RU2302694C2 - Способ и устройство для управления скоростью трафика обратной линии связи в системе мобильной связи - Google Patents

Способ и устройство для управления скоростью трафика обратной линии связи в системе мобильной связи Download PDF

Info

Publication number
RU2302694C2
RU2302694C2 RU2005127600A RU2005127600A RU2302694C2 RU 2302694 C2 RU2302694 C2 RU 2302694C2 RU 2005127600 A RU2005127600 A RU 2005127600A RU 2005127600 A RU2005127600 A RU 2005127600A RU 2302694 C2 RU2302694 C2 RU 2302694C2
Authority
RU
Russia
Prior art keywords
reverse link
packet data
mobile station
data rate
data frame
Prior art date
Application number
RU2005127600A
Other languages
English (en)
Other versions
RU2005127600A (ru
Inventor
Хван-Дзоон КВОН (KR)
Хван-Дзоон КВОН
Юн-Сун КИМ (KR)
Юн-Сун КИМ
Донг-Хи КИМ (KR)
Донг-Хи КИМ
Original Assignee
Самсунг Электроникс Ко., Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Самсунг Электроникс Ко., Лтд. filed Critical Самсунг Электроникс Ко., Лтд.
Publication of RU2005127600A publication Critical patent/RU2005127600A/ru
Application granted granted Critical
Publication of RU2302694C2 publication Critical patent/RU2302694C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • B60W2050/146Display means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/54Audio sensitive means, e.g. ultrasound
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/16Deriving transmission power values from another channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Abstract

Изобретение относится к системе мобильной связи и может быть использовано для эффективного управления трафиком обратной линии связи. Достигаемый технический результат - улучшение пропускной способности системы мобильной связи. В системе мобильной связи осуществляется способ управления скоростью передачи данных следующего кадра пакетных данных обратной линии связи для передачи кадра пакетных данных обратной линии связи от мобильной станции к базовой станции по обратному каналу пакетных данных со скоростью передачи данных, выбранной из множества скоростей передачи данных, при этом мобильная станция принимает информацию управления обратной линии связи для управления скоростью передачи данных кадра пакетных данных обратной линии связи и передает следующий кадр пакетных данных обратной линии связи со скоростью передачи, которая определена в соответствии с информацией управления обратной линии связи. 5 н. и 27 з.п. ф-лы, 9 ил.

Description

Уровень техники
Настоящее изобретение относится к системе мобильной связи, более конкретно к способу и устройству чередующегося управления скоростью для эффективного управления трафиком обратной линии связи.
Предшествующий уровень техники
В принципе, в системе мобильной связи множественного доступа с кодовым разделением каналов (МДКР) мультимедийная услуга поддерживается с использованием одной и той же полосы частот. Мобильные станции одновременно передают данные к базовой станции, и идентификация мобильных станций осуществляется за счет кодов расширения спектра, присвоенных мобильным станциям однозначно определенным образом.
Передача данных обратной линии связи от мобильной станции к базовой станции выполняется по обратному каналу пакетных данных (R-PDCH) посредством пакета физического уровня (PLP), причем длина пакета фиксирована. Скорость передачи данных является переменной для каждого пакета, и скорость каждого пакета управляется в зависимости от мощности мобильной станции, передающей соответствующий пакет, общего объема данных передачи и бита управления скоростью (RCB), обеспеченного базовой станцией по прямому каналу управления скоростью (RCCH).
Базовая станция определяет скорости обратной линии связи мобильных станций с использованием параметра RoT («превышение над тепловым шумом»), который представляет собой отношение полной принимаемой мощности к тепловым шумам, или нагрузку, получаемую из отношений сигнал/шум (SNR) мобильных станций в процессе обслуживания. Если используется параметр RoT, скорость обратной линии связи мобильной станции управляется таким образом, чтобы значение RoT соответствующей мобильной станции приближалось к опорному значению RoT, а если значение RoT недоступно, то скорость обратной линии связи мобильной станции управляется таким образом, что нагрузка соответствующей мобильной станции приближается к опорной нагрузке. То есть, базовая станция определяет, следует ли увеличить, уменьшить или поддерживать на прежнем уровне скорость передачи данных каждой мобильной станции на основе значений RoT всех мобильный станций в процессе обслуживания, полного объема данных передачи и состояния мощности. Если скорость передачи мобильной станции управляется эффективным образом, то пропускная способность системы в целом может быть увеличена.
Информация для управления скоростью мобильной станции, определяемая базовой станцией, передается к соответствующей мобильной станции в форме бита управления обратной линии связи (RCB). Если значение RCB, принятое от базовой станции, равно «+1», указывающее «увеличить скорость», то мобильная станция увеличивает скорость передачи обратной линии связи в следующем интервале передачи. Если значение RCB равно «-1», указывающее «снизить скорость», то мобильная станция снижает скорость передачи обратной линии связи в следующем интервале передачи. Если значение RCB равно «0», указывающее «поддерживать скорость неизменной», то мобильная станция поддерживает текущую скорость передачи обратной линии связи в следующем интервале передачи.
В некоторых системах базовая станция управляет отношением мощности сигнала трафика к мощности пилот-сигнала (TPR) вместо управления скоростью передачи мобильной станции. В обычной системе мобильной связи передача обратной линии связи мобильной станции управляется по мощности базовой станцией. В процессе управления мощностью мобильная станция непосредственно управляет мощностью канала пилот-сигнала в соответствии с командой управления мощностью, принимаемой от базовой станции, и управляет каналами иными, чем канал пилот-сигнала, в зависимости от параметра TPR, который имеет фиксированное значение. Например, если значение TPR равно 3 дБ, это указывает на то, что отношение мощности сигнала трафика к мощности пилот-сигнала, передаваемого мобильной станцией, равно 2:1. Поэтому мобильная станция определяет усиление мощности канала трафика таким образом, что канал трафика должен быть по мощности в два раза выше, чем канал пилот-сигнала.
