RU2350551C2 - Способ получения серной кислоты - Google Patents

Способ получения серной кислоты Download PDF

Info

Publication number
RU2350551C2
RU2350551C2 RU2004100952/15A RU2004100952A RU2350551C2 RU 2350551 C2 RU2350551 C2 RU 2350551C2 RU 2004100952/15 A RU2004100952/15 A RU 2004100952/15A RU 2004100952 A RU2004100952 A RU 2004100952A RU 2350551 C2 RU2350551 C2 RU 2350551C2
Authority
RU
Russia
Prior art keywords
sulfuric acid
gas
gas mixture
sulphuric acid
ammonia
Prior art date
Application number
RU2004100952/15A
Other languages
English (en)
Other versions
RU2004100952A (ru
Inventor
Курт Агербек КРИСТЕНСЕН (DK)
Курт Агербек Кристенсен
Петер ШУБАЙ (DK)
Петер ШУБАЙ
Original Assignee
Хальдор Топсеэ А/С
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=32605194&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2350551(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Хальдор Топсеэ А/С filed Critical Хальдор Топсеэ А/С
Publication of RU2004100952A publication Critical patent/RU2004100952A/ru
Application granted granted Critical
Publication of RU2350551C2 publication Critical patent/RU2350551C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/69Sulfur trioxide; Sulfuric acid
    • C01B17/74Preparation
    • C01B17/76Preparation by contact processes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/62Translucent screens
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/69Sulfur trioxide; Sulfuric acid
    • C01B17/74Preparation
    • C01B17/76Preparation by contact processes
    • C01B17/80Apparatus
    • C01B17/806Absorbers; Heat exchangers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/142Adjusting of projection optics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3129Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] scanning a light beam on the display screen
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3191Testing thereof
    • H04N9/3194Testing thereof including sensor feedback
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2207/00Indexing scheme relating to methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F2207/38Indexing scheme relating to groups G06F7/38 - G06F7/575
    • G06F2207/48Indexing scheme relating to groups G06F7/48 - G06F7/575
    • G06F2207/4802Special implementations
    • G06F2207/4812Multiplexers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Treating Waste Gases (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

Изобретение относится к способу получения серной кислоты. Способ включает конденсацию паров серной кислоты из газовой смеси, содержащей от 0,01 до 10 об.% паров серной кислоты в расчете на полное гидратирование газообразного триоксида серы в серную кислоту и от 0 до 50 об.% паров воды, охлаждением в башне серной кислоты. При этом содержащий аммиак поток вводят на входе в башню серной кислоты в газовую смесь, содержащую серную кислоту, в количестве, соответствующем 0,01-100 частей аммиака на млн в объеме газового потока. Охлаждение газовой смеси ведут в противотоке с циркулирующей серной кислотой, которое происходит в вертикальной охлаждаемой снаружи трубе, в которой газовая смесь течет от нижней части трубы в направлении вверх в противотоке с внешним охлаждающим агентом. Изобретение позволяет повысить эффективность выделения серной кислоты из газовой смеси. 6 з.п. ф-лы, 2 ил.

