RU2349559C2 - Способ и установка для подогрева порошкообразного или пылевидного материала - Google Patents

Способ и установка для подогрева порошкообразного или пылевидного материала Download PDF

Info

Publication number
RU2349559C2
RU2349559C2 RU2005131733/03A RU2005131733A RU2349559C2 RU 2349559 C2 RU2349559 C2 RU 2349559C2 RU 2005131733/03 A RU2005131733/03 A RU 2005131733/03A RU 2005131733 A RU2005131733 A RU 2005131733A RU 2349559 C2 RU2349559 C2 RU 2349559C2
Authority
RU
Russia
Prior art keywords
cyclone
pipeline
section
temperature
vertical
Prior art date
Application number
RU2005131733/03A
Other languages
English (en)
Other versions
RU2005131733A (ru
Inventor
ЕНСЕН Ларс СКОРУП (DK)
ЕНСЕН Ларс СКОРУП
Енс Петер ХАНСЕН (DK)
Енс Петер ХАНСЕН
Original Assignee
Ф.Л. Смидт А/С
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ф.Л. Смидт А/С filed Critical Ф.Л. Смидт А/С
Publication of RU2005131733A publication Critical patent/RU2005131733A/ru
Application granted granted Critical
Publication of RU2349559C2 publication Critical patent/RU2349559C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/364Avoiding environmental pollution during cement-manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/364Avoiding environmental pollution during cement-manufacturing
    • C04B7/365Avoiding environmental pollution during cement-manufacturing by extracting part of the material from the process flow and returning it into the process after a separate treatment, e.g. in a separate retention unit under specific conditions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/43Heat treatment, e.g. precalcining, burning, melting; Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/20Details, accessories, or equipment peculiar to rotary-drum furnaces
    • F27B7/2016Arrangements of preheating devices for the charge
    • F27B7/2025Arrangements of preheating devices for the charge consisting of a single string of cyclones
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • Y02P40/121Energy efficiency measures, e.g. improving or optimising the production methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Public Health (AREA)
  • Environmental Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Ecology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Furnace Details (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Fertilizers (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Disintegrating Or Milling (AREA)
  • Cyclones (AREA)

Abstract

Изобретение относится к области изготовления строительных материалов. Способ подогрева порошкообразного или пылевидного материала в циклонном подогревателе включает, по меньшей мере, два циклонных участка, каждый из которых включает вертикальный трубопровод и циклон. При этом часть материала, который подают, по меньшей мере, в один циклонный участок, вводят в первую часть вертикального трубопровода и нагревают от температуры максимум 450°С до температуры, по меньшей мере, 550°С на протяжении указанного циклонного участка. Оставшийся материал, который подают в тот же самый циклонный участок, вводят в последнюю часть указанного вертикального трубопровода. Установка для осуществления способа включает циклонный подогреватель с, по меньшей мере, двумя циклонными участками, каждый из которых включает вертикальный трубопровод и циклон. Технический результат заключается в уменьшении потребления энергии и утилизации тепла отходящих газов. 2 н. и 6 з.п. ф-лы, 5 ил.