Даже для других типов каналов усиление соответствующего канала имеет фиксированное значение по сравнению с усилением канала пилот-сигнала. В способе управления на основе TPR базовой станцией, при управлении передачами обратной линии связи множеством мобильных станций одной базовой станции посредством планирования, система информирует об отношении TPR, разрешенном для каждой мобильной станции, вместо непосредственного информирования о результате планирования в виде скорости передачи. В этом случае TPR увеличивается в соответствии с увеличением скорости передачи данных. Например, если скорость передачи данных увеличивается в два раза, то мощность, присваиваемая каналу трафика мобильной станцией, увеличивается примерно в два раза, что означает удвоение TPR.
В обычной системе мобильной связи соотношение между скоростью передачи данных обратного канала трафика и TPR предварительно известно мобильной станции и базовой станции из информационной таблицы. Поэтому на практике управление скоростью передачи данных мобильной станции эквивалентно управлению отношением TPR мобильной станции. Здесь будет представлено описание только способа управления скоростью передачи данных мобильной станции посредством базовой станции.
На фиг.1 представлена блок-схема алгоритма, иллюстрирующего процедуру определения скорости обратной линии связи мобильной станцией в соответствии с предшествующим уровнем техники. Мобильная станция может поддерживать, по меньшей мере, скорости передачи 9,6 кб/с, 19,2 кб/с, 38,4 кб/с, 76,8 кб/с, 153,6 кб/с и 307,2 кб/с для канала R-PDCH и увеличивает, уменьшает или поддерживает неизменной скорость обратной линии связи дискретными интервалами (ступеньками), в соответствии с битом управления скоростью передачи (RCB).
В соответствии с фиг.1, на этапе 110 мобильная станция принимает бит управления скоростью (RCB) и анализирует принятый бит управления скоростью. На этапе 120 мобильная станция определяет, указывает ли значение бита управления скоростью «увеличить скорость». Если значение бита управления скоростью равно «+1», что означает «увеличить скорость», то на этапе 130 мобильная станция устанавливает скорость для использования на следующем временном интервале на значение (или скорость), увеличенное на один дискретный интервал, по сравнению со скоростью для текущего временного интервала, и затем переходит к этапу 170.
Однако если значение бита управления скоростью не равно «+1», что указывало бы на увеличение скорости, то на этапе 140 мобильная станция определяет, не указывает ли значение бита управления скоростью на «снизить скорость». Если определено, что значение бита управления скоростью равно «-1», что означает «снизить скорость», то на этапе 150 мобильная станция устанавливает скорость для использования на следующем временном интервале на значение (или скорость), уменьшенное на один дискретный интервал, по сравнению со скоростью на текущем временном интервале, и затем переходит к этапу 170.
Однако если определено, что значение бита управления скоростью не равно «-1», что указывало бы на снижение скорости, то на этапе 160 мобильная станция устанавливает скорость для использования на следующем временном интервале на то же самое значение, что и скорость на текущем временном интервале. На этапе 170 мобильная станция передает кадр данных в следующем временном интервале в соответствии с определенной скоростью.
На фиг.2 показана временная диаграмма, иллюстрирующая процедуру определения скорости обратной линии связи мобильной станцией в соответствии с предшествующим уровнем техники. Бит управления скоростью RCB используется для управления скоростью канала R-PDCH для следующего интервала передачи мобильной станции.
Согласно фиг.2 во временном интервале t0 мобильная станция передает данные по каналу пакетных данных (PDCH) со скоростью 9,6 кб/с (см. 210). Во временном интервале t1 базовая станция определяет, следует ли увеличить, уменьшить или сохранить неизменной скорость передачи данных мобильной станции с учетом параметра RoT, состояния буфера и состояния мощности соответствующей мобильной станции, генерирует RCB в соответствии с результатами определения и передает RCB к мобильной станции (см. 220). Затем мобильная станция принимает RCB, анализирует RCB и определяет, следует ли увеличить, уменьшить или сохранить неизменной скорость канала PDCH в следующем временном интервале t2.
Однако в таком способе управления скоростью передачи, вследствие интервала задержки между временем, когда генерируется RCB в базовой станции, и временем, когда RCB действительно применяется в мобильной станции, базовая станция не может эффективно выполнять управление скоростью передачи в своих мобильных станциях.
Например, во временном интервале t5 базовая станция принимает кадр данных от мобильной станции со скоростью 153,6 кб/с, и на том же самом временном интервале базовая станция принимает решение увеличить скорость передачи данных мобильной станции на один дискретный интервал относительно текущего значения скорости 153,6 кб/с в соответствии с условиями других мобильных станций, формирует соответствующий RCB(+) и передает сформированный RCB(+) к мобильной станции. В действительности, однако, поскольку RCB(+) передается для временного интервала t6, то временным интервалом, в котором RCB(+) действительно применяется, становится временной интервал t7, в котором мобильная станция принимает RCB(+) и анализирует RCB(+). В результате, во временном интервале t7 мобильная станция устанавливает скорость 614,4 кб/с, которая увеличена на один дискретный интервал, относительно скорости 307,2 кб/с для предыдущего интервала t6.
Если различные мобильные станции одновременно передают данные обратной линии связи, то данные, передаваемые другими мобильными станциями, действуют как взаимные помехи для сигнала конкретной мобильной станции. Поэтому базовая станция выполняет операцию управления таким образом, что все скорости или все значения параметра RoT данных, передаваемых мобильными станциями в ячейке, не должны превышать конкретный порог. В этом случае, если базовая станция увеличивает скорость передачи данных конкретной мобильной станции, то базовая станция должна снизить скорости передачи данных других мобильных станций. Соответственно пропускные способности мобильных станций, принимающих услугу передачи данных от конкретной базовой станции, зависят от эффективности управления обратной линии связи.
Однако, как показано на фиг.2, мобильная станция определяет, следует ли увеличить, уменьшить или сохранить неизменной следующую скорость передачи данных по сравнению со скоростью передачи данных, используемой в предыдущем временном интервале, в зависимости от RCB, принимаемого от базовой станции. В этом случае, ввиду временной задержки между моментом времени, когда формируется RCB, и моментом времени, когда RCB реально применяется в мобильной станции, управление скоростью передачи обратной линии связи не может выполняться эффективным образом, что приводит к ухудшению пропускной способности при передаче данных в системе в целом.
