RU2328343C2 - Катализатор для синтеза 2- и 4-пиколинов, способ получения 2- и 4-пиколина и способ получения катализатора - Google Patents

Катализатор для синтеза 2- и 4-пиколинов, способ получения 2- и 4-пиколина и способ получения катализатора Download PDF

Info

Publication number
RU2328343C2
RU2328343C2 RU2006127469/04A RU2006127469A RU2328343C2 RU 2328343 C2 RU2328343 C2 RU 2328343C2 RU 2006127469/04 A RU2006127469/04 A RU 2006127469/04A RU 2006127469 A RU2006127469 A RU 2006127469A RU 2328343 C2 RU2328343 C2 RU 2328343C2
Authority
RU
Russia
Prior art keywords
catalyst
acid
picolines
suspension
producing
Prior art date
Application number
RU2006127469/04A
Other languages
English (en)
Other versions
RU2006127469A (ru
Inventor
Пашупати ДУТТА (IN)
Пашупати ДУТТА
Субхаш Чандра РОЙ (IN)
Субхаш Чандра РОЙ
Шь м Кишор РОЙ (IN)
Шьям Кишор РОЙ
Тарун Канти ГОСВАМИ (IN)
Тарун Канти ГОСВАМИ
Original Assignee
Каунсил Оф Сайентифик Энд Индастриал Рисерч
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Каунсил Оф Сайентифик Энд Индастриал Рисерч filed Critical Каунсил Оф Сайентифик Энд Индастриал Рисерч
Priority to RU2006127469/04A priority Critical patent/RU2328343C2/ru
Publication of RU2006127469A publication Critical patent/RU2006127469A/ru
Application granted granted Critical
Publication of RU2328343C2 publication Critical patent/RU2328343C2/ru

Links

Landscapes

  • Pyridine Compounds (AREA)
  • Catalysts (AREA)

Abstract

Изобретение относится к катализатору для синтеза 2- и 4-пиколинов, способу его получения и способу получения 2- и 4-пиколина. Описан катализатор, который может быть использован для синтеза 2- и 4-пиколинов, содержащий гетерополикислоту, выбранную из группы, включающей кремневольфрамовую кислоту, фосфорвольфрамовую кислоту и ванадовольфрамовую кислоту, нанесенную на подложку-силикагель, размер частиц которого составляет 6-14 меш. Описан также способ получения катализатора, включающий растворение гетерополикислоты в дистиллированной воде, смешивание полученной смеси с требуемым количеством силикагеля для получения взвеси, перемешивание взвеси до получения равномерной пропитки, сушку взвеси на воздухе при температуре 200-250°С от 0,5 до 1,5 часов, дальнейшее нагревание взвеси при температуре от 300 до 400°С от 0,5 до 1,5 часов и охлаждение полученного продукта до комнатной температуры в эксикаторе для получения требуемого катализатора. Описан способ получения 2- и 4-пиколинов, включающий взаимодействие ацетальдегида и аммиака при нагревании в присутствии описанного выше катализатора. Технический эффект - получение стабильного, высокоселективного и активного катализатора. 3 н. и 11 з.п. ф-лы.