Description

Настоящее изобретение относится к способу подогрева порошкообразного или пылевидного материала, такого как цементная сырьевая смесь или подобного материала, в циклонном подогревателе, причем способ включает по меньшей мере два циклонных участка, каждый из которых включает вертикальный трубопровод и циклон.
Изобретение также относится к установке для осуществления способа.
В цементной промышленности обычно используют так называемый циклонный подогреватель для подогрева цементной сырьевой смеси перед обжигом этой смеси в обжиговой печи для получения цементного клинкера, который затем охлаждают в охладителе для клинкера. Обычно применяют циклонный подогреватель, включающий от четырех до шести циклонных участков. Сырьевую смесь вводят в первый циклонный участок и нагревают путем непосредственного контакта в противотоке с горячими газами, отходящими из обжиговой печи. Подогреватели такого типа описаны в патентной литературе; одним из примеров является заявка ЕР 0455301.
Сырьевые материалы, которые используют при производстве цемента, часто содержат сульфиды, например, в виде пиритов (FeS2), которые во время нагревания в подогревателе реагируют с кислородом с образованием SO2, который затем вовлекается в поток отходящего газа, выпускаемого из подогревателя. SO2 образуется в результате частичного окисления, например, FeS2, главным образом в интервале температур от 300 до 550°С. В традиционной установке для производства цемента, включающей подогреватель с пятью циклонными участками, образование SO2 из содержащих сульфиды сырьевых материалов обычно происходит во втором циклонном участке, который в этом случае конструируют так, что он включает разгрузочный трубопровод для газов, отходящих из третьего циклона и второго циклона, в которых сырьевые материалы обычно нагревают от температур, находящихся в диапазоне от 300 до 350°С, до температуры, приблизительно равной 500°С.
В заявке ЕР 1200176 описан способ, при помощи которого прокаленную сырьевую смесь вводят в отходящие газы в месте, расположенном непосредственно после образования SO2, если следовать в направлении движения отходящих газов. В принципе, этот известный способ следует признать удовлетворительным, хотя главным его недостатком являются относительно большие капитальные затраты на установку дополнительного обрабатывающего оборудования и дополнительные эксплуатационные расходы, главным образом энергетические затраты.
Кроме того, в AT 390249 описаны способ и установка, при помощи которых часть сырьевой смеси или всю сырьевую смесь вводят в зону, имеющую более высокую температуру, и, таким образом, усиливают связывание SO2, или в которых температуру вышележащей области с пониженной температурой, куда вводят отходящие газы, содержащие SO2, регулируют при помощи горячего газа, отбираемого из более горячих участков системы обжиговой печи. Недостатком этой известной методики является неизбежное повышение температуры отходящих газов, покидающих подогреватель, что, таким образом, увеличивает потребление энергии.
Цель настоящего изобретения - предоставить способ и установку для подогрева порошкообразного или пылевидного материала, при помощи которых можно исправить вышеуказанные недостатки.
Указанная цель достигается при помощи способа, указанного во введении, который отличается тем, что часть материала, который подают по меньшей мере в один циклонный участок, вводят в первую часть вертикального трубопровода, если следовать в направлении движения отходящих газов, и нагревают от температуры максимум 450°С до температуры по меньшей мере 550°С, а оставшийся материал, который подают в тот же самый циклонный участок, вводят в последнюю часть указанного вертикального трубопровода.
В результате снижают количество SO2, который выводят из подогревателя цементной установки в виде выброса, но одновременно не увеличивают потребление энергии. Это происходит благодаря тому, что в первую часть вертикального трубопровода вводят только часть материала, создавая, таким образом, горячую зону, в которой образуется избыток теплоты, достаточный для осуществления реакции SO2 с CaO и CaCO3, обычно происходящей в сырьевой смеси с образованием соответственно CaSO4 и CaSO3, а также CO2, а также благодаря тому, что оставшийся материал затем вводят таким образом, что температуру разгрузки конкретного циклонного участка снижают до уровня, эквивалентного температуре, получаемой в случае традиционной работы подогревателя. Исследования, проведенные заявителем настоящей патентной заявки, показали значительное повышение поглощения SO2 на СаО и CaCO3 при температурах выше 550°С; также было показано, что практически весь SO2, который образуется при окислении сульфидов в сырьевых материалах, может быть, таким образом, поглощен сырьевыми материалами СаО и CaCO3, если температуру суспензии, содержащей отходящие газы и сырьевую смесь, поднимают как минимум до 550°С перед отделением отходящих газов от сырьевых материалов в последующем циклоне подогревателя.