Сущность изобретения
Поэтому задачей изобретения является создание способа и устройства для управления скоростью обратной линии связи с учетом временной задержки между моментом времени, когда бит управления скоростью (RCB) формируется в базовой станции, и моментом времени применения RCB мобильной станцией в системе мобильной связи.
Другой задачей настоящего изобретения является создание способа и устройства для улучшения пропускной способности всей системы за счет эффективного управления скоростью обратной линии связи.
В соответствии с одним из аспектов настоящего изобретения обеспечен способ управления скоростью передачи данных следующего кадра пакетных данных обратной линии связи в системе мобильной станции для передачи кадра пакетных данных обратной линии связи от мобильной станции к базовой станции по обратному каналу передачи пакетных данных со скоростью передачи данных, выбранной из множества скоростей передачи данных, передачи кадра пакетных данных обратной линии связи посредством информации управления обратной линии связи, передаваемой от базовой станции к мобильной станции по прямому каналу управления скоростью, и затем управления скоростью передачи данных следующего кадра пакетных данных обратной линии связи, содержащий этапы приема мобильной станцией информации увеличения или снижения скорости посредством информации управления обратной линии связи, для скорости передачи данных кадра пакетных данных обратной линии связи; и после приема информации увеличения или снижения скорости, передачи следующего кадра пакетных данных обратной линии связи со скоростью передачи данных, которая увеличена или снижена относительно выбранной скорости передачи данных в ответ на информацию увеличения или снижения скорости.
Соответственно другому аспекту настоящего изобретения в системе мобильной станции для передачи кадра пакетных данных обратной линии связи от мобильной станции к базовой станции по обратному каналу передачи пакетных данных со скоростью передачи данных, выбранной из множества скоростей передачи данных, передачи кадра пакетных данных обратной линии связи посредством информации управления обратной линии связи, передаваемой от базовой станции к мобильной станции по прямому каналу управления скоростью передачи, и затем управления скоростью передачи данных следующего кадра пакетных данных обратной линии связи, способ управления скоростью передачи данных следующего кадра пакетных данных обратной линии связи содержит этапы повторной передачи кадра пакетных данных обратной линии связи в соответствии с квитированием приема от базовой станции, причем квитирование приема указывает, был ли успешным прием кадра пакетных данных обратной линии связи; приема мобильной станцией информации увеличения, снижения или сохранения неизменного значения скорости посредством информации управления обратной линии связи для скорости передачи данных кадра пакетных данных обратной линии связи в отношении повторно переданного кадра пакетных данных обратной линии связи; и, после приема информации увеличения, снижения или сохранения неизменного значения скорости, передачи следующего кадра пакетных данных обратной линии связи со скоростью передачи данных, которая увеличена, снижена или сохранена неизменной относительно выбранной скорости передачи данных в ответ на принятую информацию увеличения, снижения или сохранения неизменного значения скорости.
Соответственно другому аспекту настоящего изобретения в системе мобильной станции для передачи кадра пакетных данных обратной линии связи от мобильной станции к базовой станции по обратному каналу передачи пакетных данных со скоростью передачи данных, выбранной из множества скоростей передачи данных, передачи кадра пакетных данных обратной линии связи посредством информации управления обратной линии связи, передаваемой от базовой станции к мобильной станции по прямому каналу управления скоростью передачи, и затем управления скоростью передачи данных следующего кадра пакетных данных обратной линии связи, способ управления скоростью передачи данных следующего кадра пакетных данных обратной линии связи содержит этапы приема базовой станцией кадра пакетных данных обратной линии связи, переданного с выбранной скоростью передачи данных; и передачи информации увеличения, снижения или сохранения неизменного значения скорости посредством информации управления обратной линии связи для скорости передачи данных кадра пакетных данных обратной линии связи в соответствии с тем, был ли успешным прием кадра пакетных данных обратной линии связи.
Соответственно другому аспекту настоящего изобретения в системе мобильной станции для передачи кадра пакетных данных обратной линии связи от мобильной станции к базовой станции по обратному каналу передачи пакетных данных со скоростью передачи данных, выбранной из множества скоростей передачи данных, передачи кадра пакетных данных обратной линии связи посредством информации управления обратной линии связи, передаваемой от базовой станции к мобильной станции по прямому каналу управления скоростью передачи, и затем управления скоростью передачи данных следующего кадра пакетных данных обратной линии связи, устройство для управления скоростью передачи данных следующего кадра пакетных данных обратной линии связи содержит приемник для приема информации управления, включающей в себя информацию увеличения, снижения или сохранения неизменного значения для скорости передачи данных кадра пакетных данных обратной линии связи от базовой станции в соответствии с тем, был ли успешным прием кадра пакетных данных обратной линии связи; контроллер для определения скорости передачи данных для следующего кадра пакетных данных в соответствии с принятой информацией увеличения, снижения или сохранения неизменного значения на основе выбранной скорости передачи данных; и передатчик для передачи следующего кадра пакетных данных обратной линии связи к базовой станции в соответствии с определенной скоростью передачи данных.
Краткое описание чертежей
Вышеуказанные и другие задачи, признаки и преимущества настоящего изобретения поясняются в последующем детальном описании со ссылками на иллюстрирующие чертежи, на которых представлено следующее:
Фиг.1 - блок-схема, иллюстрирующая процедуру определения скорости передачи обратной линии связи мобильной станцией согласно предшествующему уровню техники;
Фиг.2 - временная диаграмма, иллюстрирующая операцию определения скорости передачи обратной линии связи мобильной станцией согласно предшествующему уровню техники;
Фиг.3 - блок-схема устройства для управления скоростью передачи обратной линии связи согласно варианту осуществления настоящего изобретения;
Фиг.4 - блок-схема, иллюстрирующая процедуру определения скорости передачи обратной линии связи мобильной станцией согласно варианту осуществления настоящего изобретения;
Фиг.5 - временная диаграмма, иллюстрирующая операцию определения скорости передачи обратной линии связи мобильной станцией для RCD = 1 кадру (или 1 временному интервалу) согласно варианту осуществления настоящего изобретения;
Фиг.6 - временная диаграмма, иллюстрирующая операцию определения скорости передачи обратной линии связи мобильной станцией для RCD = 2 кадрам (или 2 временным интервалам) согласно варианту осуществления настоящего изобретения;
Фиг.7 - блок-схема, иллюстрирующая работу базовой станции системе, использующей метод HARQ и метод снижения энергии согласно другому варианту осуществления настоящего изобретения;
Фиг.8 - временная диаграмма, иллюстрирующая процедуру определения скорости передачи обратной линии связи мобильной станцией в системе, использующей метод HARQ и метод снижения энергии согласно другому варианту осуществления настоящего изобретения;
Фиг.9 - диаграмма, поясняющая способ управления TPR для каждого HARQ-канала согласно варианту осуществления настоящего изобретения.
