RU2325429C2 - Селективное гидрирование ацетиленов и диенов в углеводородном потоке - Google Patents

Селективное гидрирование ацетиленов и диенов в углеводородном потоке Download PDF

Info

Publication number
RU2325429C2
RU2325429C2 RU2005131579/04A RU2005131579A RU2325429C2 RU 2325429 C2 RU2325429 C2 RU 2325429C2 RU 2005131579/04 A RU2005131579/04 A RU 2005131579/04A RU 2005131579 A RU2005131579 A RU 2005131579A RU 2325429 C2 RU2325429 C2 RU 2325429C2
Authority
RU
Russia
Prior art keywords
reactor
specified
boiling point
liquid
acetylenes
Prior art date
Application number
RU2005131579/04A
Other languages
English (en)
Other versions
RU2005131579A (ru
Inventor
Абрахам П. ГЕЛБЕЙН (US)
Абрахам П. ГЕЛБЕЙН
Лоренс А. мл. СМИТ (US)
Лоренс А. мл. СМИТ
Original Assignee
Каталитик Дистиллейшн Текнолоджиз
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Каталитик Дистиллейшн Текнолоджиз filed Critical Каталитик Дистиллейшн Текнолоджиз
Publication of RU2005131579A publication Critical patent/RU2005131579A/ru
Application granted granted Critical
Publication of RU2325429C2 publication Critical patent/RU2325429C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/08Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of carbon-to-carbon triple bonds
    • C07C5/09Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of carbon-to-carbon triple bonds to carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/03Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of non-aromatic carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/03Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of non-aromatic carbon-to-carbon double bonds
    • C07C5/05Partial hydrogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/148Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound
    • C07C7/163Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound by hydrogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/148Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound
    • C07C7/163Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound by hydrogenation
    • C07C7/167Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound by hydrogenation for removal of compounds containing a triple carbon-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/44Palladium

Abstract

Изобретение относится к способу гидрирования ацетиленов и диенов в потоке (варианты), содержащем водород, метан, С26 олефины и парафины, С26 ацетилены и диены, бензол, толуол, ксилолы и другие С6+ компоненты, и включает пропускание указанного потока через катализатор гидрирования, содержащийся в работающем при температуре кипения реакторе с нисходящим потоком, где реактор работает при температуре кипения смеси в реакторе и теплота реакции поглощается кипящей жидкостью и где часть ацетиленов и диенов превращают в соответствующие олефины и парафины с тем же числом атомов углерода; разделение жидкости и пара в потоке, выходящем из указанного работающего при температуре кипения реактора с нисходящим потоком, и рециклирование части жидкости в верхнюю часть указанного работающего при температуре кипения реактора с нисходящим потоком; подачу пара в указанном выходящем потоке в колонну для разделения С56, где C5 и более легкое вещество отбирают в виде верхнего погона, а С6 и более тяжелое вещество отбирают в виде нижнего погона, а также отбирают из указанной колонны для разделения С56 боковой погон и подают в верхнюю часть указанного работающего при температуре кипения реактора с нисходящим потоком. Вариант данного способа предусматривает также наличие следующих стадий: поддержания количества рециркулирующей жидкости таким, чтобы обеспечить полное смачивание катализатора во всех положениях внутри указанного работающего при температуре кипения реактора с нисходящим потоком; регулирования стационарного состава жидкости, протекающей в указанном работающем при температуре кипения реакторе с нисходящим потоком, с помощью выбора расположения места отбора указанного бокового погона по высоте указанной колонны для разделения С56. Приемение данного способа позволяет эффективно контролировать температуру внутри слоя катализатора. 2 н. и 4 з.п. ф-лы, 2 ил., 1 табл.