Description

Настоящее изобретение относится к способу получения серной кислоты конденсацией паров серной кислоты из газовой смеси, содержащей 0,01-10% об. паров серной кислоты, рассчитанных из предположения, что триоксид серы полностью гидратируется, и 0-50% об. паров воды.
Серную кислоту во многих случаях производят из газов, содержащих пары серной кислоты и пары воды, конденсацией в процессе охлаждения. Однако известно, что при охлаждении и конденсации паров серной кислоты в газах, содержащих пары воды, образуется туман серной кислоты, то есть аэрозоль маленьких капелек серной кислоты.
Из европейского патента ЕР 0417200 В1 и патента США US 5108731 известен способ получения серной кислоты, в котором пары серной кислоты в газовых смесях, содержащих 0,01-10% паров серной кислоты и 0-50% паров воды, конденсируют в вертикальных кислотоупорных трубах, охлаждаемых снаружи воздухом или газом. Присутствия больших количеств тумана кислоты в газе после конденсации избегают в соответствии с этим патентом, поддерживая разность температур между газом, содержащим серную кислоту, текущим в направлении вверх, и газообразном охлаждающим агентом, текущим в направлении вниз, в некоторых точно установленных пределах. Большинство тумана серной кислоты, полученного при конденсации, может тогда быть захвачено в высокоскоростном аэрозольном волокнистом фильтре, помещенном в верхней части каждой из труб, как описано в патенте.
В европейском патенте ЕР 0419539 В1 и патенте США US 5198206 показано, как количество тумана кислоты, улетучивающегося при конденсации паров серной кислоты из газовых смесей, содержащих 0,01-10% паров серной кислоты и 0-50% паров воды, может быть уменьшено ниже 10-15 частей на млн серной кислоты путем добавки твердых частиц в газ перед его входом в башню конденсации. Частицы действуют как зародыши конденсации для паров серной кислоты и подавляют самопроизвольное гомогенное зародышеобразование маленьких капелек серной кислоты, которые с трудом удерживаются в фильтровальных устройствах.
Далее выражение "башня серной кислоты" означает насадочную поглотительную башню, которая описана в патенте США US 4348373, или башню, содержащую трубки, которая описана в европейском патенте ЕР 0417200 В1.
Было обнаружено, что количество тумана кислоты в газовом потоке, выходящем из башни конденсации серной кислоты, может быть резко понижено, если добавить к газу, входящему в башню, малое количество аммиака.
В соответствии с этим изобретением уменьшение тумана кислоты с помощью добавления аммиака может быть проведено в ходе конденсации серной кислоты при охлаждении в насадочной башне серной кислоты в противотоке с серной кислотой, циркулирующей в качестве охлаждающего агента, как описано в способе, известном из патента США US 4348373.
Способ в соответствии с этим изобретением может также быть осуществлен при охлаждении газовой смеси, содержащей серную кислоту, в преимущественно вертикальных, охлаждаемых снаружи трубах, в которых газовая смесь течет снизу в направлении вверх в противотоке с предпочтительно газообразным внешним охлаждающим агентом, то есть в соответствии с европейским патентом ЕР 0417200 В1.
Предпочтительный вариант осуществления изобретения включает получение серной кислоты, в котором пары серной кислоты в газовых смесях, содержащих 0,01-10% паров серной кислоты и 0-50% паров воды, конденсируют в вертикальных, охлаждаемых снаружи кислотоупорных трубах в соответствии с патентом США US 5198206. Газ впускают из нижней части труб при температуре Т1 выше его точки конденсации. Подаваемый газ охлаждают при его течении в верхнем направлении до температуры Т2, при которой давление в нем паров H2SO4 лежит ниже 2×10-6 бар. В верхней части каждой из труб маленький волоконный фильтр, вызывающий падение давления обычно на 2-10 мбар, захватывает капельки серной кислоты, присутствующие в газе, и серную кислоту, которая обычно представляет собой 50-80%-ную по массе серной кислоты, отводят обратно в трубу, где ее концентрируют до 93-98,5%-ной по массе серной кислоты, которая течет в направлении вниз. Трубы охлаждают снаружи газообразной средой, текущей в противотоке или в противоточном поперечном течении, с газом, содержащим серную кислоту, где газообразная среда таким образом нагревается от температуры впуска TA1 от 0 до 50°С до температуры выхода ТA2, удовлетворяющей условию:
