RU2326423C2 - Система универсальных трехмерных элементов - Google Patents

Система универсальных трехмерных элементов Download PDF

Info

Publication number
RU2326423C2
RU2326423C2 RU2005126407/12A RU2005126407A RU2326423C2 RU 2326423 C2 RU2326423 C2 RU 2326423C2 RU 2005126407/12 A RU2005126407/12 A RU 2005126407/12A RU 2005126407 A RU2005126407 A RU 2005126407A RU 2326423 C2 RU2326423 C2 RU 2326423C2
Authority
RU
Russia
Prior art keywords
single element
elements
universal
walls
integrated circuit
Prior art date
Application number
RU2005126407/12A
Other languages
English (en)
Other versions
RU2005126407A (ru
Inventor
Андрзей ПИЕТРЗИК (PL)
Андрзей ПИЕТРЗИК
Original Assignee
Андрзей ПИЕТРЗИК
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PL35828603A external-priority patent/PL358286A1/xx
Application filed by Андрзей ПИЕТРЗИК filed Critical Андрзей ПИЕТРЗИК
Publication of RU2005126407A publication Critical patent/RU2005126407A/ru
Application granted granted Critical
Publication of RU2326423C2 publication Critical patent/RU2326423C2/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H33/00Other toys
    • A63H33/04Building blocks, strips, or similar building parts
    • A63H33/042Mechanical, electrical, optical, pneumatic or hydraulic arrangements; Motors
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H33/00Other toys
    • A63H33/04Building blocks, strips, or similar building parts
    • A63H33/046Building blocks, strips, or similar building parts comprising magnetic interaction means, e.g. holding together by magnetic attraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1615Programme controls characterised by special kind of manipulator, e.g. planar, scara, gantry, cantilever, space, closed chain, passive/active joints and tendon driven manipulators
    • B25J9/1617Cellular, reconfigurable manipulator, e.g. cebot
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/724Devices having flexible or movable element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/724Devices having flexible or movable element
    • Y10S977/725Nanomotor/nanoactuator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/882Assembling of separate components, e.g. by attaching

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Toys (AREA)
  • Electromagnets (AREA)
  • Control Of Position Or Direction (AREA)
  • Liquid Crystal (AREA)

Abstract

Изобретение относится к системам, применяемым для создания трехмерных конструкций, имеющих большое разнообразие форм, цветов, материалов, и может быть использовано, например, в космических технологиях, мебельной промышленности, в области производства игрушек, в области развлечений и, наконец, для разработки исследовательских систем моделирования, главным образом, в генетике, кристаллографии и химии. Система универсальных трехмерных элементов состоит из одиночных трехмерных элементов, которые могут перемещаться, соединяться друг с другом и отсоединяться друг от друга. Элементы содержат интегральные схемы с программным управлением, блокировочные устройства для соединения и электромагниты. Стенки корпусов одиночных элементов имеют магнитную поляризацию в зависимости от определенного программой положения одиночного элемента в реальной формируемой структуре, при этом в активном состоянии одиночного элемента стенки корпуса имеют различную магнитную поляризацию, тогда как в пассивном состоянии - одинаковую магнитную поляризацию. После соединения активного одиночного элемента системы с пассивным одиночным элементом системы информация о виртуальном объекте и информация о последовательном номере движения в реальной структуре соединенного пассивного одиночного элемента системы передается от активного одиночного элемента системы в память интегральной схемы пассивного одиночного элемента системы. Система позволяет использовать одни и те же одиночные элементы в разных целях для создания новых структур. 9 з.п. ф-лы, 7 ил.