Description

Область, к которой относится изобретение
Настоящее изобретение относится к способу селективного гидрирования ацетиленов и диенов в углеводородном потоке. Более конкретно, изобретение относится к селективному гидрированию ацетиленов и диенов в углеводородном потоке, содержащем водород, олефины и меньшие количества ацетиленов и диенов, с использованием работающего при температуре кипения реактора с нисходящим потоком.
Уровень техники
Поток парообразного продукта из системы охлаждения углеводородного потока крекинг-установки в типичном случае состоит из водорода, метана, С26 олефинов и парафинов, С26 ацетиленов и диенов, бензола, толуола, ксилола и других С6+ компонентов. Отделение и удаление продуктов с соответствующим числом атомов углерода обычно осуществляют в системе последовательной дистилляции после первого отделения водорода от метана в системе холодной камеры высокого давления. Конструкция системы дистилляции осложняется тем обстоятельством, что различия в относительной летучести олефинов, ацетиленов и диенов с одинаковым числом атомов углерода являются незначительными, затрудняя получение чистых олефиновых продуктов. Один способ решения данной проблемы заключается в разделении на первой стадии фракций с одинаковым числом атомов углерода в каждой и затем в селективном гидрировании каждой фракции для конвертирования ацетилена и/или диена в соответствующий олефин или парафин. Данный так называемый ″концевой″ подход требует отдельной системы гидроочистки для каждой фракции с одинаковым углеродным числом, а также добавления необходимого количества водорода к каждой системе. Альтернативный способ состоит в гидроочистке потока поступающего вещества перед разделением с использованием содержащегося водорода в качестве источника водорода для конверсии. Данный так называемый ″фронтальный″ подход обладает преимуществом, заключающимся в удалении значительной части водорода из потока вещества, поступающего в холодную камеру, тем самым уменьшая размер и требования к охлаждению холодной камеры.
КРАТКОЕ ИЗЛОЖЕНИЕ ИЗОБРЕТЕНИЯ
Настоящее изобретение предлагает ″фронтальную″ систему гидроочистки, которая позволяет эффективно контролировать температуру внутри слоя катализатора, который гидрирует ацетилены и диены в потоке, содержащем водород, метан, С26 олефины и парафины, С26 ацетилены и диены, бензол, толуол, ксилолы и другие С6+ компоненты. Изобретение использует работающий при температуре кипения реактор с нисходящим потоком, в котором теплота реакции поглощается жидкостью в реакторе с получением пара. Помимо сырья для реактора имеется рециркулирующий поток, который подают с расходом, достаточным для того, чтобы обеспечить смачивание частиц катализатора. Третий поток, который отбирают из нижней части дистилляционной колонны, подают для того, чтобы обеспечить пополнение массы, в соответствии с массой, испаряемой в реакторе. Состав данного третьего потока контролирует стационарный состав жидкости, протекающей через реактор. Состав данного потока можно регулировать, выбирая место дистилляционной колонны с нисходящим потоком, в котором отбирается поток. Чем ниже место отбора погона в колонне, тем выше температура кипения компонентов в третьем потоке. Стационарный состав жидкости, протекающей через реактор, вместе с давлением определяют температурный профиль реактора.
В ″работающем при температуре кипения реакторе″ всегда сохраняется жидкая фаза, даже если реакционные компоненты испаряются экзотермическим теплом реакции. В любой реакции, в которой вероятно, что реакционный поток будет испаряться, для сохранения жидкой фазы можно добавить инертный более высококипящий компонент.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Фиг.1 представляет собой блок-схему в схематичной форме одного из вариантов осуществления изобретения.
Фиг.2 является графическим представлением температурного профиля в типичном реакторе по настоящему изобретению.
ПОДРОБНОЕ ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНОГО ВАРИАНТА ОСУЩЕСТВЛЕНИЯ