Figure 00000001
где S представляет собой об.% паров серной кислоты, a W представляет собой об.% паров воды, рассчитанные согласно предположению, что триоксид серы в газе полностью гидратируется в серную кислоту, hi представляет собой коэффициент теплопередачи на внутренней части трубы, выраженный в W/m2/k, a ho представляет собой коэффициент теплопередачи на внешней стороне трубы (трубки), выраженный в W/m2/K.
В соответствии с этим изобретением концентрацию тумана кислоты в газовом потоке, отходящем от фильтра, понижают до уровня менее 10 мольных частей на млн серной кислоты добавлением потока, содержащего аммиак в количестве, соответствующем 0,1-20 частей на млн аммиака по объему в газовом потоке на входе башни. Требуемая концентрация аммиака в газе почти не зависит от концентрации паров серной кислоты. Аммиак может быть добавлен в виде 0,1-100 об.% паров аммиака в воздухе, но чаще используют 1-10 об.% NH3 в воздухе. Смесь аммиака с воздухом может быть получена смешением безводного аммиака и воздуха или барботированием воздуха через водный аммиак. Содержащий аммиак газ предпочтительно подогревают выше точки конденсации газа перед конденсацией серной кислоты.
Когда аммиак смешивают с газом, содержащим серную кислоту, и охлаждают в башне конденсации, получается аэрозоль кислого сернокислого аммония (ГСА) согласно реакции:
Figure 00000002
Эти частицы или капельки ГСА действуют как ядра конденсации для серной кислоты в ходе охлаждения, тем самым благоприятствуя гетерогенной конденсации и подавляя спонтанное гомогенное зародышеобразование новых капелек серной кислоты.
Преимущества использования аммиака для генерирования частиц состоят в том, что аммиак легко доступен, и не требуется отдельной системы получения частиц. Так как частицы образуются в основной линии процесса, также избегают засорения системы ввода частиц.
В качестве альтернативы отдельному сепарирующему фильтру в каждой трубе конденсации газ из большого количества труб может быть смешан и отфильтрован в обычном фильтре, таком как высокоскоростной матерчатый фильтр, низкоскоростной фильтр броуновского типа или влажный электростатический фильтр. В этом случае серная кислота, вытекающая из фильтра, должна быть возвращена в конденсатор, чтобы сконцентрировать ее до более 90% по массе серной кислоты.
Пример
Чтобы иллюстрировать изобретение, провели ряд экспериментов на экспериментальной установке, показанной на Фиг.1, которая показывает действие установки серной кислоты промышленного масштаба. Тогда как промышленные установки обычно обрабатывают 10000-1000000 м3 при н.у. в час подаваемого газа в большом количестве стеклянных труб, опытная установка обрабатывает только 10-20 м3 при н.у. в час в единственной трубе конденсации. Газ, содержащий серную кислоту, в линии 11 получают, смешивая окружающий воздух в линии 1 с диоксидом серы в линии 2, подогревая смесь в электрическом нагревателе 3 и добавляя пары воды из линии 4, чтобы получить желательный состав газа. Смесь далее нагревают до приблизительно 420°С в электрическом нагревателе 5 и пропускают через каталитический конвертор диоксида серы 6, в котором приблизительно 96% содержащегося в газе диоксида серы окисляют до триоксида серы над сернокислотным катализатором известного типа, содержащего ванадий и калий в качестве активных компонентов. Газ затем охлаждают до 250-290°С (T1) в холодильнике 7 перед входом в конденсатор серной кислоты, состоящий из