Детальное описание предпочтительного варианта осуществления изобретения
Различные предпочтительные варианты осуществления настоящего изобретения описаны ниже со ссылками на чертежи. В последующем описании, в целях ясности, детальное описание известных функций и конфигураций, включенных в эти варианты, опущено.
Настоящее изобретение направлено на управление скоростью передачи данных обратной линии связи с использованием бита управления скоростью (RCB), при котором система мобильной связи определяет опорное время, при этом базовая станция генерирует RCB, а мобильная станция применяет RCB с учетом предварительно заданной временной задержки. В данном случае под «временной задержкой» понимается «задержка управления скоростью» (RCD). Управление скоростью на основе задержки RCD также определяется как управление скоростью на основе индикатора канала автоматического запроса повторения (ACID). То есть при определении скорости передачи данных мобильной станции бит управления скоростью RCB анализируется на основе скорости передачи пакетных данных, соответствующей предыдущему индикатору ACID, и затем определяется скорость передачи пакетных данных, соответствующая тому же самому индикатору ACID.
Кроме того, способ управления скоростью передачи данных мобильной станции в действительности эквивалентен способу управления отношением мощности сигнала трафика к мощности пилот-сигнала (TPR) мобильной станции. Поэтому будет описан только способ управления базовой станцией скоростью передачи данных мобильной станции. Однако способ управления отношением TPR также может применяться в способе управления скоростью передачи, предложенном в настоящем изобретении.
На фиг.3 представлена блок-схема, иллюстрирующая устройство для управления скоростью передачи обратной линии связи в соответствии с вариантом осуществления настоящего изобретения. Как показано на фиг.3, устройство для управления скоростью передачи содержит приемник 10 прямого канала управления скоростью (F-RCCH), контроллер 20 и передатчик 30 обратного канала передачи пакетных данных (R-PDCH). Для каждого интервала времени приемник 10 канала F-RCCH принимает RCB путем выполнения сжатия, демодуляции и декодирования сигнала, принятого от базовой станции, с использованием кода расширения, присвоенного каналу F-RCCH, и выдает принятый RCB в контроллер 20.
Контроллер 20 анализирует значение RCB для определения, требует ли базовая станция увеличения скорости обратной линии связи или снижения скорости обратной линии связи, и определяет новую скорость обратной линии связи под управлением контроллера 20. В данном случае RCB является не значением, определенным путем согласования скорости для следующего временного интервала с предшествующим временным интервалом, а значением, определенным путем согласования скорости для следующего временного интервала с временным интервалом, который следует с предварительно заданной задержкой управления скоростью (RCD) перед текущим временным интервалом.
Более конкретно, предполагая, что мобильная станция передает один кадр данных в каждый временной интервал, RCD определяется как задержка от момента времени, когда передается i-й кадр, когда принят RCB, определенный на основе i-го кадра. Задержка RCD определяется по согласованию между базовой станцией и мобильной станцией в процессе связи базовой станции с мобильной станцией. Как вариант, задержка RCD может определяться мобильной станцией. В другом случае задержка RCD может определяться базовой станцией и затем сообщаться мобильной станции. В еще одном варианте, задержка RCD может определяться предварительно базовой станцией и мобильной станцией.
Соответственно после приема i-го кадра базовая станция генерирует RCB на основе принятого i-го кадра и передает генерированный RCB по каналу R-RCCH. Мобильная станция принимает RCB, определяет скорость следующего кадра соответственно скорости i-го кадра и передает следующий кадр с определенной таким образом скоростью.
Как указано выше, скорость также управляется на основе индикатора ACID. Предположим, что мобильная станция последовательно передает пакетные данные соответственно индикатору ACID, имеющему значения 00, 01, 10 и 11 для 4 различных временных интервалов. В этом случае, в предположении, что скорость текущего пакета данных, соответствующего ACID=00, равна 19,2 кб/с, и принимается RCB(+), мобильная станция может передать следующие пакетные данные, соответствующие ACID=00, со скоростью 38,4 кб/с. То есть, при определении скорости передачи текущего пакета данных, мобильная станция определяет скорость передачи следующего пакета данных на основе скорости передачи предыдущего пакета данных, соответствующего тому же самому индикатору ACID.
На фиг.4 представлена блок-схема, иллюстрирующая процедуру определения скорости передачи обратной линии связи мобильной станцией согласно варианту осуществления настоящего изобретения. Мобильная станция поддерживает, по меньшей мере, скорости 9,6 кб/с, 19,2 кб/с, 38,4 кб/с, 76,8 кб/с, 153,6 кб/с, 307,2 кб/с для канала R-PDCH и увеличивает, снижает или поддерживает неизменной скорость передачи обратной линии связи дискретными интервалами в соответствии с битом управления скоростью (RCB).