Поскольку образование SO2 является функцией температуры, оно в значительной степени зависит от состава цементной сырьевой смеси. В реальности анализы состава сырьевой смеси составляют базис для определения наиболее рентабельного значения начальной температуры сырьевой смеси, которая должна быть нагрета по меньшей мере до 550°С при проведении одной и той же операции способа в пределах одного циклонного участка. Степень поглощения или способность СаО и CaCO3 поглощать SO2 зависит от времени, а также зависит от температуры. Таким образом, основным фактором, определяющим минимальную температуру, до которой следует нагревать сырьевую смесь, будет время удержания отходящих газов, а также сырьевой смеси в конкретной операции способа. Обычно оптимальная начальная температура находится в диапазоне от 300 до 450°С, в то время температура, до которой следует нагревать сырьевую смесь во время проведения операции способа, составляет от 550 до 700°С.
В общем случае вся сырьевая смесь, которую выгружают из предыдущего циклонного участка при температуре максимум 450°С, в циклонном участке может быть нагрета до температуры минимум 550°С. В обычном циклонном подогревателе, включающем пять циклонных участков, температура отходящих газов, которые направляют из третьего циклонного участка во второй циклонный участок, составляет приблизительно 700°С; таким образом, теплоты указанных газов недостаточно, чтобы нагреть всю сырьевую смесь от температуры максимум 450°С до температуры по меньшей мере 550°С. Для того чтобы произвести указанный нагрев, в конкретный циклонный участок необходимо подвести отходящие газы из обжиговой печи или другой высокотемпературной зоны; или нужный эффект может быть достигнут за счет горения в циклонном участке. Однако, как уже было показано, оба решения приведут к повышению температуры отходящих газов, выпускаемых из подогревателя, что снизит его тепловую экономичность.
Вместо этого предпочтительно нагревать лишь часть сырьевой смеси от температуры максимум 450°С до температуры минимум 550°С при проведении одной операции способа. Более конкретно, предпочтительно количество сырьевой смеси, нагреваемой от температуры максимум 450°С до температуры минимум 550°С при проведении одной операции способа подбирать в зависимости от температуры и объема отходящих газов, поступающих с третьего циклонного участка во второй циклонный участок. Этого можно достичь, разделяя поток сырьевой смеси. В первом предпочтительном воплощении настоящего изобретения сырьевая смесь, выгружаемая из первого циклона, может быть разделена по меньшей мере на два подпотока, один из которых перемещают обычным способом, и вводят в вертикальный трубопровод второго циклонного участка над выходным отверстием для отходящих газов в третьем циклоне, в то время как второй поток вводят в тот же вертикальный трубопровод в месте, расположенном непосредственно перед отверстием для ввода газов во второй циклон.
Во втором альтернативном воплощении изобретения сырьевая смесь, загружаемая в циклонный подогреватель, может быть разделена по меньшей мере на два подпотока, один из которых также подогревают обычным способом в первом циклонном участке и затем направляют и вводят в вертикальный трубопровод второго циклонного участка непосредственно над выходным отверстием для отходящих газов в третьем циклоне, в то время как второй подпоток пускают по байпассному трубопроводу в обход первого циклонного участка и вводят в вертикальный трубопровод второго циклонного участка в месте, расположенном непосредственно перед отверстием для ввода газов во второй циклон. При таком воплощении изобретения потребление тепла может быть несколько большим, нежели в предпочтительном воплощении изобретения.
Во втором циклонном участке в обоих указанных воплощениях изобретения обеспечивают первую зону с относительно высокой температурой, в которой может происходить образование SO2 и его поглощение, а также вторую зону, в которой может быть подогрета оставшаяся часть сырьевой смеси, так что температура снижается до нормального уровня. При таком устройстве можно удалять значительные количества SO2, который образуется за счет содержания сульфидов в сырьевой смеси, не повышая температуру отходящих газов, и, следовательно, не увеличивая потребление теплоты. В пределах сущности и объема настоящего изобретения возможны и другие комбинации и воплощения, которые могут отличаться от описанных выше.
Как уже было отмечено, время удержания отходящих газов, а также сырьевой смеси при данной температуре в конкретной операции способа, является фактором, определяющим способность имеющихся в операции СаО и CaCO3 поглощать SO2 в течение указанного промежутка времени. В циклонном подогревателе традиционной конструкции время удержания отходящих газов, например во втором циклонном участке, относительно невелико и часто находится в диапазоне 0,5-1 секунд, в то время как время удержания сырьевой смеси обычно больше; его среднее значение часто составляет приблизительно 10 секунд. Если конкретная цель состоит в том, чтобы увеличить время удержания суспензии сырьевой смеси и отходящих газов в той операции способа, где сырьевую смесь нагревают от температуры максимум 450°С до температуры минимум 550°С, при этом осуществляя хорошее перемешивание, необходимое для протекания желаемых химических реакций, вертикальный трубопровод или трубопровод, соединяющий следующий участок способа с циклоном конкретной операции способа, может быть удлинен или выполнен, например, в виде S-образного колена, включающего первую вертикальную секцию, изгиб и направленную вниз вторую секцию, которую соединяют с циклоном конкретного участка. Во втором воплощении изобретения может быть увеличен диаметр вертикального трубопровода или указанного трубопровода на протяжении по меньшей мере части указанного трубопровода.