Катализаторы, которые применимы для селективного гидрирования ацетиленов и диенов, включают оксид палладия, нанесенный на оксид алюминия. Один из таких катализаторов содержит 0,34 мас.% палладия, нанесенного на сферы с размером 1/8 дюйма, которые называются G68С и поставляются компанией
Figure 00000002
(ранее United Catalyst Inc.). Другой катализатор включает 0,5 мас.% палладия, нанесенного на сферы с размером 8-12 меш, которые называются E144SDU и поставляются компанией Calcicat, Catalyst and Performance Chemicals Division, Mallinckrodt, Inc. Для достижения лучших результатов катализатор может быть в виде структурированной насадки, как описывается в находящемся в совместном владении патенте США № 5730843. Однако катализатор можно просто загружать в реактор.
Со ссылкой на фиг.1 селективное гидрирование ацетиленов и диолефинов в углеводородном потоке, содержащем значительно большие количества (по молям) водорода и олефинов по сравнению с ацетиленами и диолефинами, осуществляют в работающем при температуре кипения реакторе с нисходящим потоком. Работающий при температуре кипения реактор с нисходящим потоком, показанный в виде колонны 10, представляет собой вертикально расположенный реактор, содержащий гранулированный катализатор в виде структурированной насадки 12. Поток газообразного сырья подают посредством поточной линии 101 в верхнюю часть колонны 10. Кроме того, в верхнюю часть реактора по поточной линии 104 подают жидкость, которая представляет собой смесь рециркулирующего потока в поточной линии 102 и потока в поточной линии 103, полученного из дистилляционной колонны 40, как более конкретно описывается ниже. Потоки газа и жидкости одновременно протекают вниз через колонну, причем режим потока является постоянным по газу. Одновременный поток газа и жидкости исключает возможность неконтролируемой реакции.
Реактор 10 работает адиабатически, так что теплота реакции компенсируется предпочтительным испарением более легких компонентов жидкой фазы. Выходящий поток из реактора по поточной линии 105 подают в сепаратор паровой и жидкой фазы 20, где разделяют пар и жидкость. Теплосодержание пара в поточной линии 106 включает теплоту реакции, генерируемой в реакторе 10, в то время как массовый расход равен объединенным потокам в поточных линиях 101 и 103, исключая часть потока 107, описанную ниже. Жидкость по поточной линии 102 вновь подают в верхнюю часть реактора 10. Расход в поточной линии 102 является переменной величиной, и ее поддерживают, по меньшей мере, достаточной для того, чтобы обеспечить полное смачивание частиц катализатора во всех положениях в реакторе 10. Поток в поточной линии 103 обеспечивает пополнение массы, соответствующее массе, испаряемой в реакторе, которая уходит из системы реактора в виде части потока по поточной линии 106. Состав потока в поточной линии 103 контролирует стационарный состав жидкости, протекающей через реактор 10. Это важный рабочий параметр, который в сочетании с давлением в реакторе определяет температурный профиль реактора. Часть потока отбирают поточной линией 107 для контроля запаса жидкости в сосуде сепаратора паровой и жидкой фазы 20.
Колонна 40 представляет собой колонну для разделения С56. Сырье для колонны представляет собой пар из сепаратора 20, поступающий по поточной линии 106. Его нагревают посредством косвенного теплообмена в теплообменнике 30 рециркулирующим потоком в поточной линии 103. Колонна 40 предназначена для получения фракции парового дистиллята посредством поточной линии 108, который по существу не содержит С6+ компонентов, и жидкого продукта нижнего погона в поточной линии 109, который по существу не содержит С5- и более легких компонентов. Верхние погоны отбирают посредством линии 130 и пропускают через парциальный конденсатор 50, где конденсируются более тяжелые компоненты. Верхние погоны собирают в сборнике-сепараторе 60, из которого жидкие углеводороды отводят посредством поточной линии 120 и возвращают в колонну 40 в виде флегмы. Воду удаляют посредством поточной линии 110. Как указано выше, продукт дистиллята удаляют посредством поточной линии 108.