В соответствии с фиг.4 на этапе 310 мобильная станция принимает и анализирует бит управления мощностью (RCB) для n-го временного интервала. На этапе 320 мобильная станция определяет, указывает ли значение бита управления скоростью RCB «увеличить скорость». Если значение бита управления скоростью равно «+1», что означает «увеличить скорость», то на этапе 330 мобильная станция устанавливает скорость R(n+1) для использования на следующем временном интервале 'n+1' на значение (или скорость), увеличенное на один дискретный интервал, по сравнению со скоростью R(n-RCD) для временного интервала, следующего с предварительно заданным опережением RCD относительно текущего временного интервала. Это может быть представлено в виде следующего уравнения (1):
R(n+1)=R(n-RCD)++ (1)
Если на этапе 320 определено, что значение бита управления скоростью (RCB) не равно «+1», что указывало бы на увеличение скорости, то на этапе 340 мобильная станция определяет, не указывает ли значение RCB на «снизить скорость». Если определено, что значение RCB равно «-1», что означает «снизить скорость», то на этапе 350 мобильная станция устанавливает скорость R(n+1) для использования на следующем временном интервале 'n+1' на значение (или скорость), уменьшенное на один дискретный интервал, по сравнению со скоростью R(n-RCD) для текущего временного интервала, и затем переходит к этапу 370. Это может быть представлено в виде следующего уравнения (2):
R(n+1)=R(n-RCD)-- (2)
Если на этапе 340 определено, что значение RCB не равно «-1», что указывало бы на снижение скорости, то на этапе 360 мобильная станция устанавливает скорость для использования на следующем временном интервале 'n+1' на то же самое значение, что и скорость R(n-RCD) для временного интервала, следующего с опережением на предварительно заданное значение RCD перед текущим временным интервалом. Это может быть представлено в виде следующего уравнения (3):
R(n+1)=R(n-RCD) (3)
На этапе 370 мобильная станция передает кадр данных в следующем временном интервале 'n+1' в соответствии с определенной скоростью R(n+1).
В настоящем изобретении задержка управления скоростью (RCD) представляет собой время, требуемое, когда мобильная станция передает один кадр в обратном направлении, с учетом задержки на обработку в базовой станции и в мобильной станции. Затем базовая станция передает RCB в прямом направлении, и мобильная станция принимает RCB и применяет принятый RCB к скорости передачи следующего кадра. Значение RCD может выражаться кадрами. Например, RCD может быть установлено как один или два кадра.
На фиг.5 представлена временная диаграмма, иллюстрирующая операцию определения скорости передачи обратной линии связи мобильной станцией для RCD=1 кадру (или 1 временному интервалу) согласно варианту осуществления настоящего изобретения. Согласно фиг.5 во временном интервале t0 мобильная станция передает данные по каналу пакетных данных (PDCH) со скоростью 9,6 кб/с (см. 410). Для временного интервала t1 базовая станция определяет, следует ли увеличить, уменьшить или сохранить неизменной скорость передачи данных мобильной станции с учетом параметра RoT, состояния буфера и состояния мощности мобильной станции, генерирует RCB в соответствии с результатом определения и передает сформированный RCB (см. 420).
RCB принимается мобильной станцией во временном интервале t1, и мобильная станция определяет скорость передачи данных, которая должна быть применена во временном интервале t2, в соответствии с принятым RCB. При определении скорости передачи данных, которая должна быть применена во временном интервале t2, мобильная станция определяет скорость передачи данных не на основе скорости для предыдущего временного интервала t1, а на основе скорости для временного интервала t0, который возникает на предварительно определенный интервал RCD или на один кадр перед текущим временным интервалом. Такое управление скоростью называется «чередующимся управлением скоростью», так как управление скоростью отдельно выполняется для четных кадров и для нечетных кадров, как показано на фиг.5.
Например, во временном интервале t1 мобильная станция использует скорость 9,6 кб/с. Базовая станция принимает решение увеличить скорость передачи данных мобильной станции соответственно информации состояния мобильной станции во временном интервале t1, формирует RCB(+) в соответствии с результатом определения и передает сформированный RCB(+) к мобильной станции. RCB(+) принимается в мобильной станции во временном интервале t2, и на основе принятого RCB(+) мобильная станция устанавливает скорость передачи, которая должна использоваться во временном интервале t3, на 19,2 кб/с, что представляет собой значение, увеличенное на один дискретный интервал относительно скорости 9,2 кб/с для временного интервала t1, то есть во временном интервале, который возникает с опережением на RCD относительно текущего временного интервала.
В качестве другого примера, во временном интервале t5 мобильная станция использует скорость 38,4 кб/с. Базовая станция принимает решение увеличить скорость передачи данных мобильной станции соответственно информации состояния мобильной станции во временном интервале t5, формирует RCB(+) в соответствии с результатом определения и передает сформированный RCB(+) к мобильной станции. RCB(+) принимается в мобильной станции во временном интервале t6, и на основе принятого RCB(+) мобильная станция устанавливает скорость передачи, которая должна использоваться во временном интервале t7, на 76,8 кб/с, что представляет собой значение, увеличенное на один дискретный интервал относительно скорости 38,4 кб/с для временного интервала t5, то есть во временном интервале, который возникает с опережением на RCD относительно текущего временного интервала.
На фиг.6 представлена временная диаграмма, иллюстрирующая операцию определения скорости передачи обратной линии связи мобильной станцией для RCD = 2 кадрам (или временным интервалам) согласно варианту осуществления настоящего изобретения. Согласно фиг. 6 во временном интервале t0 мобильная станция передает данные по каналу пакетных данных (PDCH) со скоростью 9,6 кб/с (см. 510). Для временного интервала t1 базовая станция определяет, следует ли увеличить, уменьшить или сохранить неизменной скорость передачи данных мобильной станции с учетом параметра RoT, состояния буфера и состояния мощности соответствующей мобильной станции, генерирует RCB в соответствии с результатами определения и передает сформированный RCB к мобильной станции (см. 520).
RCB принимается мобильной станцией во временном интервале t2, и мобильная станция определяет скорость передачи данных, которая должна быть применена в следующем временном интервале t3, в соответствии с принятым RCB. При определении скорости передачи данных, которая должна быть применена в следующем временном интервале t3, мобильная станция определяет скорость передачи данных не на основе скорости для предыдущего временного интервала t2, а на основе скорости для временного интервала t0, который возникает с опережением на предварительно определенный интервал RCD или на два кадра перед текущим временным интервалом.
Например, во временном интервале t1 мобильная станция использует скорость 9,6 кб/с. Базовая станция принимает решение увеличить скорость передачи данных мобильной станции соответственно информации состояния мобильной станции во временном интервале t1, формирует RCB(+) в соответствии с результатом определения и передает сформированный RCB(+) к мобильной станции. RCB(+) принимается в мобильной станции во временном интервале t3, и на основе принятого RCB(+) мобильная станция устанавливает скорость передачи, которая должна использоваться во временном интервале t4, на 19,2 кб/с, что представляет собой значение, увеличенное на один дискретный интервал относительно скорости 9,2 кб/с для временного интервала t1, то есть во временном интервале, который возникает с опережением на RCD относительно текущего временного интервала.
