RU2361116C2 - Одновинтовой насос со встроенным приводом - Google Patents

Одновинтовой насос со встроенным приводом Download PDF

Info

Publication number
RU2361116C2
RU2361116C2 RU2006145438/06A RU2006145438A RU2361116C2 RU 2361116 C2 RU2361116 C2 RU 2361116C2 RU 2006145438/06 A RU2006145438/06 A RU 2006145438/06A RU 2006145438 A RU2006145438 A RU 2006145438A RU 2361116 C2 RU2361116 C2 RU 2361116C2
Authority
RU
Russia
Prior art keywords
rotor
pump
engine
screw pump
pump according
Prior art date
Application number
RU2006145438/06A
Other languages
English (en)
Other versions
RU2006145438A (ru
Inventor
Хельмут ЯБЕРГ (DE)
Хельмут ЯБЕРГ
Дирк ШМИДТ (DE)
Дирк Шмидт
Ральф ШЮЛЕР (DE)
Ральф ШЮЛЕР
Томас РИББЕ (DE)
Томас РИББЕ
Иоганн КРАЙДЛЬ (DE)
Иоганн КРАЙДЛЬ
Original Assignee
Неч-Монопумпен Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Неч-Монопумпен Гмбх filed Critical Неч-Монопумпен Гмбх
Publication of RU2006145438A publication Critical patent/RU2006145438A/ru
Application granted granted Critical
Publication of RU2361116C2 publication Critical patent/RU2361116C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/06Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/107Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0057Driving elements, brakes, couplings, transmission specially adapted for machines or pumps
    • F04C15/0061Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0057Driving elements, brakes, couplings, transmission specially adapted for machines or pumps
    • F04C15/008Prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/107Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth
    • F04C2/1071Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth the inner and outer member having a different number of threads and one of the two being made of elastic materials, e.g. Moineau type
    • F04C2/1073Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth the inner and outer member having a different number of threads and one of the two being made of elastic materials, e.g. Moineau type where one member is stationary while the other member rotates and orbits

Abstract

Изобретение относится к одновинтовому насосу, применяемому для подачи высоковязких сред или сред, содержащих твердые вещества. Одновинтовой насос содержит статор (2) и вращающийся в нем ротор (1), а также приводной двигатель для приведения ротора во вращение, который соединен с ротором (1) насоса и имеет статорную обмотку (4) и ротор (3, 3а) цилиндрической формы. Ротор (3, 3а) расположен с возможностью вращения по эксцентричной круглой траектории внутри цилиндрического корпуса (5), на котором расположена статорная обмотка (4). Ротор двигателя и ротор насоса жестко соединены друг с другом. Обеспечивается подвод вращающего момента, необходимого для привода насоса, без дополнительных средств, увеличивающих конструктивную длину насоса, а также без применения уплотнений и подшипников вала, при одновременной способности насоса развивать высокое давление. 11 з.п. ф-лы, 4 ил.