Description

Настоящее изобретение касается композитного катализатора для синтеза 2- и 4-пиколинов. Настоящее изобретение также касается способа получения катализатора, который может быть использован для синтеза 2- и 4-пиколинов. Настоящее изобретение также касается способа получения 2- и 4-пиколинов с использованием упомянутого нового катализатора. Настоящее изобретение может быть использовано для получения различных промежуточных соединений для фармацевтических и агрохимических веществ. 4-Пиколин в основном предназначен для синтеза 4-винилпиридина и гидразида изоникотиновой кислоты (INH), противотуберкулезного лекарственного средства.
Уровень техники
Коммерчески важными источниками оснований пиридина являются деготь и насыщенная жидкость, полученная при коксовании угля. Однако выполнение строгих технических условий, предъявляемых к данным продуктам при фармацевтическом и сельскохозяйственном использовании, не может быть обеспечено природными источниками, в частности побочными продуктами после коксования угля. Среди различных синтетических способов наиболее известной реакцией для получения оснований пиридина является реакция между ацетальдегидом и аммиаком.
Кислоты используются в качестве катализаторов или сокатализаторов в самых различных реакциях. В патенте США 218692 указано, что этаноламины могут быть получены из аммиака или первичного оксида амина или этилена и такой соли слабой кислоты, как карбонат аммония, в присутствии алифатического радикала, который является положительным относительно водорода. В патенте Германии 844449 (СА 48:1429 с) описано получение третичных аминов с гидроксиалкильными радикалами из аммиака, первичных или вторичных аминов и оксида алкилена при температуре от 30°С до 60°С, при этом улучшение выхода возможно также в присутствии воды или слабой кислоты. В Британском патенте №497093 (СА 36:4131-8) указано, что моноалкиламины могут быть получены из оксидов олефина и аммиака в присутствии воды и кислоты.
До настоящего времени взаимодействие ацетальдегида или некоторых других низкомолекулярных альдегидов и аммиака в отсутствии или присутствии метанола и/или формальдегида для получения их пиридиновых и алкильных производных осуществляли в присутствии аморфных композитов кремнезема-глинозема, содержащих различные промоторы. Выход требуемых продуктов, полученных с использованием таких катализаторов, был низким. Как указано в Advances in Catalysis, Volume 18, page 344 (1968), Academic Press, Inc., New York, N.Y., алкилпиридины также были синтезированы путем пропускания газообразного ацетальдегида и аммиака над кристаллическими алюмосиликатами, NaX и Н-морденитом. Несмотря на то, что первоначальная конверсия с использованием упомянутых веществ в качестве катализаторов была высокой, дезактивация за счет коксования происходила быстро, давая коммерчески непривлекательную систему, характеризующуюся низкой каталитической стабильностью.
В патенте США 4220783 описан способ синтеза пиридина или алкилпиридинов взаимодействием аммиака и карбонильного реагента, представляющего собой альдегид, содержащий от 2 до 4 атомов углерода, кетона, содержащего от 3 до 5 атомов углерода, или смеси упомянутых альдегидов и/или кетонов в приемлемых условиях в присутствии катализатора, включающего кристаллический алюмосиликатный цеолит, имеющий отношение кремнезема к глинозему по меньшей мере около 12 и индекс проницаемости приблизительно от 1 до 12, и выделение из получаемой реакционной смеси продукта, содержащего по меньшей мере одно соединение пиридина или алкилпиридина. Добавление к сырью метанола и/или формальдегида увеличивает селективность по отношению к незамещенному пиридину. Выходы требуемого продукта были низкими. Получение оснований пиридина с использованием катализатора вызывает загрязнение окружающей среды, поскольку такие способы используют токсичные ThO2 и CdO. Получение катализатора включает трудоемкий способ получения геля кремнезема-глинозема.
Цели изобретения
Основной целью данного изобретения является получение катализатора, подходящего для превращения ацетальдегида и аммиака в 2- и 4-пиколины, преодолевающего вышеупомянутые недостатки.
Другой целью данного изобретения является получение стабильного катализатора для превращения ацетальдегида и аммиака.
Следующей целью данного изобретения является получение высокоселективного и активного катализатора.
Сущность изобретения