Положение отбора или тарелка колонны отбора рециркулирующего потока в поточную линию 103 является рабочей переменной. Сдвиг положения отбора дополнительно вниз колонны увеличивает содержание более высококипящих компонентов в потоке. Минимального рабочего давления для реактора 10 при фиксированном температурном профиле достигают, когда погон отбирают из нижней части колонны 40.
ПРИМЕР
Сырье для системы, изображенной на фиг.1, представляет собой парообразный продукт из охлаждающей башни производящей олефины паровой крекинг-установки после сжатия и удаления кислотных газов (СО2 и H2S). В реактор загружают примерно 14000 фут3 структурированной насадки, загруженной катализатором гидрирования. Диаметр слоя составляет примерно 15 футов, а длина 70 футов. Рабочие условия реактора: давление в верхней/нижней части реактора 250/240 фунт/кв. дюйм абс.; расход рециркулирующей жидкости (потока в поточной линии 102) 4000000 фунт/час; часть потока в поточной линии 107 2243 фунт/час. Дистилляционная колонна 40 представляет собой колонну с конфигурацией: верхняя секция 20 тарелок (теоретических), диаметр 16,4 футов, нижняя секция 20 тарелок (теоретических), диаметр 10,5 футов. Расчетные условия для дистилляционной колонны 40: флегмовое число 0,18; температура флегмы 136°F, давление конденсатора составляет 238 фунт/кв. дюйм абс.; падение давления в колонне равно 2 фунт/кв. дюйм; боковой погон из нижней части; температура декантатора 84°F. Результаты по тепловому и материальному балансу даны в таблице 1. Температурный профиль реактора дается на фиг.2.
Таблица 1
ТЕПЛОВОЙ И МАТЕРИАЛЬНЫЙ БАЛАНС
101 102 103 104 105 106 107 108 109 110
Температура F 132 221,4 241,4 222,8 221,4 221,4 221,4 83,7 405,9 83,7
Давление фунт/кв.дюйм 250 250 250 250 240 240 240 238 240 238
Паровая фракция 1 0 0 0 0,379 1 0 27809,5 0 0
Мольный расход
фунт моль/час
29994,6 52453,1 3537,9 55991,0 84546,9 32064,4 29,4 757208 578,6 167,8
Массовый расход
фунт/час
808116,0 4000000 290000 4290000 5098120 1095870 2243 615020 47885 3022
Объемный расход
фут3/час
718016,6 94069 6677 100748 995976 901853 53 -115,6 1323 49
Энтальпия MMBtu/час
(MMBtu-миллион британских тепловых единиц)
-37,8 -34,5 -1,4 -35,9 -73,7 -39,2 0,0 6,0 -20,6
Массовый расход
фунт/час
6360
Н2 9260,1 119 0 119 6479 6360 0 1541 0 0
CO 1540,9 58 0 58 1599 1541 0 0 0
Метан 118468,5 9286 0 9286 127755 118463 5 118468 0 0
Ацетилен 4280,8 203 0 203 978 775 0 775 0 00
Этилен 242593,7 49952 0 49952 293900 243920 28 243948 0 0
Этан 52743,4 14705 0 14705 70045 55332 8 55340 0 0
Метилацетилен 5139,0 666 0 666 1410 744 0 744 0 0
Пропадиен 5197,5 2583 0 2583 5743 3158 1 3160 0 0
Пропилен 141595,4 87281 0 87281 233196 145866 49 145915 0 0
Пропан 4006,4 3996 0 3996 10556 6558 2 6560 0 0
Бутадиен 40018,2 6172 0 6172 10557 4382 3 4385 0 0
Трет-бутен 15317,0 23503 0 23503 38820 15304 13 15317 0 0
1-Бутен 15672,9 69511 0 69511 121641 52091 39 52130 0 0
Цис-2-бутен 15148,4 25180 1 25181 40330 15136 14 15149 0 0
Изобутен 15705,2 20525 0 20525 36230 15694 12 15705 0 0
Изобутан 6571,8 7591 0 7591 14163 6568 4 6572 0 0
Бутан 6368,8 10212 0 10212 17104 6886 6 6892 0 0
1-Пентен 37318,5 140912 2356 143268 190449 49457 79 46978 203 0
Гексан 10179,2 471367 64831 536198 546377 74746 264 1669 8509 0
Октан 1895,8 230387 6998 237386 239281 8764 129 0 1895 0
Бензол 27486,7 1826330 167100 1993430 2020920 193560 1024 227 27258 0
Толуол 7304,7 782027 29107 811133 818437 35971 439 0 7303 0
м-Ксилол 54,9 9352 157 9509 9565 207 5 0 55 0
о-Ксилол 41,5 7618 112 7729 7771 149 4 0 42 0
п-Ксилол 58,9 9860 170 10029 10089 223 6 0 59 0
Этилбензол 72,5 11603 215 11818 11892 282 7 0 0 73
Стирол 34,0 6293 90 6383 6417 121 4 0 34 0
Вода 4266,7 11299 7 11306 15573 4268 6 1244 1 3022
ПД 8127,7 715 26 742 966 250 0 222 3 0
Изопрен 7499,2 622 29 651 808 185 0 154 3 0
Гексадиен 4147,5 85000 11044 96044 98172 13124 48 657 1472 0
Гексен 0,0 56107 7337 63444 65512 9374 31 1130 939 0
Пентан 0,0 18965 419 19384 25388 6412 11 5967 37 0