Установка для осуществления способа, предлагаемого в соответствии с настоящим изобретением, представляет собой установку, включающую циклонный подогреватель с по меньшей мере двумя участками, каждый из которых включает вертикальный трубопровод и циклон; указанная установка отличается тем, что она включает средства нагревания части материала от температуры максимум 450°С до температуры по меньшей мере 550°С в течение одной и той же операции способа и на протяжении одного циклонного участка.
Остальные признаки установки, предлагаемой в соответствии с настоящим изобретением, указаны далее в подробном описании, формуле изобретения и сопроводительных чертежах.
Далее настоящее изобретение будет более подробно описано при помощи сопроводительных схематических чертежей, на которых изображено следующее:
На Фиг.1 изображено первое предпочтительное воплощение установки, предлагаемой в соответствии с настоящим изобретением,
На Фиг.2 изображено второе альтернативное воплощение установки, предлагаемой в соответствии с настоящим изобретением,
На Фиг.3 показана деталь установки, изображенной на Фиг.1,
На Фиг.4 показана деталь установки, изображенной на Фиг.2,
На Фиг.5 показано альтернативное воплощение детали, изображенной на Фиг.3.
На Фиг.1 и Фиг.2 изображены примерно одинаковые примеры установок с обжиговыми печами для изготовления цементного клинкера. Обе установки с обжиговыми печами представляют собой установки с встроенным кальцинатором (тип ILC), но настоящее изобретение также может быть использовано в установках с отдельной линией кальцинатора (тип SLC) или установках, представляющих собой сочетание установок указанных типов.
Каждая из указанных установок включает циклонный подогреватель 1, имеющий четыре циклона 1а, 1b, 1с и 1d, причем циклон 1а - это первый циклон, циклон 1b - это второй циклон, циклон 1с - это третий или предпоследний циклон, а циклон 1d - это четвертый и последний циклон. Циклоны соединены последовательно; суспензию газ/сырьевая смесь направляют в них при помощи вертикальных трубопроводов или газовых трубопроводов 2а, 2b, 2с и 2d. Таким образом, установка включает четыре циклонных участка, в которых первый циклонный участок состоит из вертикального трубопровода 2а и циклона 1а, второй циклонный участок состоит из вертикального трубопровода 2b и циклона 1b, третий циклонный участок состоит из вертикального трубопровода 2с и циклона 1с, и четвертый участок состоит из вертикального трубопровода 2d и циклона 1d.
Установки также включают кальцинатор 3, который имеет отверстие 9 для ввода подогретой сырьевой смеси из последнего циклона 1d через выпускное отверстие 6 для материала и который соединен с разделительным циклоном 4, барабанную обжиговую печь 5 и охладитель 7 клинкера. Установки также включают вертикальный трубопровод 10 обжиговой печи для направления отходящих газов из печи в кальцинатор 3, трубопровод 11 для направления подогретого воздуха из охладителя 7 клинкера в кальцинатор 3. Сырьевую смесь, поступающую из не показанной на схеме установки для помола сырья, направляют в подогреватель 1 через трубопровод 13 и подогревают в подогревателе в режиме противотока к отходящим газам, а затем выгружают из подогревателя в циклон 1d и направляют в кальцинатор 3, где она подвергается прокаливанию. Из нижнего выпускного отверстия разделительного циклона 4 прокаленную сырьевую смесь затем направляют через трубопровод 8 в барабанную обжиговую печь 5, где ее обжигают, получая цементный клинкер, который затем охлаждают в охладителе 7 клинкера. Отходящие газы из барабанной обжиговой печи 5 и кальцинатора 3 извлекают из кальцинатора 3 и пропускают через циклон 4 и вверх через подогреватель посредством газодувки 14, схематически представленной на чертеже.
В соответствии с настоящим изобретением часть сырьевой смеси, направляемой в вертикальный трубопровод 2b второго циклонного участка, нагревают от температуры максимум 450°С до температуры минимум 550°С, в то время как оставшийся материал затем вводят в последнюю часть указанного вертикального трубопровода, так что большее по сравнению с обычным количество SO2 реагирует с находящимися в сырьевой смеси СаО и CaCO3, образуя, соответственно, CaSO4 и CaSO3, что снижает количество SO2, выбрасываемого в атмосферу из подогревателя установки для производства цемента.
В существующей практике, количество сырьевой смеси, которую нагревают от температуры максимум 450°С до температуры минимум 550°С в одной операции способа, предпочтительно выбирают, учитывая температуру и объем отходящих газов, поступающих из третьего циклонного участка во второй циклонный участок. Это осуществляют за счет разделения потока сырьевой смеси, как показано в воплощениях изобретения, изображенных на Фиг.1 и Фиг.2.