В качестве другого примера, во временном интервале t5 мобильная станция использует скорость 38,4 кб/с. Базовая станция принимает решение уменьшить скорость передачи данных мобильной станции соответственно информации состояния мобильной станции во временном интервале t5, формирует RCB(-) в соответствии с результатом определения и передает сформированный RCB(-) к мобильной станции. RCB(-) принимается в мобильной станции во временном интервале t7, и на основе принятого RCB(-) мобильная станция устанавливает скорость передачи, которая должна использоваться во временном интервале t8, на 19,2 кб/с, что представляет собой значение, сниженное на один дискретный интервал относительно скорости 38,4 кб/с для временного интервала t5, то есть во временном интервале, который возникает с опережением на RCD относительно текущего временного интервала.
На фиг.5, поскольку RCD=1 кадру, управление скоростью выполнялось отдельно на двух сегментах (четные кадры и нечетные кадры). На фиг.6, поскольку RCD=2 кадрам, управление скоростью выполнялось отдельно на трех сегментах (первые кадры, вторые кадры и третьи кадры).
В способе чередующегося управления скоростью, соответствующем настоящему изобретению, мобильная станция применяет информацию об увеличении (+), снижении (-) или сохранении неизменного значения (0) к RCB на основе скорости, использованной, когда базовая станция генерировала RCB, что позволяет устранить ошибку управления скоростью передачи обратной линии связи, вызванную задержкой между базовой станцией и мобильной станцией. Поэтому при использовании способа чередующегося управления скоростью мобильная станция точно применяет скорость, вычисленную в процессе планирования базовой станцией, тем самым повышая эффективность управления скоростями обратной линии связи мобильных станций.
Для описания процедуры определения скорости обратной линии связи мобильной станции путем применения способа чередующегося управления скоростью в системе, использующей метод снижения энергии, необходимо сначала описать метод гибридного запроса автоматической повторной передачи (HARQ).
Метод HARQ широко используется для увеличения пропускной способности в системе мобильной связи для беспроводной пакетной передачи, поддерживающей мультимедийную услугу. Метод HARQ представляет собой технологию, которая реализуется для пакета физического уровня. Ниже описана процедура передачи пакета в обратном направлении с использованием такого метода HARQ.
Базовая станция информирует мобильную станцию, успешно ли принят пакет физического уровня через прямой канал квитирования приема (АСК) в ответ на прием пакета физического уровня от мобильной станции. Если пакет физического уровня успешно принят, то базовая станция передает сигнал квитирования АСК, указывающий на успешный прием пакета физического уровня, по каналу АСК. Однако если пакет физического уровня не принят, то базовая станция передает сигнал негативного квитирования (NAK), указывающий на безуспешный прием пакета физического уровня, по каналу АСК. Мобильная станция анализирует сигнал, принятый по каналу АСК, для определения, успешно ли принят пакет физического уровня. Если принят сигнал АСК, то мобильная станция передает новый пакет, а если принят сигнал NAK, то мобильная станция передает предыдущий переданный пакет.
Если декодирование предыдущего принятого пакета безуспешно, то базовая станция объединяет повторно принятый пакет с ранее принятым пакетом перед попыткой декодирования, тем самым способствуя повышению вероятности успешного декодирования.
В системе, использующей метод HARQ, мобильная станция использует метод снижения энергии, чтобы определить скорость обратной линии связи. При реализации метода снижения энергии, когда мобильная станция после выполнения первоначальной передачи пытается осуществить повторную передачу в ответ на прием сигнала NAK от базовой станции, в системе, использующей метод HARQ, энергия повторно передаваемого пакета устанавливается на более низкое значение, чем энергия первоначально переданного пакета. То есть, в этом методе, канал трафика для повторно передаваемого пакета имеет более низкое усиление, чем для первоначально переданного пакета.
На фиг.7 представлена блок-схема, иллюстрирующая работу базовой станции в системе, использующей метод HARQ и метод снижения энергии согласно другому варианту осуществления настоящего изобретения. На фиг.8 представлена временная диаграмма, иллюстрирующая процедуру определения скорости передачи обратной линии связи мобильной станцией в системе, использующей метод HARQ и метод снижения энергии согласно другому варианту осуществления настоящего изобретения. На фиг.8 высота канала передачи пакетных данных условно обозначает усиление канала.
В соответствии с фиг.7 и 8, если мобильная станция на этапе 700 передает пакет по каналу PDCH во временном интервале t0, то базовая станция принимает пакет, переданный мобильной станцией по каналу PDCH, и пытается демодулировать принятый пакет. На этапе 710 базовая станция определяет, успешно ли осуществлена демодуляция пакета. Если определено, что демодуляция успешна, то на этапе 715 базовая станция передает сигнал АСК к мобильной станции по каналу АСК, чтобы принять следующий пакет. Одновременно базовая станция передает RCB или бит управления отношением сигнала трафика к пилот-сигналу (TPRCB).
Однако если определено, что демодуляция безуспешна, то на этапе 720 базовая станция передает сигнал NAK 701 к мобильной станции по каналу АСК. При этом базовая станция не передает RCB 702, так как скорость передачи данных для повторно передаваемого пакета не отличается от скорости передачи для первоначально переданного пакета, и управление TPR не требуется.
После приема сигнала NAK 701, мобильная станция пытается осуществить повторную передачу во временном интервале t2. При этом, как показано на фиг.8, для пакета, повторно передаваемого по каналу PDCH во временном интервале t2, применяется метод снижения энергии. Поэтому RCB 702 не принимается от базовой станции и повторно переданный пакет имеет меньшую энергию, чем пакет, первоначально переданный во временном интервале t0. Энергия передачи повторно переданного пакета может быть снижена до 1/2 или 1/4 относительно энергии первоначально переданного пакета.