Description

Область техники
Предметом изобретения является система универсальных трехмерных элементов, применяемых для создания трехмерных конструкций, имеющих большое разнообразие форм, цветов и материалов, механических, кинематических и функциональных свойств путем использования в них автономных независимых трехмерных элементов.
Согласно изобретению система универсальных трехмерных элементов может применяться путем изготовления функциональных копий с оригинала в различных областях промышленности, например в космических технологиях, мебельной промышленности, отделочной и строительной промышленности, в области производства игрушек, в области развлечений, ортопедии, трехмерной мобильной телефонии, промышленном производстве, в области изготовления роботов для спасательных операций и бытовых роботов и, наконец, для разработки исследовательских систем моделирования, главным образом, в генетике, кристаллографии и химии.
Предшествующий уровень техники
Описание международной патентной заявки PCT/GB95/00460 (WO 1995/23676) раскрывает некоторые материалы по программному управлению, представляющие собой набор шестигранных модулей, называемых мономерами, которые могут перемещаться относительно друг друга посредством компьютерного управления и образовывать структуры и механизмы. Мономеры могут соединяться с другими мономерами и перемещаться относительно друг друга в неразделенном состоянии. В случае повреждения мономера, те мономеры, которые продолжают существовать, устраняют его и заменяют исправным аналогом. Движение мономеров систематически разделяется по направлениям, схемам движения, магистральным линиям и контейнерам для определения индивидуальных путей движения соответствующих мономеров, необходимых при построении единой структуры. Специализированные мономеры снабжены приспособлениями, которые образуют заданные устройства вместе с заданной синтезированной структурой. Мономеры имеют углубления по вертикальным осям симметрии на боковых гранях, взамен этого, внутри мономеров имеются выступающие блокирующие устройства, снабженные подвижными клинами. Близлежащие мономеры могут соединяться и группироваться друг с другом или соединяться таким образом, что их относительные перемещения после соединения возможны благодаря зубчатой рейке и зубчатому колесу [s] или иным способом. Соответствующие мономеры могут располагаться относительно друг друга посредством системы регистров-защелок, управляемой с помощью электромагнита или линейного асинхронного электродвигателя. Внешняя поверхность второго мономера имеет четыре симметричных углубления на каждой грани, расположенные под углом 45 градусов к оси симметрии грани. Эти углубления служат для вставления элементов, которые блокируют взаимное соединение близлежащих мономеров. Внешняя поверхность третьего мономера снабжена фронтальными элементами на всех шести гранях, элементы, имеющие углубления в тавровом профиле, располагаются на осях симметрии элементов. В углублениях располагаются блоки регистров-защелок, которые позволяют выравнивать относительное положение соединенных мономеров. Блоки регистров-защелок управляются с помощью зубчатых передач, установленных вертикально по отношению к внешней поверхности фронтальных элементов мономера. Линейные асинхронные электродвигатели с электромагнитами обеспечивают передвижение мономеров. Линейные асинхронные электродвигатели неподвижных мономеров перемещают мономеры, которые необходимо переместить. Точная координация линейных асинхронных электродвигателей рядов неподвижных мономеров позволяет достигать высокой скорости перемещения вдоль этих рядов. Подача электричества и передача управляющей информации осуществляется от центрального источника через близлежащие мономеры. Документ под названием "Трехмерная самоорганизация и приведение в действие электростатических микроструктур", опубликованный в работе "Протоколы по электронным устройствам", IEEE (Институт инженеров по электротехнике и электронике), том 48, № 8, август 2001, описывает трехмерную самоорганизующуюся приводящуюся в действие электростатическую микроструктуру. Назначение микроструктуры состоит в завершении работ по применению специальных управляющих элементов в оптических методах и особенно в микроскопических отражающих матрицах с большими углами отражения. Первоначальная плоская структура действует внутри одного уровня поликремниевой структуры. Подвижная структура содержит вращающуюся плату, соединенную с двумя основными поддерживающими балками посредством гибких опор. Соединения четырех объединенных исполнительных блоков SDA идентифицируют поддерживающие балки. Посредством пульсирующего электрического сигнала элементы SDA перемещаются и окончательно сгибают первоначально плоский уровень структуры.
Достигнув нужной формы структуры, соответствующие элементы механически блокируются. В дополнение к этому, в публикации "Самоорганизующаяся машина", Протоколы международной конференции по робототехнике и автоматике, Сан-Диего, 8-13 мая 1994 г., Лос Аламитос, IEEE (Институт инженеров по электротехнике и электронике), Пресса Общества вычислительной техники, США, описывается самоорганизующееся устройство, состоящее из одинаковых элементов, образующих двумерное устройство. Каждый элемент изготовлен из трех слоев и не имеет подвижных частей. Верхний и нижний слои имеют одинаковую форму, и каждый содержит три магнита, установленных симметрично, тогда как их северный магнитный полюс находится на нижнем слое.
