惰性基体弥散燃料芯块和一体化燃料棒及其制造方法
CN217948265U (zh) 一种核电厂锆合金包壳管表面用抗高温水蒸气腐蚀涂层
RU2328781C1 (ru) Микротвэл ядерного реактора
RU2369925C1 (ru) Микротвэл ядерного реактора
RU2382423C2 (ru) Микротвэл ядерного реактора на быстрых нейтронах
RU2333552C1 (ru) Микротвэл ядерного реактора с трехслойным защитным покрытием топливной микросферы
RU2368963C1 (ru) Микротвэл ядерного реактора
RU2368966C1 (ru) Микротвэл ядерного реактора с двухслойным защитным покрытием топливной микросферы
RU2370835C1 (ru) Микротвэл ядерного реактора
JP2732469B2 (ja) 被覆燃料粒子
RU2393558C2 (ru) Микротвэл ядерного реактора с двухслойным защитным покрытием топливной микросферы
RU2333550C1 (ru) Микротвэл ядерного реактора
RU2387030C1 (ru) Микротвэл легководного ядерного реактора
JP2978169B1 (ja) 中性子吸収材料

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20201116