единственной стеклянной трубки 13, имеющей длину 6,7 м, внутренний диаметр 36 мм и наружный диаметр 40 мм. Верхние 6,2 м трубы заключены в большую трубу 14, через которую пропускают охлаждающий воздух от верхней части при температуре ТA1 0-50°С, заставляя газовый поток в трубе 13 охлаждаться в противотоке обычно до 100°С (Т2). Внешняя труба 14, неохлаждаемая часть трубы 13 и собирающий кислоту сосуд 12 изолированы слоем минеральной ваты толщиной 200 мм. Капельки серной кислоты в газе из трубы захватывают в фильтре 17, помещенном в патроне фильтра 16, который представляет собой цилиндрическую стеклянную трубку, имеющую длину 200 мм и внутренний диаметр 44 мм. Фильтр состоит из элементарных нитей фторуглеродного полимера, имеющих толщину 0,3 мм и связанных в форме сетки, имеющей ширину приблизительно 150 мм, причем сетка скручена, чтобы она входила в патрон фильтра. Волокнистый материал составляет приблизительно 7% объема скрутки. Когда капельки серной кислоты, присутствующие в газе, движутся вверх через скрутку, капельки захватываются, они агломерируют, образуя большие капли, которые стекают вниз в противотоке с газом и проходят далее вниз в стеклянную трубку. Малый поток аммиака в линии 9 добавляют к потоку воздуха в линии 8 и подогревают обычно до 300°С в электрическом нагревателе 10 перед тем, как смесь, которая обычно содержит 0,1-1 об.% аммиака, вводят в газ, содержащий серную кислоту, в линии 11.
Концентрацию тумана кислоты ниже фильтра по ходу потока измеряли непрерывно работающим фотометрическим измерителем аэрозоля, который часто калибровали химическим определением содержания серной кислоты в газе в соответствии с методом, описанным в директиве Агентства по охране окружающей среды ЕРА-600/3-84-056 (апрель 1984).
В качестве примера ряд экспериментов проводили со скоростью потока газа в линии 11 12 м3 при н.у. в час, где м3 при н.у. относится к стандартным условиям 0°С, 1 ат и тому, что весь триоксид полностью гидратирован в серную кислоту. Газовая смесь содержала 3 об.% паров серной кислоты и 4 об.% паров воды из расчета, что триоксид серы полностью гидратируется. Газовую смесь охлаждали в конденсаторе от температуры на входе T1=280°C до температуры на выходе Т2=100°С, в то время как охлаждающий воздух нагревался от температуры на входе ТA1=25°С до температуры на выходе ТA2=225°С. Для этих постоянных рабочих условий концентрацию тумана кислоты ниже фильтра по ходу потока регистрировали для различных потоков аммиака в линии 9.
Фиг.2 показывает концентрацию тумана кислоты как функцию концентрации аммиака в газе, подаваемом в конденсатор в линии 11. Когда газ содержит 4-7 частей на млн аммиака, туман кислоты ниже фильтра по ходу потока можно поддерживать ниже 10 частей на млн серной кислоты. При низкой концентрации аммиака концентрация ядер ГСА, полученных реакцией между аммиаком и серной кислотой согласно реакции (2), настолько мала, что переохлаждение газа относительно конденсации серной кислоты в ходе охлаждения в трубе превышает критическую величину 20-25 К, приводя к самопроизвольному гомогенному зародышеобразованию малых капелек серной кислоты в высоких концентрациях. Последующий рост путем гетерогенной конденсации этих капелек недостаточен, чтобы гарантировать их удаление фильтром. При высокой концентрации аммиака концентрация ядер ГСА в газе настолько высока, что гомогенное зародышеобразование паров серной кислоты подавлено. Однако в этом случае рост гетерогенной конденсацией серной кислоты на ядрах также недостаточен, чтобы гарантировать их удаление фильтром, вследствие высокой концентрации ядер. В интервале от 4 до 7 частей на млн аммиака с 3 об.% серной кислоты в газе на входе концентрация ядер достаточно велика, чтобы предотвращать гомогенное зародышеобразование паров серной кислоты, но достаточно низка, чтобы гарантировать достаточный рост капель гетерогенной конденсацией серной кислоты на ядрах.