На этапе 730 базовая станция принимает повторно переданный пакет от мобильной станции по каналу PDCH во временном интервале t2. На этапе 740 базовая станция объединяет первоначально переданный пакет, принятый во временном интервале t0, то есть пакет, принятый во временном интервале, который возникает за два интервала RCD перед текущим временным интервалом, с текущим повторно переданным пакетом и демодулирует объединенный пакет. После этого на этапе 750 базовая станция определяет, была ли демодуляция успешной. Если определено, что демодуляция безуспешна, то базовая станция передает на этапе 755 сигнал NAK и возвращается к этапу 730 для приема повторно переданного пакета.
Для удобства объяснения, на фиг.7 базовая станция продолжает ожидать повторно переданного пакета, когда она передает сигнал NAK на этапе 755. В действительности, однако, базовая станция останавливает повторную передачу, если число повторных передач превысило предварительно заданное число повторных передач. Предпочтительно, предварительно заданное число повторных передач устанавливается на 3 или менее, включая первоначальную передачу.
Если на этапе 750 определено, что повторно переданный пакет успешно демодулирован, то на этапе 760 базовая станция, хотя это не показано на фиг.8, передает сигнал АСК для временного интервала t2, чтобы информировать мобильную станцию, что пакет был успешно принят. В то же время, базовая станция передает RCB 702 для управления скоростью передачи или TPR мобильной станции.
Ниже описана процедура управления скоростью передачи обратной линии связи или TPR мобильной станцией в системе, использующей метод HARQ и метод снижения энергии. Следует отметить, что работа идентична в принципе процедуре, описанной со ссылками на фиг.5 и 6.
Согласно фиг.8 после приема RCB 702, мобильная станция определяет, следует ли увеличить, снизить или сохранить неизменной скорость передачи данных или TPR согласно команде RCB 702. Мобильная станция управляет скоростью или TPR пакета, подлежащего передаче во временном интервале t4, на основе информации об увеличении/снижении/сохранении неизменной скорости для пакета, передаваемого во временном интервале t2. Поскольку RCD соответствует двум временным интервалам, как показано на фиг.5, мобильная станция следует процедуре, описанной со ссылкой на фиг.5. Поэтому ее детальное описание опущено для упрощения изложения. В этом случае работа по управлению скоростью обратной линии связи мобильной станцией идентична процедуре, описанной со ссылкой на фиг.4.
Однако в альтернативном способе мобильная станция может управлять скоростью или TPR пакета, подлежащего передаче во временном интервале t4, на основе информации об увеличении/снижении/сохранении неизменной скорости для пакета, передаваемого во временном интервале t0. В этом случае, когда мобильная станция управляет скоростью или TPR пакета, подлежащего передаче во временном интервале t4, на основе информации об увеличении/снижении/сохранении неизменной скорости для пакета, передаваемого во временном интервале t0, такая процедура не должна нарушать принцип работы в варианте осуществления, описанном со ссылками на фиг.5 и 6. Более конкретно, поскольку используется технология снижения энергии, усиления соответствующих каналов передачи данных устанавливаются на разные значения, но пакеты, передаваемые мобильной станцией во временных интервалах t0 и t2, имеют одинаковую скорость. Поэтому на основе скорости для пакета, переданного во временном интервале t0, скорость для временного интервала t4 увеличивается в соответствии с RCB(+) 702.
В системе, не использующей метод снижения энергии, мобильная станция, основываясь на способе, предложенном в настоящем изобретении, всегда увеличивает, снижает или сохраняет неизменной скорость передачи на основе пакета, переданного во временном интервале, который возникает с опережением на RCD относительно текущего временного интервала.
Кроме того, хотя базовая станция передает TPRCB, мобильная станция увеличивает, снижает или сохраняет неизменной скорость передачи текущего передаваемого пакета не на основе скорости, обусловленной TPR при повторной передаче во временном интервале t2, а на основе скорости, обусловленной TPR при первичной передаче во временном интервале t0.
Способ передачи текущего кадра пакетных данных с использованием индикатора ACID может быть представлен, как показано ниже в уравнении (4).
В обычной процедуре HARQ имеется несколько HARQ-каналов, каждый из которых идентифицирован идентификатором канала запроса автоматической повторной передачи (ACID). Например, если имеется 4 HARQ-канала, то HARQ-каналы соответствуют ACID=0, ACID=1, ACID=2, ACID=3 соответственно, причем процедура HARQ независимо выполняется для каждого идентификатора ACID. Хотя в описании HARQ-канал описывается как отличающийся канал, определяемый выделением соответствующего идентификатора ACID, HARQ-канал может представлять собой каждый отдельный кадр в канале пакетных данных.
Для пояснения ниже сначала описана работа обычной системы HARQ, использующей длину кадра 10 мс.
Мобильная станция передает пакеты первоначальной передачи по ряду HARQ-каналов, начиная с конкретного начального времени t=0. То есть при t=0 мобильная станция передает пакетные данные первоначальной передачи по HARQ-каналу с идентификатором ACID=0, являющемуся первым HARQ-каналом. В момент t=10 мс мобильная станция передает пакетные данные первоначальной передачи по HARQ-каналу с идентификатором ACID=1, являющемуся вторым HARQ-каналом. В момент t=20 мс мобильная станция передает пакетные данные первоначальной передачи по HARQ-каналу с идентификатором ACID=2, являющемуся третьим HARQ-каналом. В момент t=30 мс мобильная станция передает пакетные данные первоначальной передачи по HARQ-каналу с идентификатором ACID=3, являющемуся четвертным HARQ-каналом.
Мобильная станция принимает АСК или NAK от базовой станции в ответ на пакет первоначальной передачи, переданный по HARQ-каналу с идентификатором ACID=0, и если принимается NAK, то мобильная станция выполняет повторную передачу по HARQ-каналу с идентификатором ACID=0 в момент t=40 мс. Если от базовой станции принимается NAK в ответ на пакет первоначальной передачи, переданный по HARQ-каналу с идентификатором ACID=1, то мобильная станция выполняет повторную передачу по HARQ-каналу с идентификатором ACID=1 в момент t=50 мс.
Как указано выше, обычная процедура HARQ выполняется с использованием нескольких HARQ-каналов. Способ чередующегося управления скоростью, предложенный в настоящем изобретении, эквивалентен управлению скоростью мобильной станции или TPR мобильной станции для каждого HARQ-канала или идентификатора ACID в процедуре HAEQ.