В первом предпочтительном воплощении изобретения, показанном на Фиг.1, сырьевую смесь, извлекаемую из первого циклона 1а, разделяют по меньшей мере на два подпотока при помощи разделительного затвора 15 или подобного ему механизма, причем один из подпотоков направляют обычным образом и вводят в первую часть вертикального трубопровода 2b второго циклонного участка, непосредственно над отверстием для выпуска отходящих газов в третьем циклоне 1с через трубопровод 15а, в то время как второй подпоток вводят через трубопровод 15b в последнюю часть вертикального трубопровода 2b второго циклонного участка, непосредственно перед отверстием для ввода газа во второй циклон 1b.
Во втором альтернативном воплощении изобретения, показанном на Фиг.2, сырьевую смесь, загружаемую в циклонный подогреватель 1, разделяют по меньшей мере на два подпотока при помощи разделительного затвора 16 или подобного ему механизма, причем один из подпотоков направляют обычным образом через трубопровод 16а в вертикальный трубопровод 2а первого циклонного участка, где указанную смесь подогревают, а затем направляют через первый циклон 1а в первую часть вертикального трубопровода 2b второго циклонного участка, непосредственно над отверстием для выпуска отходящих газов в третьем циклоне 1с, в то время как второй подпоток пускают по байпассному трубопроводу 16b в обход первого циклонного участка 2а, 1а и вводят в вертикальный трубопровод 2b второго циклонного участка, непосредственно перед отверстием для ввода газа во второй циклон 1b.
При помощи обоих описанных воплощений настоящего изобретения можно создать первую зону с относительно высокой температурой в нижней части вертикального трубопровода 2b, в которой происходит образование и поглощение SO2, и другую зону, в которой происходит подогрев оставшейся части сырьевой смеси, так что температура снижается до обычного уровня.
На некоторых существующих установках для производства цементного клинкера, включающих обжиговые печи, первый циклонный участок включает два так называемых сдвоенных (twin) циклона. Очевидно, что в таком случае используют разделение сырьевой смеси, имеющееся между двумя сдвоенными циклонами. Таким образом, сырьевая смесь, извлекаемая из одного из сдвоенных циклонов, может быть направлена и введена в первую часть вертикального трубопровода 2b второго циклонного участка непосредственно над отверстием для вывода отходящего газа в третьем циклоне 1с через трубопровод 15а, в то время как сырьевая смесь, извлекаемая из второго сдвоенного циклона, может быть введена в последнюю часть вертикального трубопровода 2b второго циклонного участка непосредственно перед отверстием для ввода газа во второй циклон 1b. Второй сдвоенный циклон лучше всего поместить несколько выше, так чтобы сырьевую смесь из этого циклона можно было вводить в вертикальный трубопровод 2b также на более высоком уровне.
В пределах сущности и объема настоящего изобретения возможны и другие комбинации и воплощения, которые могут отличаться от описанных выше.
На Фиг.3 и Фиг.4 изображены возможные конфигурации вертикального трубопровода или трубопровода 2b, например, в виде S-образного колена, включающего первую вертикальную секцию, изгиб и направленную вниз вторую секцию, которую соединяют с циклоном 1b, предназначенные для увеличения времени удержания суспензии сырьевой смеси и отходящих газов в вертикальном трубопроводе 2b второго циклонного участка. Таким образом, создают возможность оптимизации времени удержания отходящих газов и сырьевой смеси в горячей зоне, что позволяет проводить желаемые химические превращения. Обычно предпочтительно, если вертикальный трубопровод 2b сконструирован таким образом, что время удержания увеличивается приблизительно в 3-5 раз.
На Фиг.5 показано, что время пребывания в высокотемпературной зоне восстановления SO2 может быть значительно увеличено без значительного увеличения полной высоты башни 1 подогревателя. В показанном воплощении изобретения вертикальный трубопровод 2b направлен сначала вверх, затем вниз, а затем снова вверх. Часть материала, извлекаемого из циклона 1а, вводят в вертикальный трубопровод 2b сразу за циклоном 1с, в то время как оставшуюся часть материала из циклона 1а вводят после U-образного колена трубопровода 2b. Часть суспендированного материала, находящегося в трубопроводе 2b, будет обязательно осаждаться в U-образном колене трубопровода 2b. Однако этот материала может быть затем легко введен в трубопровод 2с, как показано на чертеже. Тепловой расчет показал, что полное потребление энергии в пересчете на массу получаемого клинкера снижается за счет введения дополнительного разделения в трубопроводе 2b.
Настоящее изобретение не ограничено показанными воплощениями изобретения, которые представлены в настоящем описании исключительно для иллюстрации изобретения; в пределах сущности и объема настоящего изобретения могут существовать и другие конфигурации, а также многочисленные комбинации показанных воплощений.