Claims (7)

1. Способ получения серной кислоты, включающий конденсацию паров серной кислоты из газовой смеси, содержащей от 0,01 до 10 об.% паров серной кислоты в расчете на полное гидратирование газообразного триоксида серы в серную кислоту, и от 0 до 50 об.% паров воды, охлаждением в башне серной кислоты, при этом содержащий аммиак поток вводят на входе в башню серной кислоты в газовую смесь, содержащую серную кислоту в количестве, соответствующем 0,01-100 ч. аммиака на 1 млн в объеме газового потока.
2. Способ по п.1, отличающийся тем, что газовую смесь охлаждают в башне серной кислоты в противотоке с циркулирующей серной кислотой в качестве охлаждающего агента.
3. Способ по п.1, отличающийся тем, что охлаждение газовой смеси происходит в основном в вертикальной, охлаждаемой снаружи трубе, в которой газовая смесь течет от нижней части трубы в направлении вверх в противотоке с внешним охлаждающим агентом.
4. Способ по п.3, отличающийся тем, что внешний охлаждающий агент находится в газовой фазе.
5. Способ по п.1, отличающийся тем, что он также включает стадию отделения капелек серной кислоты, присутствующих в газе, выходящем из башни серной кислоты, причем указанные капельки возвращают в верхнюю часть башни серной кислоты.
6. Способ по п.1, отличающийся тем, что отделение капелек серной кислоты, присутствующих в газе, осуществляют в фильтре, установленном в верхней части трубы, при этом капельки серной кислоты стекают вниз по трубе.
7. Способ по любому из указанных пунктов, отличающийся тем, что включает стадию очистки газовой смеси от твердых частиц перед введением в нее потока аммиака.
RU2004100952/15A 2003-01-18 2004-01-16 Способ получения серной кислоты RU2350551C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DKPA200300045 2003-01-18
DKPA200300045 2003-01-18

Publications (2)

Publication Number Publication Date
RU2004100952A RU2004100952A (ru) 2005-06-20
RU2350551C2 true RU2350551C2 (ru) 2009-03-27

Family

ID=32605194

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2004100952/15A RU2350551C2 (ru) 2003-01-18 2004-01-16 Способ получения серной кислоты

Country Status (12)

Country Link
US (1) US7252813B2 (ru)
EP (1) EP1443022B1 (ru)
JP (1) JP2004224689A (ru)
KR (1) KR100646113B1 (ru)
CN (1) CN100393611C (ru)
AT (1) ATE396146T1 (ru)
CA (1) CA2453811C (ru)
DE (1) DE60321121D1 (ru)
ES (1) ES2305395T3 (ru)
MX (1) MXPA04000477A (ru)
RU (1) RU2350551C2 (ru)
TW (1) TWI259167B (ru)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010108677A2 (en) * 2009-03-26 2010-09-30 Haldor Topsøe A/S Ozone assisted mist control unit
EA027599B1 (ru) * 2011-06-15 2017-08-31 Хальдор Топсёэ А/С Конденсаторная труба с высокой пропускной способностью для конденсации серной кислоты
CN102680350B (zh) * 2012-06-01 2014-03-19 南京大学 一种适用于循环冷却水系统的阻垢剂性能的测定方法
EP3075434A1 (de) * 2015-04-02 2016-10-05 Bayer Technology Services GmbH Kontinuierliches verfahren zur reinigung von so2-haltigen gasen
WO2020140799A1 (zh) * 2019-01-04 2020-07-09 科洋环境工程(上海)有限公司 硫化氢酸性气的多级氧化制酸装置及制酸工艺
CN117890527B (zh) * 2024-03-14 2024-05-24 山西泰瑞祥科技有限公司 一种烟气监测系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2122634A1 (en) * 1971-05-07 1972-11-16 Sumitomo Jukikai Kogyo K.K., Tokio Sulphuric acid prodn - of increased efficiency by charcoal absorption and recovery of residual sulphur oxides
US4198206A (en) * 1977-06-13 1980-04-15 Ryan Wayne L Method for preparing a platelet reference control
DK145457C (da) 1980-03-25 1983-04-18 Haldor Topsoe As Fremgangsmaade til fremstilling af svovlsyre,ved hvilken maengden af svovlsyretaage i afgangsgassen styres ved temperaturregulering
JPS61178022A (ja) * 1985-02-05 1986-08-09 Mitsubishi Heavy Ind Ltd So↓2とso↓3とダストの同時処理方法
US5122352A (en) * 1988-03-08 1992-06-16 Johnson Arthur F Heat exchanger and pollutant removal system
DK168702B1 (da) * 1988-06-02 1994-05-24 Topsoe Haldor As Fremgangsmåde ved fremstilling af svovlsyre og apparat til anvendelse ved udøvelse af fremgangsmåden
DK168701B1 (da) * 1988-06-09 1994-05-24 Topsoe Haldor As Fremgangsmåde til ved fremstilling af svovlsyre at udkondensere svovlsyredampe
CN1113878A (zh) * 1994-06-01 1995-12-27 门伟 硫酸、硝酸、盐酸的生产方法
US5683670A (en) * 1995-06-28 1997-11-04 Vulcan Materials Company Method for increasing the production capacity of sulfuric acid plants and processes