Соответственно настоящее изобретение касается катализатора, который может быть использован для синтеза 2- и 4-пиколинов, содержащих гетерополикислоту, выбранную из группы, включающей кремневольфрамовую кислоту, фосфовольфрамовую кислоту, фосфомолибденовую кислоту и ванадовольфрамовую кислоту, нанесенную на подложку.
Согласно одному из вариантов данного изобретения подложку выбирают из группы, включающей силикагель, глинозем, кремнезем-глинозем, глины и монтмориллонит.
Настоящее изобретение также касается способа получения катализатора, который может быть использован для синтеза 2- и 4-пиколинов, включающего растворение гетерополикислоты в дистиллированной воде; смешивание полученной смеси с требуемым количеством связующего для получения взвеси; перемешивание взвеси до равномерной пропитки; сушку взвеси на воздухе при температуре 200-250°С от 0,5 до 1,5 часов; дальнейшее нагревание взвеси при температуре от 300 до 400°С от 0,5 до 1,5 часов и охлаждение полученного продукта до комнатной температуры в эксикаторе для получения требуемого катализатора.
Согласно одному из вариантов данного изобретения гетерополикислота выбрана из группы, включающей кремневольфрамовую кислоту, фосфовольфрамовую кислоту, фосфомолибденовую кислоту и ванадовольфрамовую кислоту.
Согласно другому варианту данного изобретения связующее выбрано из группы, включающей кремнезем, глинозем, кремнезем-глинозем, глины и монтмориллонит.
Согласно другому варианту данного изобретения гетерополикислоту растворяют в дистиллированной воде в соотношении 0,5:4,5 (мас./мас.).
Согласно другому варианту данного изобретения связующее включает силикагель, размер частиц которого составляет 6-14 меш.
Согласно очередному варианту данного изобретения взвесь перемешивают в течение 30-40 минут.
Настоящее изобретение также касается способа получения 2- и 4-пиколинов, включающего взаимодействие ацетальдегида и аммиака при нагревании в присутствии катализатора, включающего композит гетерополикислоты, нанесенного на подложку, при этом катализатор присутствует в количестве от 5 до 15 мас.%, и отделение образовавшегося 2- и 4-пиколина.
Согласно одному из вариантов данного изобретения ацетальдегид и аммиак берут в соотношении от 0,8 до 1,2 (мас./мас.) и подвергают взаимодействию при температуре от 300 до 500°С.
Согласно другому варианту данного изобретения взаимодействие осуществляют в стеклянном реакторе.
Согласно очередному варианту данного изобретения объемную скорость подачи ацетальдегида и аммиака поддерживают в диапазоне от 0,1 до 10 г/г катализатора (предпочтительно - от 1 до 3).
Согласно очередному варианту данного изобретения 2- и 4-пиколины отделяют фракционированной перегонкой.
Подробное описание изобретения
Настоящее изобретение касается катализатора, который может быть использован для синтеза 2- и 4-пиколинов, получаемого растворением гетерополикислоты в дистиллированной воде в подходящей пропорции в диапазоне 0,5:4,5 (мас./мас.). Затем полученную смесь смешивают с требуемым количеством связующего, такого как силикагель (размер частиц которого составляет 6-14 меш), и полученную взвесь перемешивают в течение периода времени в диапазоне 30-40 минут для получения равномерной пропитки. После достижения равномерной пропитки взвесь вначале сушат на воздухе при температуре 200-250°С от 0,5 до 1,5 часов, а затем дополнительно нагревают при температуре от 300 до 400°С от 0,5 до 1,5 часов. Затем полученный продукт охлаждают до комнатной температуры в эксикаторе для получения требуемого катализатора.
Гетерополикислота выбрана из кремневольфрамовой кислоты, фосфовольфрамовой кислоты, фосфомолибденовой кислоты и ванадовольфрамовой кислоты, а связующее выбрано из кремнезема, глинозема, кремнезема-глинозема, глин, монтмориллонита.
Полученный катализатор может быть использован для синтеза 2- и 4-пиколинов нагреванием ацетальдегида и аммиака в соотношении от 0,8 до 1,2 (мас./мас.) при температуре от 300 до 500°С. Количество катализатора составляет от 5 до 15 мас.%, а взаимодействие предпочтительно осуществляют в стеклянном реакторе. Взаимодействие осуществляют, поддерживая объемную скорость подачи сырья, включающего ацетальдегид и аммиак, от 0,1 до 10 г/г катализатора (предпочтительно - от 1 до 3). Основания пиридина и полученный продукт анализируют известными спектрохроматографическими способами, при этом основания пиридина отделяют от требуемых продуктов известной фракционированной перегонкой.
Новизна настоящего изобретения заключается в получении катализатора для превращения ацетальдегида и аммиака в 2- и 4-пиколины экологически благоприятным способом. Данный способ не вызывает загрязнения окружающей среды по сравнению с известными способами.