Description

Настоящее изобретение относится к шнековому (винтовому) или одновинтовому насосу, применяемому, прежде всего, для подачи высоковязких сред или сред, содержащих твердые вещества.
Известные одновинтовые насосы, соответствующие уровню техники, обычно имеют стационарный расположенный снаружи статор и вращающийся в нем ротор. Привод ротора обычно представляет собой внешний электродвигатель, соединенный с ротором карданным (шарнирным) или гибким валом. Ниже в описании различия между шнековыми и одновинтовыми насосами более подробно не рассматриваются, поскольку эти различия не оказывают никакого влияния на принцип, положенный в основу предлагаемого в изобретении решения.
Однако известные одновинтовые насосы имеют большую конструктивную длину и из-за наличия большого количества подвижных деталей в двигателе на шарнирном валу и в самом насосе нуждаются в техническом обслуживании.
Помимо этого подобная конструкция требует наличия уплотнения по меньшей мере с одной стороны насоса в месте его соединения с карданным валом.
Значительным усовершенствованием в этом отношении является конструкция, известная из публикации DE 10251846 А1. Согласно предлагаемому в ней решению ротор одновинтового насоса одновременно представляет собой часть двигателя. Благодаря этому можно отказаться, в частности, от применения карданного вала. Недостаток подобной конструкции состоит в том, что можно применять лишь особые роторы, изготовленные с использованием дорогостоящих магнитных материалов. Помимо этого из-за спиральной формы статора приходится выполнять относительно сложную статорную обмотку, которая и в этом случае обусловливает относительно высокую себестоимость изготовления насоса.
Решение иного типа представлено в DE 4313442 А1. Так, например, как показано в этой публикации на фиг.24, в одновинтовом насосе предлагается применять упругий статор и ротор, приводимый во вращение с использованием электромагнитной муфты. Благодаря такой конструкции электромагнитная муфта может быть установлена в простом подшипнике, поскольку компенсацию перемещения шнека обеспечивает упругий статор. Подобные насосы не рассчитаны на работу под высоким давлением из-за наличия обладающих высокой гибкостью статоров, не защищенных кожухом.
В заявке ЕР 0357317 В1 описан двигатель, способный одновременно обеспечивать вращательное, а также возвратно-поступательное движение в соединении с одновинтовым насосом. И в этом случае для компенсации эксцентрического перемещения шнека используется упругий статор без кожуха. В результате и этот насос не пригоден для работы под высоким давлением.
Еще одно решение предложено в патенте US 2212417 (ближайший аналог изобретения), где применяется полый вал.
В основу настоящего изобретения была положена задача выполнить одновинтовой насос таким образом, чтобы обеспечить подвод вращающего момента, необходимого для привода насоса, без дополнительных средств, увеличивающих конструктивную длину насоса, а также без применения уплотнений и подшипников вала, при одновременной способности насоса развивать высокое давление.
Указанная задача решается согласно изобретению в одновинтовом насосе, содержащем статор и вращающийся в нем ротор, а также приводной двигатель для приведения ротора во вращение, который соединен с ротором насоса и имеет статорную обмотку и ротор цилиндрической формы, за счет того, что ротор расположен с возможностью вращения по эксцентрической круглой траектории внутри цилиндрического корпуса, на котором расположена статорная обмотка, причем ротор двигателя и ротор насоса жестко соединены друг с другом.
Предпочтительные варианты осуществления изобретения приведены в зависимых пунктах формулы.
Предлагаемое в изобретении устройство имеет одновинтовой насос со статором 2 и вращающимся в нем ротором 1. Для приведения ротора 1 насоса во вращение предусмотрен приводной двигатель, соединенный с ротором насоса. Этот приводной двигатель имеет ротор (или якорь) 3, а также статорную обмотку 4. Ротор двигателя выполнен цилиндрической формы и за счет своего жесткого соединения с ротором насоса вращается по эксцентрической круглой траектории внутри практически цилиндрического корпуса 5, выполненного в виде горшка или стакана. Этот корпус 5 окружен, по меньшей мере частично, статорной обмоткой 4. В альтернативном варианте статорная обмотка также