Claims (6)

1. Способ гидрирования ацетиленов и диенов в потоке, содержащем водород, метан, C2-C6, олефины и парафины, С26 ацетилены и диены, бензол, толуол, ксилолы и другие С6+ компоненты, включающий пропускание указанного потока через катализатор гидрирования, содержащийся в работающем при температуре кипения реакторе с нисходящим потоком, где реактор работает при температуре кипения смеси в реакторе и теплота реакции поглощается кипящей жидкостью и где часть ацетиленов и диенов превращают в соответствующие олефины и парафины с тем же числом атомов углерода; разделение жидкости и пара в потоке, выходящем из указанного работающего при температуре кипения реактора с нисходящим потоком, и рециклирование части жидкости в верхнюю часть указанного работающего при температуре кипения реактора с нисходящим потоком; подачу пара в указанном выходящем потоке в колонну для разделения C5/C6, где C5 и более легкое вещество отбирают в виде верхнего погона, а С6 и более тяжелое вещество отбирают в виде нижнего погона, а также отбирают из указанной колонны для разделения С56 боковой погон и подают в верхнюю часть указанного работающего при температуре кипения реактора с нисходящим потоком.
2. Способ по п.1, где количество рециркулирующей жидкости поддерживают достаточным для того, чтобы полностью смочить катализатор во всех положениях внутри указанного работающего при температуре кипения реактора с нисходящим потоком.
3. Способ по п.1, где стационарный состав жидкости, протекающей в указанном работающем при температуре кипения реакторе с нисходящим потоком, регулируют за счет расположения места отбора указанного бокового погона по высоте указанной колонны для разделения C56.
4. Способ по п.3, где указанный боковой погон отбирают из нижней части указанной колонны для разделения C5/C6.
5. Способ гидрирования ацетиленов и диенов в потоке, содержащем водород, метан, С26 олефины и парафины, С56 ацетилены и диены, бензол, толуол, ксилолы и другие С6+ компоненты, включающий стадии
(a) пропускания указанного потока через катализатор гидрирования, содержащийся в работающем при температуре кипения реакторе с нисходящим потоком, где реактор работает при температуре кипения смеси в реакторе и теплота реакции поглощается кипящей жидкостью и где часть ацетиленов и диенов превращают в соответствующие олефины и парафины с тем же числом атомов углерода;
(b) разделения жидкости и пара, содержащихся в выходящем потоке из указанного работающего при температуре кипения реактора с нисходящим потоком;
(c) возвращения части отделенной жидкости в верхнюю часть указанного работающего при температуре кипения реактора с нисходящим потоком;
(d) поддержания количества рециркулирующей жидкости таким, чтобы обеспечить полное смачивание катализатора во всех положениях внутри указанного работающего при температуре кипения реактора с нисходящим потоком;
(e) подачи пара из указанного выходящего потока в колонну для разделения С56, где C5 и более легкие вещества отбирают в виде верхнего погона, а С6 и более тяжелые вещества отбирают в виде нижнего погона;
(f) отбора бокового погона из указанной колонны для разделения С56 и подачи указанного бокового погона в верхнюю часть указанного работающего при температуре кипения реактора с нисходящим потоком; и
(g) регулирования стационарного состава жидкости, протекающей в указанном работающем при температуре кипения реакторе с нисходящим потоком, с помощью выбора расположения места отбора указанного бокового погона по высоте указанной колонны для разделения C5/C6.
6. Способ по п.5, где указанный боковой погон отбирают из нижней части указанной колонны для разделения С56.
RU2005131579/04A 2003-03-12 2004-03-04 Селективное гидрирование ацетиленов и диенов в углеводородном потоке RU2325429C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/385,677 US6867338B2 (en) 2002-03-15 2003-03-12 Selective hydrogenation of acetylenes and dienes in a hydrocarbon stream
US10/385,677 2003-03-12