Also Published As

Publication number Publication date
TWI259167B (en) 2006-08-01
RU2004100952A (ru) 2005-06-20
MXPA04000477A (es) 2004-07-23
CN1519194A (zh) 2004-08-11
JP2004224689A (ja) 2004-08-12
DE60321121D1 (de) 2008-07-03
ATE396146T1 (de) 2008-06-15
EP1443022A3 (en) 2006-07-12
KR20040067891A (ko) 2004-07-30
US20040141909A1 (en) 2004-07-22
KR100646113B1 (ko) 2006-11-14
CN100393611C (zh) 2008-06-11
EP1443022A2 (en) 2004-08-04
CA2453811A1 (en) 2004-07-18
EP1443022B1 (en) 2008-05-21
CA2453811C (en) 2010-06-22
TW200417508A (en) 2004-09-16
US7252813B2 (en) 2007-08-07
ES2305395T3 (es) 2008-11-01

Similar Documents

Publication Publication Date Title
US12083468B2 (en) Apparatus and method for particulate capture from gas streams and a method of removing soluble particulate from a gas
US4348373A (en) Process for the preparation of sulfuric acid
TW295573B (ru)
KR20190027701A (ko) 암모니아 탈황에서 흡수 동안 에어로졸 생성을 제어하기 위한 방법
ES2353332T3 (es) Procedimiento para la producción de ácido sulfúrico.
CN103252158B (zh) 脱硫系统及其脱硫工艺
BR112016000017B1 (pt) Método para a remoção de poeira de ureia do efluente gasoso, equipamento de acabamento para uma planta de ureia e planta de ureia
CN108067091A (zh) 一种超净排放烟气脱硫工艺
CN100354028C (zh) 通过与过氧化氢反应从废气中脱除二氧化硫的方法
CN100364647C (zh) 氨法烟气脱硫装置及其工艺
RU2350551C2 (ru) Способ получения серной кислоты
CN109200783A (zh) 锅炉烟气氨法脱硫装置及其工艺流程
US4579726A (en) Process and apparatus for the removal of mercury from sulfur dioxide-bearing hot and moist gases
US3510253A (en) Method of removing sulfur dioxide from gases
JPH0233645B2 (ru)
CN103272471A (zh) 脱硫系统及其脱硫工艺
CN107438476B (zh) 用于净化含so2气体的连续工艺和设备
TWI280227B (en) Process for production of ammonium thiosulphate
KR100310109B1 (ko) 황산화물의 흡수와 황산암모늄의 동시 제조방법
CN1919419B (zh) 氨法脱硫工艺
IT202000020473A1 (it) Sistema e metodo di abbattimento di biossido di carbonio a base di ammoniaca, e refrigeratore a contatto diretto per essi
PL166597B1 (pl) Sposób wytwarzania gazowego dwutlenku siarki

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160117