может быть встроена в корпус. Благодаря такой конструкции привод и насос очень компактно скомпонованы в единый узел. Одновременно значительно упрощается механическая конструкция. Таким образом отпадает необходимость в уплотнениях вала, склонных к повреждениям, поскольку ротор насоса полностью изолирован в системе, состоящей из статора и подсоединенных трубопроводов. В предлагаемой конструкции не требуется каких-либо соединений или контактов между ротором насоса и точками, находящимися вне этой системы. Благодаря этому насос, состоящий из ротора и статора, можно прифланцовывать к имеющемуся трубопроводу без каких-либо соединений и уплотнений вала.
Предлагаемая в изобретении конструкция не требует также применения передаточного звена, такого, например, как карданный (шарнирный) или же гибкий вал, для преобразования вращения приводного двигателя вокруг постоянного центра (центрическое вращение) в эксцентрическое перемещение ротора насоса.
Согласно одному из наиболее предпочтительных вариантов осуществления изобретения предусмотрен второй ротор 3а двигателя, выполненный практически цилиндрической формы. Этот ротор расположен на том конце ротора 1 насоса, который расположен с противоположной стороны от первого ротора двигателя. Этот ротор двигателя также жестко соединен с ротором насоса и поэтому также вращается по эксцентрической круглой траектории внутри второго корпуса 5а, выполненного в виде горшка или стакана. Второй корпус также окружен второй статорной обмоткой или содержит таковую.
В соответствии еще с одним предпочтительным вариантом осуществления изобретения двигатель, состоящий из ротора 3 и статорной обмотки 4, выполнен в виде реактивного синхронного электродвигателя. Для этого статорная обмотка имеет секции для создания вращающегося магнитного поля. В роторе двигателя находится элемент, выполненный предпочтительно зубчатым и состоящий из магнитопроводящего или магнитомягкого материала, такого, например, как железо. При этом зубья ориентируются соответственно магнитному полю. Вращением магнитного поля можно также достичь вращения ротора насоса.
Для управления соответствующими частями статорной обмотки 4 предусмотрен блок управления. Он регулирует ток через статорную обмотку таким образом, чтобы для создания вращающего момента магнитный поток проходил преимущественно через те участки корпуса 5, которые расположены на минимальном расстоянии от поверхности ротора 3 двигателя.
Для правильного управления секциями обмотки предпочтительно предусмотреть датчик положения, передающий сигналы, указывающие точное положение ротора насоса или ротора двигателя относительно статора. Подобный датчик положения может быть реализован также, например, с помощью встроенных в ротор магнитов.
В другом предпочтительном варианте осуществления изобретения двигатель выполнен в виде асинхронного электродвигателя. Для этого ротор двигателя выполнен в виде ротора с сопротивлением или предпочтительно короткозамкнутого ротора. Помимо этого в статорной обмотке предусмотрены отдельные обмотки (секции) для создания вращающегося поля. Вращающееся поле создает в секциях обмотки ротора и в электропроводной структуре напряжения, которые в зависимости от электрического сопротивления секций обмотки и электропроводной структуры ротора вызывает электрические токи соответствующей силы. В свою очередь эти токи порождают магнитное поле и таким образом создают вращающий момент. Для управления секциями обмотки предусмотрена необязательная схема управления, предпочтительно представляющая собой преобразователь частоты для генерирования сдвинутых по фазе сигналов переменной частоты для создания вращающегося поля с требуемой частотой вращения.
По выбору в роторе могут быть предусмотрены пазы под секции обмотки ротора.
В соответствии со следующим вариантом осуществления изобретения в роторе 3 двигателя могут быть выполнены преимущественно осевые отверстия, проточные для текучей среды. Благодаря этому отпадает необходимость в обводном канале для текучей среды. Этим достигается особенная компактность конструкции насоса, обеспечивающая экономию пространства для его установки.