Следующие примеры приведены с целью иллюстрации настоящего изобретения и не должны рассматриваться как ограничивающие его объем.
Пример 1
Получение катализатора: использование в качестве подложки для кремнезема силикагеля с размером частиц 6-14 меш.
Фосфовольфрамовую кислоту (10 г) растворяют в воде (25 мл) и раствор смешивают с силикагелем (100 г). Смесь перемешивают для получения равномерной пропитки, сушат на воздухе при температуре 200-250°С в течение часа, а затем при температуре 400°С в течение часа и, наконец, охлаждают до комнатной температуры в эксикаторе. Полученный катализатор используют для взаимодействия между ацетальдегидом и аммиаком.
Эксперимент осуществляют в стеклянном реакторе с нисходящим потоком, имеющим внутренний диаметр 2 см и достаточную длину, который помещают в печь длиной 32 см. В середину реактора помещают полученный катализатор (10 г) и нагревают его до 380°С с помощью трубчатой электрической печи. Ацетальдегид подают со скоростью 9,5 мл/час, а аммиак подают со скоростью 60 мл/мин. Продукты, полученные за 2 часа, конденсируют в охлаждаемом льдом приемнике, взвешивают и анализируют при помощи газового хроматографа (оборудован FID с использованием колонки SS (из нержавеющей стали) размером 2 м×3 мм, содержащей 30% глицерина на хромосорбе-п. Температуру колонки поддерживают на уровне 135°С, при этом скорость потока азота составляет 30 мл/мин). Для калибровки используют чистые стандартные вещества. Было установлено, что превращение ацетальдегида в пиколины составляет 50-60%.
Пример 2
Получение катализатора: использование в качестве подложки для кремнезема силикагеля с размером частиц 6-14 меш.
Кремневольфрамовую кислоту (10 г) растворяют в воде (25 мл) и раствор смешивают с силикагелем (100 г). Смесь перемешивают для получения равномерной пропитки, сушат на воздухе при температуре 225°С в течение часа, а затем при температуре 400°С в течение часа и, наконец, охлаждают до комнатной температуры в эксикаторе. Полученный катализатор используют для взаимодействия между ацетальдегидом и аммиаком.
Эксперимент осуществляют в стеклянном реакторе с нисходящим потоком, имеющим внутренний диаметр 2 см и достаточную длину, который помещают в печь длиной 32 см. В середину реактора помещают полученный катализатор (10 г) и нагревают его до 400°С с помощью трубчатой электрической печи. Ацетальдегид подают со скоростью 9,5 мл/час, а аммиак подают со скоростью 60 мл/мин. Продукты, полученные за 2 часа, конденсируют в охлаждаемом льдом приемнике, взвешивают и анализируют при помощи газового хроматографа (оборудован FID с использованием колонки из нержавеющей стали размером 2 м×3 мм, содержащей 30% глицерина на хромосорбе-п. Температуру колонки поддерживают на уровне 135°С, при этом скорость потока азота составляет 30 мл/мин). Для калибровки используют чистые стандартные вещества. Было установлено, что превращение ацетальдегида в пиколины составляет 55%.
Пример 3
Получение катализатора: использование в качестве подложки для кремнезема силикагеля с размером частиц 6-14 меш.
Ванадовольфрамовую кислоту (10 г) растворяют в воде (25 мл) и раствор смешивают с силикагелем (100 г). Смесь перемешивают для получения равномерной пропитки, сушат на воздухе при температуре 210°С в течение часа, а затем при температуре 400°С в течение часа и, наконец, охлаждают до комнатной температуры в эксикаторе. Полученный катализатор используют для взаимодействия между ацетальдегидом и аммиаком.
Эксперимент осуществляют в стеклянном реакторе с нисходящим потоком, имеющим внутренний диаметр 2 см и достаточную длину, который помещают в печь длиной 32 см. В середину реактора помещают полученный катализатор (10 г) и нагревают его до 370°С с помощью трубчатой электрической печи. Ацетальдегид подают со скоростью 9,5 мл/час, а аммиак подают со скоростью 60 мл/мин. Продукты, полученные за 2 часа, конденсируют в охлаждаемом льдом приемнике, взвешивают и анализируют при помощи газового хроматографа (оборудован FID с использованием колонки из нержавеющей стали размером 2 м×3 мм, содержащей 30% глицерина на хромосорбе-п. Температуру колонки поддерживают на уровне 135°С, при этом скорость потока азота составляет 30 мл/мин). Для калибровки используют чистые стандартные вещества. Было установлено, что превращение ацетальдегида в пиколины составляет 70%.
Основные преимущества настоящего изобретения следующие.
1. Способ очень прост и экономичен.
2. Получение катализатора не является трудоемким по сравнению с известными способами.