Publications (2)

Publication Number Publication Date
RU2005131579A RU2005131579A (ru) 2006-02-10
RU2325429C2 true RU2325429C2 (ru) 2008-05-27

Family

ID=32987306

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005131579/04A RU2325429C2 (ru) 2003-03-12 2004-03-04 Селективное гидрирование ацетиленов и диенов в углеводородном потоке

Country Status (14)

Country Link
US (2) US6867338B2 (ru)
EP (1) EP1618082A2 (ru)
JP (1) JP2006522120A (ru)
KR (1) KR20050106112A (ru)
CN (1) CN100371305C (ru)
AR (1) AR043554A1 (ru)
AU (1) AU2004219723A1 (ru)
BR (1) BRPI0400329A (ru)
CA (1) CA2518260A1 (ru)
EG (1) EG23539A (ru)
MX (1) MXPA05009270A (ru)
PL (1) PL378808A1 (ru)
RU (1) RU2325429C2 (ru)
WO (1) WO2004081149A2 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2627657C2 (ru) * 2012-07-12 2017-08-09 Ламмус Текнолоджи Инк. Более энергоэффективный способ гидрогенизации с5
RU2673550C1 (ru) * 2018-05-15 2018-11-28 Публичное Акционерное Общество "Нижнекамскнефтехим" Способ совместного получения циклогексана и гексанового растворителя
RU2722147C2 (ru) * 2015-12-22 2020-05-27 Ифп Энержи Нувелль Способ селективного гидрирования олефинового сырья с помощью одного основного реактора и предохранительного реактора уменьшенного размера

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040030207A1 (en) * 2002-08-08 2004-02-12 Catalytic Distillation Technologies Selective hydrogenation of acetylenes
US7022645B2 (en) * 2003-08-04 2006-04-04 Catalytic Distillation Technologies Ni hydrogenation catalysts, manufacture and use
US20060173224A1 (en) * 2005-02-01 2006-08-03 Catalytic Distillation Technologies Process and catalyst for selective hydrogenation of dienes and acetylenes
JP4845172B2 (ja) * 2005-03-30 2011-12-28 月島機械株式会社 有機化合物の断熱冷却式晶析方法及び装置
US7408090B2 (en) * 2005-04-07 2008-08-05 Catalytic Distillation Technologies Method of operating downflow boiling point reactors in the selective hydrogenation of acetylenes and dienes
US8471082B2 (en) * 2008-03-14 2013-06-25 Catalytic Distillation Technologies Process for converting methane to ethylene
EP2223987A1 (en) * 2009-02-17 2010-09-01 ISP Marl GmbH Purification of an aromatic fraction containing acetylenes by selective hydrogenation of the acetylenes
US20120209042A1 (en) 2011-02-10 2012-08-16 Saudi Basic Industries Corporation Liquid Phase Hydrogenation of Alkynes
JP6298438B2 (ja) * 2014-11-28 2018-03-20 旭化成株式会社 炭化水素の製造方法