Claims (9)

1. Способ подогрева порошкообразного или пылевидного материала, такого как цементная сырьевая смесь, или подобного материала в циклонном подогревателе (1), включающем, по меньшей мере, два циклонных участка, каждый из которых включает вертикальный трубопровод (2а, 2b, 2c, 2d) и циклон (1a, 1b, 1c, 1d), отличающийся тем, что часть материала, который подают, по меньшей мере, в один циклонный участок, вводят в первую часть вертикального трубопровода, если следовать в направлении движения отходящих газов, и нагревают от температуры максимум 450°С до температуры, по меньшей мере, 550°С на протяжении указанного циклонного участка, а оставшийся материал, который подают в тот же самый циклонный участок, вводят в последнюю часть указанного вертикального трубопровода.
2. Способ по п.1, отличающийся тем, что часть материала, который вводят в первую часть указанного вертикального трубопровода, нагревают от температуры, значения которой находятся в диапазоне от 300 до 450°С, до температуры, значения которой находятся в диапазоне от 550 до 700°С, перед тем, как оставшийся материал вводят в последнюю часть указанного вертикального трубопровода.
3. Способ по п.1 или 2, отличающийся тем, что материал, выгружаемый из первого циклона (1а), разделяют, по меньшей мере, на два подпотока, причем один подпоток через трубопровод (15а) направляют и вводят в вертикальный трубопровод (2b) непосредственно над выходным отверстием для отходящих газов в третьем циклоне (1с), в то время как второй подпоток вводят через трубопровод (15b) в вертикальный трубопровод (2b) в месте, расположенном непосредственно перед отверстием для ввода газов во второй циклон (1b).
4. Способ по п.1 или 2, отличающийся тем, что материал, подаваемый в циклонный подогреватель (1), разделяют, по меньшей мере, на два подпотока, причем один подпоток через трубопровод (16а) вводят и подогревают в первом вертикальном трубопроводе (2а), а затем через циклон (1а) направляют и вводят в вертикальный трубопровод (2b) непосредственно над выходным отверстием для отходящих газов в третьем циклоне (1с), в то время как второй подпоток через трубопровод (16b) пускают по байпассному трубопроводу в обход первого циклонного участка, и вводят во второй вертикальный трубопровод (2b) непосредственно перед отверстием для ввода газов во второй циклон (1b).
5. Установка для осуществления способа по любому из пп.1-4, причем указанная установка представляет собой установку, включающую циклонный подогреватель (1) с, по меньшей мере, двумя циклонными участками, каждый из которых включает вертикальный трубопровод (2а, 2b, 2с, 2d) и циклон (1a, 1b, 1c, 1d), отличающаяся тем, что она включает средства нагревания части материала от температуры максимум 450°С до температуры, по меньшей мере, 550°С в течение одной и той же операции способа и на протяжении одного циклонного участка.
6. Установка по п.5, отличающаяся тем, что указанные средства включают разделительные затворы (15, 16).
7. Установка по п.5 или 6, отличающаяся тем, что трубопровод (2b) сконструирован в виде S-образного колена, включающего первую вертикальную секцию, изгиб и направленную вниз вторую секцию, которая соединена с циклоном (1b).
8. Установка по п.5 или 6, отличающаяся тем, что трубопровод (2b) сконструирован так, что диаметр указанного трубопровода увеличен на протяжении, по меньшей мере, части указанного трубопровода.
Приоритет по пунктам:
29.10.2003 по пп.1-8.
RU2005131733/03A 2003-10-29 2004-08-30 Способ и установка для подогрева порошкообразного или пылевидного материала RU2349559C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DKPA200301593 2003-10-29
DKPA200301593 2003-10-29