В еще одном целесообразном варианте осуществления изобретения магнитные компоненты, соответственно постоянные магниты в роторе двигателя, а также секции обмотки в статоре расположены таким образом, чтобы на ротор насоса в осевом направлении действовало заданное усилие. Наиболее предпочтительно, чтобы это осевое усилие противодействовало с той же силой развиваемому насосом напору. Для контроля положения ротора насоса используется предпочтительно регулятор положения, обеспечивающий регулирование положения ротора с помощью по меньшей мере одного датчика положения.
В соответствии с другим вариантом осуществления изобретения предусмотрен ротор насоса, имеющий возможность смещения в осевом направлении под действием вышеупомянутого осевого усилия. Благодаря такой возможности смещения ротора насоса можно добиться уменьшения момента трогания при пуске насоса. Тем самым можно также обеспечить, например, закрытие выпускного отверстия насоса самим ротором насоса. В альтернативном варианте, как очевидно, за счет осевого перемещения ротора насоса можно также приводить в действие клапан. Это обеспечивает, в особенности применительно к дозирующим насосам, особо точное и безынерционное дозирование.
В следующем предпочтительном варианте осуществления изобретения секции обмотки в роторе двигателя имеют противоположные полюса по сравнению с секциями, передающими вращающий момент на ротор насоса. За счет этой управляемой обращенной полярности в роторе создается усилие, направленное противоположно направлению потока перекачиваемой среды и таким образом уравновешивающее или уменьшающее гидравлические усилия, создаваемые текучей средой и действующие на торцы ротора насоса. Необходимое количество секций обмотки с обращенной полярностью может регулироваться в зависимости от создаваемого напора при транспортировке текучей среды.
Ниже изобретение более подробно рассмотрено на примере не ограничивающих объем изобретения вариантов его осуществления со ссылкой на прилагаемые чертежи, на которых показано:
на фиг.1 - схематичный общий вид предлагаемого в изобретении устройства,
на фиг.2 - общий вид в аксонометрии предлагаемого в изобретении устройства,
на фиг.3 - схематичный общий вид предлагаемого в изобретении устройства со вторым ротором двигателя,
на фиг.4 - общий вид в аксонометрии предлагаемого в изобретении устройства со вторым ротором двигателя.
На фиг.1 схематично в сечении вертикальной плоскостью, включающей ось вращения, показано предлагаемое в изобретении устройство. Одновинтовой насос имеет ротор 1, вращающийся в статоре 2. Ротор 1 насоса жестко соединен с ротором (якорем) 3 двигателя. Ротор двигателя вращается по эксцентрической круглой траектории внутри корпуса 5, выполненного в виде горшка или стакана. Транспортируемая среда проходит при этом через корпус 5. Для создания вращающего момента предусмотрена по меньшей мере одна статорная обмотка 4. В рассматриваемом варианте статорная обмотка встроена в корпус, однако в предпочтительном варианте может располагаться вне корпуса и, следовательно, вне транспортируемой среды. Однако по выбору статорная обмотка может быть также встроена в корпус, например, залита в нем компаундом. Статорная обмотка имеет отдельные секции. Ток через эти секции обмотки пропускается выборочно по сигналам от блока управления.
Для правильного управления секциями обмотки предпочтительно 5 предусмотрен датчик положения, передающий сигналы, указывающие точное положение ротора насоса или ротора двигателя относительно статора насоса или корпуса двигателя соответственно. Подобный датчик положения может быть реализован также, например, встроенными в ротор насоса магнитами или с помощью таких магнитов.
На фиг.2 представленная выше конструкция показана в аксонометрии.
На фиг.3 предлагаемое в изобретении устройство показано в еще одном варианте, со вторым ротором 3а двигателя. Этот второй ротор двигателя расположен на конце ротора насоса, противоположном его концу, на котором расположен первый ротор двигателя. Соответственно для второго ротора двигателя предусмотрены также второй корпус 5а, а также вторая статорная обмотка 4а для создания вращающего момента. В подобной конструкции целесообразно, чтобы оба ротора двигателя создавали осевые усилия, направленные навстречу друг другу и удерживающие оба ротора двигателя и ротор насоса в заданном положении. Для этого в предпочтительном варианте каждый ротор двигателя может иметь по меньшей мере слабо выраженную коническую форму.
На фиг.4 представленная выше конструкция показана в аксонометрии.