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2918425A (en) 1958-03-27 1959-12-22 Universal Oil Prod Co Conversion process and apparatus therefor
US3560167A (en) 1968-12-18 1971-02-02 Air Prod & Chem Upflow catalytic reactor for fluid hydrocarbons
US3702237A (en) 1970-07-02 1972-11-07 Universal Oil Prod Co Hydrocarbon conversion apparatus
US4126539A (en) 1977-12-05 1978-11-21 Mobil Oil Corporation Method and arrangement of apparatus for hydrogenating hydrocarbons
US4194964A (en) 1978-07-10 1980-03-25 Mobil Oil Corporation Catalytic conversion of hydrocarbons in reactor fractionator
US4171260A (en) 1978-08-28 1979-10-16 Mobil Oil Corporation Process for reducing thiophenic sulfur in heavy oil
US4283271A (en) 1980-06-12 1981-08-11 Mobil Oil Corporation Manufacture of hydrocracked low pour lubricating oils
US5190730A (en) 1982-11-17 1993-03-02 Chemical Research & Licensing Company Reactor for exothermic reactions
US4484983A (en) 1983-05-23 1984-11-27 Shell Oil Company Distillation and vapor treatment process
US4990242A (en) 1989-06-14 1991-02-05 Exxon Research And Engineering Company Enhanced sulfur removal from fuels
US5011593A (en) 1989-11-20 1991-04-30 Mobil Oil Corporation Catalytic hydrodesulfurization
US5409599A (en) 1992-11-09 1995-04-25 Mobil Oil Corporation Production of low sulfur distillate fuel
US5714640A (en) 1994-01-21 1998-02-03 Mobil Oil Corporation Vapor pocket reactor
US5510568A (en) 1994-06-17 1996-04-23 Chemical Research & Licensing Company Process for the removal of mercaptans and hydrogen sulfide from hydrocarbon streams
US5554275A (en) 1994-11-28 1996-09-10 Mobil Oil Corporation Catalytic hydrodesulfurization and stripping of hydrocarbon liquid
US5779883A (en) 1995-07-10 1998-07-14 Catalytic Distillation Technologies Hydrodesulfurization process utilizing a distillation column realtor
US5961815A (en) 1995-08-28 1999-10-05 Catalytic Distillation Technologies Hydroconversion process
US5597476A (en) 1995-08-28 1997-01-28 Chemical Research & Licensing Company Gasoline desulfurization process
JP3955096B2 (ja) 1996-02-02 2007-08-08 エクソンモービル リサーチ アンド エンジニアリング カンパニー 選択的水素化脱硫触媒及び方法
US5925799A (en) 1996-03-12 1999-07-20 Abb Lummus Global Inc. Catalytic distillation and hydrogenation of heavy unsaturates in an olefins plant
US5807477A (en) 1996-09-23 1998-09-15 Catalytic Distillation Technologies Process for the treatment of light naphtha hydrocarbon streams
US5837130A (en) 1996-10-22 1998-11-17 Catalytic Distillation Technologies Catalytic distillation refining
US5925685A (en) 1996-11-18 1999-07-20 Catalytic Distillation Technologies Method for carrying out heterogeneous catalysis
US5863419A (en) 1997-01-14 1999-01-26 Amoco Corporation Sulfur removal by catalytic distillation
US5897768A (en) 1997-02-28 1999-04-27 Exxon Research And Engineering Co. Desulfurization process for removal of refractory organosulfur heterocycles from petroleum streams
US6083378A (en) 1998-09-10 2000-07-04 Catalytic Distillation Technologies Process for the simultaneous treatment and fractionation of light naphtha hydrocarbon streams
US6413413B1 (en) 1998-12-31 2002-07-02 Catalytic Distillation Technologies Hydrogenation process
FR2810991B1 (fr) * 2000-06-28 2004-07-09 Inst Francais Du Petrole Procede pour l'hydrogenation de coupes contenant des hydrocarbures et notamment des molecules insaturees contenant au moins deux doubles liaisons ou au moins une triple liaison
US6416658B1 (en) 2000-10-19 2002-07-09 Catalytic Distillation Technologies Process for simultaneous hydrotreating and splitting of naphtha streams