Publications (2)

Publication Number Publication Date
RU2005131733A RU2005131733A (ru) 2006-06-10
RU2349559C2 true RU2349559C2 (ru) 2009-03-20

Family

ID=34530572

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005131733/03A RU2349559C2 (ru) 2003-10-29 2004-08-30 Способ и установка для подогрева порошкообразного или пылевидного материала

Country Status (19)

Country Link
US (1) US7384475B2 (ru)
EP (1) EP1678097B1 (ru)
JP (1) JP4689618B2 (ru)
KR (1) KR101131294B1 (ru)
CN (1) CN100376504C (ru)
AT (1) ATE368016T1 (ru)
AU (1) AU2004285761B2 (ru)
BR (1) BRPI0410069B8 (ru)
CA (1) CA2521797C (ru)
DE (1) DE602004007818T2 (ru)
DK (1) DK1678097T3 (ru)
ES (1) ES2290759T3 (ru)
MX (1) MXPA05013381A (ru)
PL (1) PL1678097T3 (ru)
PT (1) PT1678097E (ru)
RU (1) RU2349559C2 (ru)
TW (1) TWI359124B (ru)
WO (1) WO2005042429A1 (ru)
ZA (1) ZA200507563B (ru)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102302892B (zh) 2010-12-30 2013-05-22 圣达瀚科技有限公司 用双效反应器处理高温废物焚化炉产生的烟气的方法和系统
CN102302891B (zh) * 2010-12-30 2013-08-14 圣达瀚科技有限公司 用双效反应器处理焚烧产生的烟气的方法及其系统
CN102303957B (zh) * 2011-01-28 2013-04-10 圣达瀚科技有限公司 利用双效反应器结合水泥生产处理废气的方法及其系统
CN104169235B (zh) * 2012-03-14 2016-05-25 三菱综合材料株式会社 水泥制造装置
AT13401U1 (de) * 2013-04-11 2013-12-15 A Tec Holding Gmbh Vorrichtung zum Entnehmen von Heißgas
JP6494469B2 (ja) * 2015-08-07 2019-04-03 太平洋セメント株式会社 セメント焼成装置の運転方法
DE102016003751B4 (de) * 2016-03-26 2019-09-26 Khd Humboldt Wedag Gmbh Anlage zur Herstellung von Zementklinker mit vereinzeltem Mitstrom-Durchflusscalinator
WO2019220309A1 (en) * 2018-05-15 2019-11-21 Flsmidth A/S Emission abatement apparatus for processing of particulates and method of using same
CN108558239B (zh) * 2018-06-26 2021-04-16 武汉源锦建材科技有限公司 一种氧化镁精确制备装置及方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK427274A (da) * 1974-08-12 1976-02-13 Smidth & Co As F L Fremgangsmade til at opdele en strom af pulverformet materiale i delstromme
JPS61197452A (ja) * 1985-02-26 1986-09-01 三菱マテリアル株式会社 サスペンシヨンプレヒ−タ
JPS61242936A (ja) * 1985-04-15 1986-10-29 株式会社宇部実業エンヂニヤ−リングコンサルタント セメント原料の多段階予熱装置
MX164848B (es) * 1985-06-03 1992-09-25 Smidth & Co As F L Metodo mejorado para producir escoria
JPS62252349A (ja) * 1986-04-22 1987-11-04 秩父セメント株式会社 セメントキルン排ガスの処理方法
DE3643143A1 (de) 1986-11-05 1988-05-11 Krupp Polysius Ag Verfahren zur entfernung von schadstoffen aus abgasen
AT390249B (de) * 1986-11-26 1990-04-10 Perlmooser Zementwerke Ag Verfahren zur verringerung der emission von waehrend der zementherstellung mit dem trockenverfahren insbesondere im waermetauscherbereich gebildetem so2 und vorrichtung zur durchfuehrung des verfahrens
GB2227301A (en) * 1989-01-18 1990-07-25 Smidth & Co As F L Method and apparatus for producing cement clinker
DK167005B1 (da) 1990-05-04 1993-08-16 Smidth & Co As F L Fremgangsmaade og apparat til fremstilling af klinker af mineralske raamaterialer
DK191291A (da) 1991-11-25 1993-05-26 Smidth & Co As F L Fremgangsmaade til reducering af so2-indholdet i afgangsgassen fra et klinkerfremstillingsanlaeg samt indretning til udoevelse af fremgangsmaaden
CN1210965A (zh) * 1997-09-08 1999-03-17 赵静山 用预分解技术改造五级旋风预热器的方法
CZ292416B6 (cs) * 1999-06-10 2003-09-17 Psp Engineering A. S. Kalcinační zařízení
KR20020019093A (ko) * 1999-06-18 2002-03-09 에릭 오펠스트럽 매드센 배가스의 탈황 방법 및 장치
DK174192B1 (da) * 2000-09-20 2002-09-09 Smidth & Co As F L Anlæg til fremstilling af cementklinker.
CN2527944Y (zh) * 2002-02-09 2002-12-25 郭红军 旋风预热器
MXPA05002073A (es) * 2002-10-02 2005-06-08 Smidth As F L Metodo y planta para la manufactura de clinker de cemento.