Claims (12)

1. Одновинтовой насос, содержащий статор (2) и вращающийся в нем ротор (1), а также приводной двигатель для приведения ротора во вращение, который соединен с ротором (1) насоса и имеет статорную обмотку (4) и ротор (3, 3а) цилиндрической формы, отличающийся тем, что ротор (3, 3а) расположен с возможностью вращения по эксцентрической круглой траектории внутри цилиндрического корпуса (5), на котором расположена статорная обмотка (4), причем ротор двигателя и ротор насоса жестко соединены друг с другом.
2. Одновинтовой насос по п.1, отличающийся тем, что на конце ротора (1) насоса, противоположном его концу с расположенным на нем первым ротором двигателя, расположен второй ротор (3а) двигателя, выполненный цилиндрической формы и вращающийся по эксцентрической круглой траектории внутри цилиндрического корпуса (5а), на котором расположена вторая статорная обмотка (4а).
3. Одновинтовой насос по п.1, отличающийся тем, что он содержит несколько роторов (1) насоса со следующим за каждым из них ротором (3) двигателя, расположенных с образованием цепочки из роторов двигателя и насоса.
4. Одновинтовой насос по п.1, отличающийся тем, что в роторе (3) двигателя предусмотрены постоянные магниты, реактивные магниты или магнитомягкие материалы.
5. Одновинтовой насос по п.1, отличающийся тем, что предусмотрен блок управления, который управляет соответствующими секциями статорной обмотки (4) в зависимости от положения ротора (3) двигателя таким образом, чтобы на ротор насоса действовал вращающий момент, причем магнитный поток проходит преимущественно через те участки корпуса (5), которые расположены на минимальном расстоянии от поверхности ротора (3) двигателя.
6. Одновинтовой насос по п.1, отличающийся тем, что ротор (3) двигателя имеет отверстия, проточные для текучей среды.
7. Одновинтовой насос по п.4, отличающийся тем, что в роторе (3) двигателя постоянные магниты, а также секции обмотки ротора расположены таким образом, чтобы на ротор (1) насоса действовало заданное осевое усилие.
8. Одновинтовой насос по п.5, отличающийся тем, что в роторе (3) двигателя постоянные магниты, соответственно секции обмотки ротора расположены группами, причем осевые усилия, создаваемые отдельными группами, действуют на ротор насоса преимущественно в противоположных направлениях.
9. Одновинтовой насос по п.7 или 8, отличающийся тем, что под действием осевого усилия ротор насоса имеет возможность перемещения в осевом направлении.
10. Одновинтовой насос по п.7 или 8, отличающийся тем, что для уменьшения момента трогания при пуске насоса прикладывается дополнительное осевое усилие, соответственно обеспечивается дополнительное перемещение в осевом направлении.
11. Одновинтовой насос по п.7 или 8, отличающийся тем, что для закрытия выпускного отверстия насоса или для приведения в действие клапана используется дополнительное перемещение в осевом направлении.
12. Одновинтовой насос по п.7 или 8, отличающийся тем, что для закрытия выпускного отверстия насоса или для приведения в действие клапана используется дополнительное перемещение в осевом направлении.
RU2006145438/06A 2004-08-10 2005-07-15 Одновинтовой насос со встроенным приводом RU2361116C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004038686.2 2004-08-10
DE102004038686A DE102004038686B3 (de) 2004-08-10 2004-08-10 Exzenterschneckenpumpe mit integriertem Antrieb

Publications (2)

Publication Number Publication Date
RU2006145438A RU2006145438A (ru) 2008-09-20
RU2361116C2 true RU2361116C2 (ru) 2009-07-10

Family

ID=34802032

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006145438/06A RU2361116C2 (ru) 2004-08-10 2005-07-15 Одновинтовой насос со встроенным приводом

Country Status (13)

Country Link
US (1) US20070104595A1 (ru)
EP (1) EP1778980B1 (ru)
JP (1) JP2008509335A (ru)
KR (1) KR100874043B1 (ru)
CN (1) CN100460680C (ru)
AT (1) ATE377150T1 (ru)
BR (1) BRPI0513307A (ru)
CA (1) CA2553795C (ru)
DE (3) DE102004038686B3 (ru)
ES (1) ES2294727T3 (ru)
MX (1) MXPA06011759A (ru)
RU (1) RU2361116C2 (ru)
WO (1) WO2006015571A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MD4338C1 (ru) * 2013-05-21 2015-10-31 Юрий ЩИГОРЕВ Шнековый электрический насос с автономным охлаждением
RU2731427C1 (ru) * 2017-06-28 2020-09-02 Атлас Копко Эрпауэр, Намлозе Веннотсхап Цилиндрическая симметричная машина объемного действия