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2627657C2 (ru) * 2012-07-12 2017-08-09 Ламмус Текнолоджи Инк. Более энергоэффективный способ гидрогенизации с5
RU2722147C2 (ru) * 2015-12-22 2020-05-27 Ифп Энержи Нувелль Способ селективного гидрирования олефинового сырья с помощью одного основного реактора и предохранительного реактора уменьшенного размера
RU2673550C1 (ru) * 2018-05-15 2018-11-28 Публичное Акционерное Общество "Нижнекамскнефтехим" Способ совместного получения циклогексана и гексанового растворителя

Also Published As

Publication number Publication date
EP1618082A2 (en) 2006-01-25
US7368617B2 (en) 2008-05-06
US6867338B2 (en) 2005-03-15
CA2518260A1 (en) 2004-09-23
BRPI0400329A (pt) 2005-01-04
AU2004219723A1 (en) 2004-09-23
US20030233017A1 (en) 2003-12-18
WO2004081149A3 (en) 2005-01-13
US20050090701A1 (en) 2005-04-28
JP2006522120A (ja) 2006-09-28
WO2004081149A2 (en) 2004-09-23
PL378808A1 (pl) 2006-05-15
CN1759083A (zh) 2006-04-12
RU2005131579A (ru) 2006-02-10
CN100371305C (zh) 2008-02-27
EG23539A (en) 2006-04-26
MXPA05009270A (es) 2005-10-19
KR20050106112A (ko) 2005-11-08
AR043554A1 (es) 2005-08-03

Similar Documents

Publication Publication Date Title
EP0842241B1 (en) Improved process for selective hydrogenation of highly unsaturated compounds and isomerization of olefins in hydrocarbon streams
JP4606521B2 (ja) 炭化水素流れ中のアセチレンと1,2―ブタジエンを同時的に選択的水素化する方法
JP2008528684A (ja) ジエンとアセチレンの選択的水素化反応に使用するプロセスと触媒
US20210031164A1 (en) Producing c5 olefins from steam cracker c5 feeds
CZ297855B6 (cs) Zpusob selektivní hydrogenace vysoce nenasycenýchsloucenin
TWI429741B (zh) 使用催化蒸餾之超低苯重組油的方法
RU2325429C2 (ru) Селективное гидрирование ацетиленов и диенов в углеводородном потоке
RO120775B1 (ro) Procedeu de îndepărtare a mercaptanilor
CA2089113C (en) Selective hydrogenation of c5 streams
CN102408296A (zh) 由含氧物制烯烃反应系统生产1-丁烯
US6849773B2 (en) Process for the utilization of refinery C4 streams
RU2220126C2 (ru) Устройство и способ для гидрогенизации
US7408090B2 (en) Method of operating downflow boiling point reactors in the selective hydrogenation of acetylenes and dienes
MXPA98000233A (en) Improved process for selective hydrogenation of highly unsaturated compounds and isomerization of olefins in hydrocarbon currents

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20090305