Средний слой имеет такую же форму, как верхний и нижний, но он повернут под углом 60 градусов относительно их и содержит три электромагнита вместо магнитов. Электромагниты имеют магниты, перемещенные назад или вытесненные в соответствии с поляризацией подаваемого напряжения, и могут вращаться между двумя магнитами, не оказывая какого-либо влияния на магнитное поле. Каждый элемент может быть связан не более, чем с 6 другими элементами. Взаимодействие между соответствующими элементами обеспечивается благодаря инфракрасному излучению оптической системы. Передатчики и приемники установлены в отверстия в середине магнитов и электромагнитов. В процессе взаимодействия составляется протокол асинхронных рядов. 8-ми битный процессор предназначен для определения поляризации электромагнитов в соответствии с полученной информацией. Электричество подается к беспроводной системе, где плата, на которой установлены элементы, используется в качестве зажима источника питания. Плата разделена на зоны и каждая вторая из них подсоединена к напряжению питания, тогда как остальные заземлены. Элементы питаются от четырех контактов выпрямителя. Соответствующие элементы обладают только информацией о локальных соединениях с близлежащими элементами. Форма всей структуры описывается исходя из локальных связей между соответствующими элементами.
Раскрытие изобретения
Согласно изобретению в системе универсальных трехмерных элементов, состоящей из одиночных трехмерных элементов, которые могут перемещаться, соединяться друг с другом и разъединяться, имеющей интегральные схемы с программным управлением, блокировочные устройства для соединения соответствующих одиночных элементов и электромагниты, стенки корпусов одиночных элементов системы обладают магнитной поляризацией в зависимости от запрограммированного положения одиночного элемента в реальной формируемой структуре, в то же время в активном состоянии одиночного элемента стенки корпуса одиночного элемента системы имеют различную магнитную поляризацию, тогда как в пассивном состоянии одиночного элемента стенки корпуса одиночного элемента системы имеют одинаковую магнитную поляризацию, и после соединения активного одиночного элемента системы с пассивным одиночным элементом системы информация о виртуальном объекте и о номерах последовательных движений присоединенного пассивного одиночного элемента системы в реальной структуре передается от активного одиночного элемента системы в память интегральной схемы пассивного одиночного элемента системы в то время. Как координаты стенок корпуса данного одиночного элемента системы указывают на номер движения одиночного элемента системы, наборы этих данных передаются в программу интегральной схемы каждого одиночного элемента системы, поскольку программа в интегральной схеме предназначена для определения активации или деактивации соответствующих стенок одиночных элементов системы и сообщения нужного номера движения одиночному элементу системы для того, чтобы она была последовательно соединена.
Магнитная поляризация стенок корпуса одиночного элемента системы вырабатывается электромагнитами, находящимися внутри одиночного элемента системы. Стенки корпуса одиночного элемента системы соединены друг с другом таким образом, что их взаимное положение может изменяться, при этом стенки корпуса одиночного элемента системы могут соединяться друг с другом при помощи электропластических управляющих устройств, которые управляют взаимным положением стенок в соответствии с возбуждающими сигналами, передаваемыми от интегральной схемы с программным управлением.
Одиночный элемент системы имеет источник напряжения, питающий интегральную схему, блокировочные устройства, электромагниты и электропластические управляющие устройства, при этом источник напряжения может быть возобновляемым благодаря получению энергии от солнечных батарей, причем свет к солнечным батареям поступает по световодам, которые также передают интегральной схеме информацию об объекте и программные инструкции. Реальная структура объекта может быть разрушена до первоначального состояния одиночных элементов системы посредством деактивации всех стенок корпусов одиночных элементов системы и разъединения всех блокировочных устройств в последовательности передачи информации к интегральной схеме.
Согласно изобретению система позволяет использовать одни и те же одиночные элементы системы в разных целях для создания новых структур, сначала разрушая предыдущую структуру. Каждый из одиночных элементов системы обладает набором информации, необходимой для восстановления проектируемой реальной структуры.
Из любого количества одиночных элементов системы можно создать структуры и конструкции, спроектированные по Вашему желанию и имеющие большое многообразие форм, цветов и материалов, обладающих различными механическими, кинематическими, физическими и динамическими свойствами.
Краткое описание чертежей
Система универсальных трехмерных элементов и ее функции подробно рассматриваются на примере ее версии, показанной на чертежах:
на Фиг.1 представлена общая структура активного элемента системы;
на Фиг.2 - общая структура пассивного одиночного элемента системы;
на Фиг.3 - первая фаза соединения одиночного активного элемента системы с пассивным элементом системы;
на Фиг.4 - конечная фаза соединения активного элемента системы с пассивным элементом системы;
на Фиг.5 - общее описание фазы неизменного соединения пяти одиночных элементов системы, образующих реальную структуру;
на Фиг.6 - картина реальной трехмерной структуры, состоящей из пяти одиночных элементов системы;
на Фиг.7 показано упрощенное изображение подвижного контейнера с помещенными в него одиночными элементами системы.
Лучший вариант осуществления изобретения
Одиночный элемент системы универсальных трехмерных элементов состоит из корпуса, изготовленного из стенок 6, связанных друг с другом при помощи элеткропластических управляющих устройств 3, которые могут изменять взаимное положение стенок 6 корпуса одиночного элемента системы универсальных трехмерных элементов посредством натяжения или ослабления. Изменения во взаимном положении стенок 6 возникают в соответствии с возбуждающим сигналом, передаваемым интегральной схемой с программным управлением. Нагревательные приборы 14 отводят избыток тепла, выработанного в процессе изменения взаимного положения стенок 6 корпуса одиночного элемента, и тепла от других устройств системы. Внутри одиночного элемента имеются блокировочные устройства 7 для соединения соответствующих одиночных элементов, катушек электромагнита 8 и источника 5 напряжения постоянного тока, питающего интегральную схему 1, блокировочные устройства 7, катушки 8 электромагнита и электропластические управляющие устройства 3.
Источник 5 напряжения является возобновляемым благодаря получению энергии от солнечных батарей 4. Свет к солнечным батареям поступает по световодам 2, которые также передают интегральной схеме 1 информацию об объекте 10 и программные инструкции 12.
В пассивном состоянии одиночный элемент системы универсальных трехмерных элементов имеет одинаково (отрицательно или положительно) поляризованные стенки 6 корпуса. В активном состоянии соответствующие стенки 6 корпуса одиночного элемента могут иметь разные магнитные поля. Поляризация соответствующих стенок 6 корпуса одиночного элемента системы зависит от положения данного элемента системы в реальной создаваемой структуре 9 в соответствии с виртуальной структурой объекта 10, запрограммированной в интегральной схеме 1. Набор пассивных одиночных элементов с одинаковыми магнитными полями, помещенных в контейнер 11 (Фиг.7), подчиняется принципам равномерного прямолинейного контролируемого движения. Как только активный одиночный элемент системы появляется в наборе одиночных пассивных элементов системы, ближайший пассивный элемент системы соединяется с активным элементом системы. Первый активный одиночный элемент системы имеет первый номер 13 в виртуальной структуре объекта 10, обозначенный 1, и соответствует такому же номеру в реальной создаваемой структуре 9 (Фиг.6).
После соединения активного одиночного элемента системы с пассивным одиночным элементом системы информация о виртуальном объекте 10 и информация о последовательном номере 13 движения в реальной структуре 9 соединенного пассивного одиночного элемента системы передается от активного одиночного элемента системы в память интегральной схемы 1 пассивного одиночного элемента системы, в то время как координаты стенок 6 корпуса данного одиночного элемента системы определяют номера 13 движения одиночных элементов системы, наборы этих данных передаются в программу 12 интегральной схемы 1 каждого одиночного элемента системы. В соответствии с передаваемыми о виртуальном объекте 10 данными программа 12 в интегральной схеме 1 должна определить: активировать или деактивировать соответствующие стенки 6 простых элементов системы и для обеспечения последовательного связывания указать простому элементу системы нужный номер 13 движения. Когда последовательный элемент системы соединен с предыдущим одиночным элементом системы, соединение блокируется с помощью блокировочных устройств 7 любого типа. Процедура связывания и активации соответствующих одиночных элементов системы и формирования реальной структуры объекта 9 сохраняет порядок до тех пор, пока не будут соединены все одиночные элементы системы в рамках всех номеров движения 13, доступных в виртуальном объекте 10 интегральной схемы 1. По завершении всех соединений между одиночными элементами системы образуется реальная структура 9, соответствующая виртуальному объекту 10. Реальная структура 9 объекта может быть разрушена до первоначального состояния одиночных элементов системы, т.е. может быть отсоединен первоначальный набор пассивных элементов системы. Это происходит посредством деактивации всех стенок 6 корпусов одиночных элементов системы и разъединения всех блокировочных устройств 7 в последовательности передаваемой соответствующей информации ко всем интегральным схемам 1 реальной структуры 9. После такой деактивации все одиночные элементы системы универсальных трехмерных элементов могут быть повторно использованы для создания новой трехмерной структуры для любой желаемой цели.