Claims (14)

1. Катализатор, который может быть использован для синтеза 2- и 4-пиколинов, содержащий гетерополикислоту, выбранную из группы, включающей кремневольфрамовую кислоту, фосфорвольфрамовую кислоту и ванадовольфрамовую кислоту, нанесенную на подложку-силикагель, размер частиц которого составляет 6-14 меш.
2. Способ получения катализатора по п.1, который может быть использован для синтеза 2- и 4-пиколинов, включающий растворение гетерополикислоты в дистиллированной воде, смешивание полученной смеси с требуемым количеством силикагеля для получения взвеси, перемешивание взвеси до получения равномерной пропитки, сушку взвеси на воздухе при температуре 200-250°С от 0,5 до 1,5 ч, дальнейшее нагревание взвеси при температуре от 300 до 400°С от 0,5 до 1,5 ч и охлаждение полученного продукта до комнатной температуры в эксикаторе для получения требуемого катализатора.
3. Способ по п.2, в котором гетерополикислота выбрана из группы, включающей кремневольфрамовую кислоту, фосфорвольфрамовую кислоту и ванадовольфрамовую кислоту.
4. Способ по п.2, в котором силикагель имеет размер частиц 6-14 меш.
5. Способ по п.2, в котором гетерополикислоту растворяют в дистиллированной воде в соотношении 0,5:4,5 (мас./мас.).
6. Способ по п.2, в котором взвесь перемешивают в течение 30-40 мин.
7. Способ получения 2- и 4-пиколинов, включающий взаимодействие ацетальдегида и аммиака при нагревании в присутствии катализатора по п.1, включающего гетерополикислоту, нанесенную на силикагель, и отделение образовавшегося 2- и 4-пиколина.
8. Способ по п.7, в котором ацетальдегид и аммиак берут в соотношении от 0,8 до 1,2 (мас./мас.) и подвергают взаимодействию при температуре от 300 до 500°С.
9. Способ по п.7, в котором взаимодействие осуществляют в стеклянном реакторе.
10. Способ по п.7, в котором объемную скорость использования ацетальдегида и аммиака поддерживают в диапазоне от 0,1 до 10 г/г катализатора.
11. Способ по п.10, в котором объемную скорость использования ацетальдегида и аммиака поддерживают в диапазоне от 1 до 3 г/г катализатора.
12. Способ по п.7, в котором 2- и 4-пиколины отделяют фракционированной перегонкой.
13. Способ по п.7, в котором гетерополикислота выбрана из группы, включающей кремневольфрамовую кислоту, фосфорвольфрамовую кислоту и ванадовольфрамовую кислоту.
14. Способ по п.7, в котором связующее включает силикагель, размер частиц которого составляет 6-14 меш.
RU2006127469/04A 2003-12-31 2003-12-31 Катализатор для синтеза 2- и 4-пиколинов, способ получения 2- и 4-пиколина и способ получения катализатора RU2328343C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2006127469/04A RU2328343C2 (ru) 2003-12-31 2003-12-31 Катализатор для синтеза 2- и 4-пиколинов, способ получения 2- и 4-пиколина и способ получения катализатора

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2006127469/04A RU2328343C2 (ru) 2003-12-31 2003-12-31 Катализатор для синтеза 2- и 4-пиколинов, способ получения 2- и 4-пиколина и способ получения катализатора

Publications (2)

Publication Number Publication Date
RU2006127469A RU2006127469A (ru) 2008-02-10
RU2328343C2 true RU2328343C2 (ru) 2008-07-10

Family

ID=39265731

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006127469/04A RU2328343C2 (ru) 2003-12-31 2003-12-31 Катализатор для синтеза 2- и 4-пиколинов, способ получения 2- и 4-пиколина и способ получения катализатора

Country Status (1)

Country Link
RU (1) RU2328343C2 (ru)

Also Published As

Publication number Publication date
RU2006127469A (ru) 2008-02-10

Similar Documents

Publication Publication Date Title
JPWO2014129248A1 (ja) エタノールから1,3−ブタジエンを選択的に製造する方法
JPH11508918A (ja) キノリン塩基の製造方法
RU2328343C2 (ru) Катализатор для синтеза 2- и 4-пиколинов, способ получения 2- и 4-пиколина и способ получения катализатора
AU2003300723B2 (en) Catalyst for synthesis of 2-and 4-picolines, process for preparing 2- and 4-picoline and process for preparing the catalyst
US6596872B2 (en) Process for preparing alkenyl-substituted heterocycles
US7514559B2 (en) Catalyst for synthesis of 2- and 4-picolines
JPS6048501B2 (ja) N−アルキル芳香族アミンの製造方法
JP3132062B2 (ja) トリエチレンジアミン類及びピペラジン類の製造方法
JP3132061B2 (ja) トリエチレンジアミン類及びピペラジン類の製造法
US6118003A (en) Processes for producing 3-cyanopyridine from 2-methyl-1,5-pentanediamine
NZ548652A (en) Catalyst for synthesis of 2-and 4-picolines, process for preparing 2- and 4-picoline and process for preparing the catalyst
RU2780406C2 (ru) Способ получения винил-н-бутилового эфира
WO2023236735A1 (zh) 一种甲醇制烯烃的方法
RU2421441C1 (ru) Одностадийный способ получения изопрена
CN116063225A (zh) 一种苯胺合成2-甲基吡啶的工艺
Beran et al. Decomposition of methyl tert-butyl ether on zeolites
CN107805218B (zh) 一种制备4-Boc-氨基哌啶的方法
US6492524B1 (en) Process for the synthesis of an aryl pyridine base using a zeolite catalyst
JPS593994B2 (ja) メチルピリジノン類の製造方法
CN112574092A (zh) 一种制备2-二芳基甲基取代吲哚类化合物的绿色新方法
JPH0536427B2 (ru)
WO2021229414A1 (en) Process and catalyst for the preparation of ethylene
CN117402090A (zh) Des催化剂在邻位氨基溴化物上的应用及邻位氨基溴化物的合成方法
SU761464A1 (en) Method of preparing alkylpyridines
JPH09208559A (ja) 環式n−ビニル化合物の製造法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180101