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5190618B2 (ja) * 2007-08-20 2013-04-24 兵神装備株式会社 ロータ駆動機構及びポンプ装置
DE102008039973A1 (de) 2008-08-27 2010-03-04 Wmf Württembergische Metallwarenfabrik Ag Exzenterschneckenpumpe
DE102009024088A1 (de) 2009-06-06 2010-12-09 Zeus Gmbh Reifenfüllmasse, Verfahren zur Herstellung einer Reifenfüllung und Vorrichtung zur Durchführung des Verfahrens
CN103423064B (zh) * 2013-08-29 2016-12-28 中矿瑞杰(北京)科技有限公司 一种液力马达
EP2944819B1 (de) 2014-05-12 2017-07-12 Hugo Vogelsang Maschinenbau GmbH Exzenterschneckenpumpe
JP6635694B2 (ja) * 2014-08-05 2020-01-29 兵神装備株式会社 ポンプ体、ポンプ装置、流量計及び発電機
WO2017154023A1 (en) * 2016-03-07 2017-09-14 Sona Pumps Motor with positive displacement helical pump inside motor shaft
CN113062859A (zh) * 2021-04-21 2021-07-02 中国石油大学(华东) 一种转子内置式机泵一体全金属螺杆泵采油装置

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2212417A (en) * 1938-02-10 1940-08-20 Robbins & Myers Combined motor and pump
US2957427A (en) * 1956-12-28 1960-10-25 Walter J O'connor Self-regulating pumping mechanism
FR1559710A (ru) * 1966-12-26 1969-03-14
US3951097A (en) * 1975-05-01 1976-04-20 Wallace Clark Hydraulic motor or pump
US4981281A (en) * 1983-12-21 1991-01-01 Robert W. Brundage Solenoid controlled fluid flow valve
DE3621967A1 (de) * 1986-07-01 1988-01-14 Heinrich Josef Lettmann Rohrfoermiges pumpenaggregat mit antriebsmotor
US4802827A (en) * 1986-12-24 1989-02-07 Kabushiki Kaisha Toshiba Compressor
JP2619642B2 (ja) * 1987-05-30 1997-06-11 京セラ株式会社 偏心ねじポンプ
FR2617534A1 (fr) * 1987-06-30 1989-01-06 Inst Francais Du Petrole Dispositif de pompage d'un fluide dans le fond d'un puits
GB8820444D0 (en) * 1988-08-30 1988-09-28 Framo Dev Ltd Electric motor
DE4313442A1 (de) * 1993-04-24 1994-10-27 Resch Maschinen Und Geraetebau Fluidpumpe
US5759019A (en) * 1994-02-14 1998-06-02 Steven M. Wood Progressive cavity pumps using composite materials
US5549160A (en) * 1994-05-27 1996-08-27 National-Oilwell Canada Ltd. Downhole progressing cavity pump rotor valve
US5549464A (en) * 1994-10-29 1996-08-27 Varadan; Rajan Drive arrangement for progressing cavity pump
US5779460A (en) * 1996-06-07 1998-07-14 Ici Canada Inc. Progressive cavity pump with tamper-proof safety
CN1068935C (zh) * 1998-01-26 2001-07-25 宋志超 金属定子螺杆泵
JP4365984B2 (ja) * 1999-05-14 2009-11-18 キヤノン株式会社 再生プラスチック材料の製造方法
US7374005B2 (en) * 2000-01-10 2008-05-20 The United States Of America As Represented By The Administrator Of The U.S. Environmental Protection Agency Opposing pump/motors
US6361292B1 (en) * 2000-04-12 2002-03-26 Sheldon S. L. Chang Linear flow blood pump
DE10123139B4 (de) * 2001-04-30 2005-08-11 Berlin Heart Ag Verfahren zur Regelung einer Unterstützungspumpe für Fluidfördersysteme mit pulsatilem Druck
CN2528964Y (zh) * 2002-03-08 2003-01-01 宋其国 外驱动式双转动螺旋泵
DE10251846A1 (de) * 2002-11-07 2004-05-19 Netzsch-Mohnopumpen Gmbh Pumpenantrieb
US7074018B2 (en) * 2003-07-10 2006-07-11 Sheldon Chang Direct drive linear flow blood pump
US7699586B2 (en) * 2004-12-03 2010-04-20 Heartware, Inc. Wide blade, axial flow pump
US7226277B2 (en) * 2004-12-22 2007-06-05 Pratt & Whitney Canada Corp. Pump and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MD4338C1 (ru) * 2013-05-21 2015-10-31 Юрий ЩИГОРЕВ Шнековый электрический насос с автономным охлаждением
RU2731427C1 (ru) * 2017-06-28 2020-09-02 Атлас Копко Эрпауэр, Намлозе Веннотсхап Цилиндрическая симметричная машина объемного действия