Claims (10)

1. Система универсальных трехмерных элементов, состоящая из одиночных трехмерных элементов, которые могут перемещаться, соединяться друг с другом и отсоединяться друг от друга, содержащих интегральные схемы с программным управлением, блокировочные устройства для соединения соответствующих одиночных элементов и электромагниты, характеризуется тем, что стенки (6) корпусов одиночных элементов системы имеют магнитную поляризацию в зависимости от определенного программой положения одиночного элемента в реальной формируемой структуре (9), и в то же время, в активном состоянии одиночного элемента стенки (6) корпуса одиночного элемента системы имеют различную магнитную поляризацию, тогда как в пассивном состоянии одиночного элемента стенки (6) корпуса одиночного элемента системы имеют одинаковую магнитную поляризацию, и после соединения активного одиночного элемента системы с пассивным одиночным элементом системы, информация о виртуальном объекте (10) и информация о последовательном номере движения (13) в реальной структуре (9) соединенного пассивного одиночного элемента системы, передается от активного одиночного элемента системы в память интегральной схемы 1 пассивного одиночного элемента системы, в то время, как координаты стенок (6) корпуса данного одиночного элемента указывают на номера движения (13) одиночных элементов системы, наборы данных о которых передаются в программу (12) интегральной схемы (1) каждого одиночного элемента системы, а программа (12) интегральной схемы (1) должна определить, активировать или деактивировать соответствующие стенки (6) одиночных элементов системы и сообщить нужный номер движения (13) одиночному элементу системы для последовательного соединения.
2. Система универсальных трехмерных элементов по п.1, отличающаяся тем, что магнитная поляризация стенок (6) корпуса одиночного элемента вырабатывается электромагнитами (8), помещенными внутри одиночного элемента системы.
3. Система универсальных трехмерных элементов по п.1, отличающаяся тем, что стенки (6) корпуса одиночного элемента системы соединяются друг с другом таким образом, что их взаимное положение может изменяться.
4. Система универсальных трехмерных элементов по п.3, отличающаяся тем, что стенки (6) корпуса одиночного элемента системы соединяются друг с другом с помощью электропластического управляющего устройства (3), который управляет взаимным положением стенок (6) в соответствии с возбуждающими сигналами, передаваемыми от интегральной схемы с программным управлением (1).
5. Система универсальных трехмерных элементов по п.1, отличающаяся тем, что одиночный элемент системы имеет источник напряжения (5), питающий интегральную схему (1), блокировочные устройства (7), электромагниты (8) и электропластическое управляющее устройство (3).
6. Система универсальных трехмерных элементов по п.5, отличающаяся тем, что источник напряжения (5) является возобновляемым благодаря получению энергии от солнечных батарей (4).
7. Система универсальных трехмерных элементов по п.6, отличающаяся тем, что свет к солнечным батареям (4) поступает по световодам (2).
8. Система универсальных трехмерных элементов по пп.1 и 7, отличающаяся тем, что световоды (2) передают к интегральной схеме (1) информацию об объекте (10) и программные инструкции (12).
9. Система универсальных трехмерных элементов по п.3, отличающаяся тем, что номерам движения (13) сообщаются координаты стенок (6) одиночных элементов системы, тогда как наборы этих данных передаются программе (12) интегральной схемы (1) каждого одиночного элемента системы.
10. Система универсальных трехмерных элементов по п.1, отличающаяся тем, что фактическая структура (9) объекта может быть разделена до первоначального состояния одиночных элементов системы посредством деактивации стенок корпуса (6) одиночных элементов системы и разъединения блокировочных устройств (7) в последовательности переданной к интегральной схеме (1) соответствующей информации.
RU2005126407/12A 2003-01-15 2003-11-12 Система универсальных трехмерных элементов RU2326423C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PLP.358286 2003-01-15
PL35828603A PL358286A1 (en) 2002-01-18 2003-01-15 System of three-dimensional multiple-function elements