Also Published As

Publication number Publication date
ZA200507563B (en) 2006-11-29
US7384475B2 (en) 2008-06-10
DK1678097T3 (da) 2007-09-17
CN1780799A (zh) 2006-05-31
AU2004285761B2 (en) 2009-07-16
KR101131294B1 (ko) 2012-03-30
PT1678097E (pt) 2007-10-25
TW200514761A (en) 2005-05-01
BRPI0410069B1 (pt) 2013-01-08
BRPI0410069A (pt) 2006-05-23
BRPI0410069B8 (pt) 2013-02-19
EP1678097B1 (en) 2007-07-25
US20060174806A1 (en) 2006-08-10
CA2521797A1 (en) 2005-05-12
CN100376504C (zh) 2008-03-26
DE602004007818D1 (de) 2007-09-06
TWI359124B (en) 2012-03-01
RU2005131733A (ru) 2006-06-10
PL1678097T3 (pl) 2007-12-31
JP2007511455A (ja) 2007-05-10
EP1678097A1 (en) 2006-07-12
CA2521797C (en) 2013-05-28
JP4689618B2 (ja) 2011-05-25
ES2290759T3 (es) 2008-02-16
MXPA05013381A (es) 2006-04-05
DE602004007818T2 (de) 2008-04-17
WO2005042429A1 (en) 2005-05-12
ATE368016T1 (de) 2007-08-15
KR20060133956A (ko) 2006-12-27
AU2004285761A1 (en) 2005-05-12

Similar Documents

Publication Publication Date Title
EP2018353B1 (en) Method and plant for manufacturing cement clinker
KR930005296B1 (ko) 미립자 물질의 열처리 공정
RU2349559C2 (ru) Способ и установка для подогрева порошкообразного или пылевидного материала
SU847910A3 (ru) Устройство дл обжига порошко-ОбРАзНыХ МАТЕРиАлОВ
CZ2003766A3 (cs) Způsob redukce emisí oxydů síry SOx u zařízení k výrobě cementového slínku a zařízení k provádění tohoto způsobu
EP0207747B1 (en) Process and apparatus for manufacturing low sulfur cement clinker
AU760533B2 (en) Method and apparatus for desulphurisation of exhaust gases
GB2064739A (en) Method of converting a rotary kiln cement making plant to a calcining furnace cement making plant
AU739761B2 (en) Removal of sulfur oxides from preheater off gases
RU2315736C2 (ru) Способ и установка для изготовления цементного клинкера
CN108885059A (zh) 具有单独的携带流式煅烧炉的、用于制造水泥熟料的设备
EA041421B1 (ru) Кислородно-топливное производство клинкера без рециркуляции отходящего газа устройства предварительного нагрева
MXPA99009597A (en) Removal of sulfur oxides from preheater off gases
BG111368A (bg) Устройство за произвеждане на клинкер от сурово брашно, съдържащо предварителен подгревател с ограничена височина
NO760385L (no) Fremgangsm}te og innretning for brenning av granulert og pulverformet materiale.