Also Published As

Publication number Publication date
CA2553795A1 (en) 2006-02-16
DE112005002517A5 (de) 2007-07-12
CN100460680C (zh) 2009-02-11
BRPI0513307A (pt) 2008-05-06
CA2553795C (en) 2009-07-14
EP1778980B1 (de) 2007-10-31
ATE377150T1 (de) 2007-11-15
DE502005001849D1 (de) 2007-12-13
EP1778980A1 (de) 2007-05-02
DE102004038686B3 (de) 2005-08-25
US20070104595A1 (en) 2007-05-10
JP2008509335A (ja) 2008-03-27
ES2294727T3 (es) 2008-04-01
CN101006276A (zh) 2007-07-25
RU2006145438A (ru) 2008-09-20
WO2006015571A1 (de) 2006-02-16
KR20070033954A (ko) 2007-03-27
KR100874043B1 (ko) 2008-12-12
MXPA06011759A (es) 2007-05-31

Similar Documents

Publication Publication Date Title
RU2361116C2 (ru) Одновинтовой насос со встроенным приводом
RU2198459C2 (ru) Электронно-коммутируемый синхронный реактивный электродвигатель
US7960887B2 (en) Permanent-magnet switched-flux machine
USH1966H1 (en) Integrated motor/gear pump
JP3188469U (ja) 媒体圧送用ポンプ
US7884518B2 (en) Electrical synchronous machine
JP2023502345A (ja) 電気機械
CN103270305A (zh) 输送泵
RU2357345C2 (ru) Погружной электрический двигатель постоянного тока
CA2347608C (en) Actuator capable of revolving
JP4518391B2 (ja) 二軸式真空ポンプ
US8004133B2 (en) Epitrochoidal electric motor
US9859760B2 (en) Electric motor having an asymmetric stator
RU2370671C1 (ru) Насосная установка
RU2394341C1 (ru) Стационарная катушка подмагничивания якоря линейной электрической машины
EP1931016A2 (en) Magnetic drive electrical rotary motor
RU2813017C1 (ru) Буровой насосный агрегат
RU2129669C1 (ru) Бессальниковый электронасос с вентильным двигателем постоянного тока
CN101871458A (zh) 水泵叶片以及马达的组合结构
EP3154179B1 (en) Variable stroke linear electrodynamic machine
RU2079723C1 (ru) Герметичный насос с электроприводом
RU2063554C1 (ru) Электронасосный агрегат
RU2358376C1 (ru) Бесколлекторный электродвигатель переменного тока
JPH08338388A (ja) 軸流流体電気機械
TURNER T ANGLE

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20130716