Publications (2)

Publication Number Publication Date
RU2005126407A RU2005126407A (ru) 2006-03-20
RU2326423C2 true RU2326423C2 (ru) 2008-06-10

Family

ID=32710010

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005126407/12A RU2326423C2 (ru) 2003-01-15 2003-11-12 Система универсальных трехмерных элементов

Country Status (8)

Country Link
US (1) US7787990B2 (ru)
EP (1) EP1587594B1 (ru)
JP (1) JP4638740B2 (ru)
AT (1) ATE541625T1 (ru)
AU (1) AU2003287107A1 (ru)
CA (1) CA2512778A1 (ru)
RU (1) RU2326423C2 (ru)
WO (1) WO2004062759A1 (ru)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080244407A1 (en) * 2005-08-29 2008-10-02 Eklund Don Abstractions in disc authoring
US20080243303A1 (en) * 2006-11-13 2008-10-02 Solomon Research Llc System and methods for collective nanorobotics for electronics applications
DE102007007881A1 (de) * 2007-02-14 2008-08-21 Adm Promotions Gmbh Spielzeug mit nicht-permanenten Magneten
US9155961B2 (en) 2009-05-28 2015-10-13 Anki, Inc. Mobile agents for manipulating, moving, and/or reorienting components
DE102010062217B4 (de) 2010-01-22 2018-11-22 Kinematics Gmbh Baukastensystem mit bewegungsfähigen Modulen
US9004200B2 (en) 2011-09-09 2015-04-14 Pinhas Ben-Tzvi Mobile robot with hybrid traction and mobility mechanism
CN103083924B (zh) * 2013-01-29 2014-10-29 杭州速泽电子科技有限公司 磁吸附式电子积木系统
US20140300211A1 (en) * 2013-03-06 2014-10-09 Massachusetts Institute Of Technology Discrete Motion System
US10093488B2 (en) * 2013-03-15 2018-10-09 Rnd By Us B.V. Shape-shifting a configuration of reusable elements
US9956494B2 (en) 2013-03-15 2018-05-01 Rnd By Us B.V. Element comprising sensors for detecting grab motion or grab release motion for actuating inter-element holding or releasing
US10105592B2 (en) 2013-03-15 2018-10-23 Rnd By Us B.V. Shape-shifting a configuration of reusable elements
NL2013466B1 (en) * 2014-09-12 2016-09-28 Rnd By Us B V Shape-Shifting a Configuration of Reusable Elements.
CN103942937B (zh) * 2014-01-07 2016-10-19 东南大学 一种模块化自重构机器人的通信装置及其通信方法
US9996369B2 (en) 2015-01-05 2018-06-12 Anki, Inc. Adaptive data analytics service
EP3297739A1 (en) 2015-05-22 2018-03-28 RnD by Us B.V. Holding device
EP3362161A1 (en) * 2015-10-12 2018-08-22 RnD by Us B.V. Holding device
US10293482B2 (en) * 2015-11-12 2019-05-21 ITI Electromagnetic Products Inc. Self-assembling robotic construction system and associated methods
US20170282090A1 (en) * 2016-03-30 2017-10-05 Fujitsu Limited Construction toy with programmable connectors
CN107116544B (zh) * 2017-05-11 2021-07-06 朱利 集连接和运动功能的电机及其应用的模块化机器人
GB2573164B (en) * 2018-04-27 2023-01-04 Sony Interactive Entertainment Inc Apparatus control system and method
CN109702726B (zh) * 2019-01-29 2021-01-19 西安交通大学 一种模块化空间多稳态变构型机器人
CN109702725B (zh) * 2019-01-29 2021-01-19 西安交通大学 一种多边形模块化可变形链式机器人
WO2020214188A1 (en) * 2019-04-19 2020-10-22 Hewlett-Packard Development Company, L.P. Interlockable devices
PL433323A1 (pl) 2020-03-24 2021-09-27 Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Samoorganizująca się konstrukcja o budowie modułowej
CN111546340B (zh) * 2020-05-11 2020-11-27 中国人民解放军军事科学院国防科技创新研究院 电磁驱动的多稳态软体机械臂系统
FR3112981B1 (fr) * 2020-07-30 2022-11-11 Psa Automobiles Sa Robot configurable par déformation de sous-robots autonomes et synchronisés
US20220233969A1 (en) * 2021-01-22 2022-07-28 Retrospective Goods, LLC Magnetic construction tile set
US20220409996A1 (en) * 2021-06-24 2022-12-29 Microsoft Technology Licensing, Llc Mobile Haptic Robots
CN116442204B (zh) * 2023-05-22 2024-02-23 浣江实验室 一种体素型机器人及包含其的系统

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH065482B2 (ja) * 1983-06-22 1994-01-19 株式会社日立製作所 ロボット装置
US5210821A (en) * 1988-03-28 1993-05-11 Nissan Motor Company Control for a group of robots
US5361186A (en) * 1990-09-20 1994-11-01 Agency Of Industrial Science And Technology Self reconfigurable cellular robotic system
EP0547421B1 (de) * 1991-12-14 1996-08-21 Uwe Kochanneck Modularer Roboter
JPH081575B2 (ja) * 1993-07-26 1996-01-10 工業技術院長 機器構成用多機能モジュール
GB2287045B (en) 1994-03-04 1997-05-14 Joseph Michael Programmable materials
JPH11109847A (ja) * 1997-10-01 1999-04-23 Sony Corp セル及び多細胞ロボット
US6233502B1 (en) * 1998-10-16 2001-05-15 Xerox Corporation Fault tolerant connection system for transiently connectable modular elements
NO985263D0 (no) * 1998-11-11 1998-11-11 Jarle Breivik System som reversibelt kan reprodusere seg selv
US6487454B1 (en) * 1999-03-01 2002-11-26 Adrian Tymes Programmable-shape array
US6510359B1 (en) * 2000-05-11 2003-01-21 Zyvex Corporation Method and system for self-replicating manufacturing stations
US6477444B1 (en) * 2000-07-07 2002-11-05 Fuji Xerox Co., Ltd. Method for the automated design of decentralized controllers for modular self-reconfigurable robots
US20020115373A1 (en) * 2001-01-26 2002-08-22 Leon Lazerman Modular structure
US6459957B1 (en) * 2001-04-17 2002-10-01 Fuji Xerox Co., Ltd. Programmable smart membranes and methods therefor
US6636781B1 (en) * 2001-05-22 2003-10-21 University Of Southern California Distributed control and coordination of autonomous agents in a dynamic, reconfigurable system
US6725128B2 (en) * 2001-07-02 2004-04-20 Xerox Corporation Self-reconfigurable robot
US6454624B1 (en) * 2001-08-24 2002-09-24 Xerox Corporation Robotic toy with posable joints
US6842246B2 (en) * 2001-12-10 2005-01-11 Xerox Corporation Six degree of freedom position ranging
DE20202183U1 (de) * 2002-02-01 2002-06-06 Kretzschmar, Michael, Dr., 22453 Hamburg Baukasten

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
US 6157872 A, Dec.5, 2000. US 5452199 A, Sep.19, 1995. US 4608525 A, Aug.26, 1986. *

Also Published As

Publication number Publication date
JP4638740B2 (ja) 2011-02-23
JP2006512964A (ja) 2006-04-20
CA2512778A1 (en) 2004-07-29
EP1587594A1 (en) 2005-10-26
AU2003287107A1 (en) 2004-08-10
US20060155388A1 (en) 2006-07-13
RU2005126407A (ru) 2006-03-20
WO2004062759A1 (en) 2004-07-29
ATE541625T1 (de) 2012-02-15
US7787990B2 (en) 2010-08-31
EP1587594B1 (en) 2012-01-18

Similar Documents

Publication Publication Date Title
RU2326423C2 (ru) Система универсальных трехмерных элементов
Murata et al. A 3-D self-reconfigurable structure
US6233502B1 (en) Fault tolerant connection system for transiently connectable modular elements
US6243622B1 (en) Touchable user interface using self movable robotic modules
Kamimura et al. Self-reconfigurable modular robot-experiments on reconfiguration and locomotion
An Em-cube: cube-shaped, self-reconfigurable robots sliding on structure surfaces
Yoshida et al. Micro self-reconfigurable robotic system using shape memory alloy
Bohringer et al. Part orientation with one or two stable equilibria using programmable force fields
WO2014165313A1 (en) Modular angular-momentum driven magnetically connected robots
US6233503B1 (en) Space filling robotic polyhedra modules
US10065322B2 (en) Actively controlled microarchitectures with programmable bulk material properties
CN112991890A (zh) 平移式磁悬浮系统及其浮子平移控制方法
US6150738A (en) Constant current power supply system for connectable modular elements
Sadjadi et al. Design and implementation of HexBot: A modular self-reconfigurable robotic system
Yang et al. A unit-compressible modular robotic system and its self-configuration strategy using meta-module
Rossi et al. Geometry as assembly
Yoshida et al. Self-reconfigurable modular robots-hardware and software development in AIST
Khodambashi et al. Miniaturized untethered soft robots using hydrogel-based soft voxel actuators
Eckenstein et al. Modular reconfigurable robotic systems: Lattice automata
Leal-Naranjo et al. Towards a modular robotic platform for construction and manufacturing
CN108336884B (zh) 位移装置
Han et al. Roblets: Robotic Tablets That Self-Assemble and Self-Fold into a Robot
Zhang et al. A substructure based motion planning method for a modular self-reconfigurable robot
CN107612232A (zh) 一种电磁数字致动器阵列的微型平面马达装置及其驱动方法
US11584637B2 (en) Hierarchical assembly of self-replicating spacecraft using distributed mechanisms and actuation in digital materials

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20081113

NF4A Reinstatement of patent

Effective date: 20100927

MM4A The patent is invalid due to non-payment of fees

Effective date: 20171113