Поскольку в процедуре HAEQ задержка управления скоростью (RCD) определяется временным интервалом между HARQ-каналами, соответствующими одному и тому же ACID, то управление скоростью или TPR для каждого HARQ-канала, соответствующего тому же самому ACID, эквивалентно управлению скоростью для временного интервала, возникающего с опережением на RCD перед текущим временным интервалом, соответствующим принятому биту управления скоростью (RCB).
Фиг.9 иллюстрирует процедуру управления TPR для каждого HARQ-канала или ACID, как описано выше. Например, на фиг.4 число HARQ-каналов равно 4. Поэтому, как показано на фиг.9, ACID=0, 1, 2 и 3. Для удобства пояснения, в примере по фиг.9 ответные сигналы, такие как ACK или NAK, для поддержки HARQ не показаны. Хотя применяются сигналы ACK или NAK, процедура управления скоростью, показанная на фиг.9, выполняется тем же способом, за исключением того, что пакет повторной передачи передается в ответ на NAK.
Для выполнения процедуры управления TPR для каждого HARQ-канала или ACID, как описано в связи с фиг.9, мобильная станция может использовать внутренний параметр authorized_tpr (разрешенное отношение сигнала трафика к пилот-сигналу). Параметр authorized_tpr относится к параметру, управляемому мобильной станцией, для обновления ее максимального значения TPR, разрешенного базовой станцией, чтобы управлять ее собственной скоростью, причем это обновление производится для каждого ACID. Поэтому в данном примере параметр authorized_tpr становится структурой размера 4 вида authorized_tpr[4]. В данном случае authorized_tpr[0] используется для управления TPR мобильной станцией для HARQ-канала с идентификатором ACID=0; authorized_tpr[1] используется для управления TPR мобильной станцией для HARQ-канала с идентификатором ACID=1; authorized_tpr[2] используется для управления TPR мобильной станцией для HARQ-канала с идентификатором ACID=2; authorized_tpr[3] используется для управления TPR мобильной станцией для HARQ-канала с идентификатором ACID=3.
На фиг.9 ссылочная позиция 901 обозначает последовательность TPRCB, передаваемых от базовой станции к мобильной станции, а ссылочная позиция 902 обозначает последовательность каналов R-PDCH, передаваемых в обратном направлении мобильной станцией. Кроме того, числами 19,2 и 38,4 обозначены скорости передачи данных в единицах кб/с. Кроме того, на фиг.9 ссылочная позиция 903 обозначает прошедшее время в единицах 10 мс, и ссылочная позиция 904 обозначает ACID, являющийся идентификатором для каждого HARQ-канала.
Со ссылками на фиг.9 ниже детально описано функционирование базовой станции и мобильной станции.
Мобильная станция передает пакет со скоростью 19,2 кб/с по HARQ-каналу с идентификатором ACID=0 в момент времени t=t0. При этом мобильная станция устанавливает значение authorized_tpr[0] на значение TPR, соответствующее 19,2 кб/с. Мобильная станция передает пакет со скоростью 38,4 кб/с по HARQ-каналу с идентификатором ACID=1 в момент времени t=t1. При этом мобильная станция устанавливает значение authorized_tpr[1] на значение TPR, соответствующее 38,4 кб/с. Мобильная станция передает пакет со скоростью 38,4 кб/с по HARQ-каналу с идентификатором ACID=2 в момент времени t=t2. При этом мобильная станция устанавливает значение authorized_tpr[2] на значение TPR, соответствующее 38,4 кб/с. Кроме того, мобильная станция принимает бит управления TPRCB, указывающий «увеличение», от базовой станции в момент времени t=t2.
Поэтому мобильная станция обновляет значение authorized_tpr[0] на значение TPR, соответствующее 38,4 кб/с. Поскольку мобильная станция передавала пакет со скоростью 9,2 кб/с по HARQ-каналу с идентификатором ACID=0 и затем принимала в ответ на него бит управления TPRCB, указывающий «увеличение», то мобильная станция увеличивает authorized_tpr[0], соответствующий тому же самому ACID, на одну ступеньку.
Мобильная станция передает пакет со скоростью 76,8 кб/с по HARQ-каналу с идентификатором ACID=3 в момент времени t=t3. При этом мобильная станция устанавливает значение authorized_tpr[3] на значение TPR, соответствующее 76,8 кб/с.
Кроме того, мобильная станция принимает бит управления TPRCB, указывающий «увеличение», от базовой станции в момент времени t=t3. Поэтому мобильная станция обновляет значение authorized_tpr[1] на значение TPR, соответствующее 76,8 кб/с. Поскольку мобильная станция передавала пакет со скоростью 38,4 кб/с по HARQ-каналу с идентификатором ACID=1 и затем принимала в ответ на него бит управления TPRCB, указывающий «увеличение», то мобильная станция увеличивает authorized_tpr[1], соответствующий тому же самому ACID, на одну ступеньку.
При управлении скоростью или TPR пакета, подлежащего передаче по HARQ-каналу c ACID=0 в момент t=t4, поскольку значение authorized_tpr[0] является значением, соответствующим 38,4 кб/с, то мобильная станция может передать пакет со скоростью 38,4 кб/с. Такая операция непрерывно повторяется. Как описано выше, мобильная станция управляет TPR для каждого HARQ-канала или ACID. Кроме того, как показано в примере, мобильная станция может управлять своим собственным значением TPR для каждого HARQ-канала с использованием внутреннего параметра authorized_tpr.
Таким образом, имеется кадр пакетных данных текущей передачи, соответствующий одному и тому же ACID, среди множества кадров пакетных данных предыдущих передач, и имеется скорость передачи соответствующего кадра пакетных данных. Как указано выше, скорость кадра пакетных данных может быть использована в том же самом выражении, что и TPRCB. В данном случае TPRCB, разрешенный для скорости кадра пакетных данных предыдущей передачи, определяется как TPRCB{ACID(P)}, где Р обозначает «предыдущий».
Кроме того, скорость кадра пакетных данных следующей передачи относится к TPRCB{ACID(N)}, где N обозначает «следующий». Мобильная станция определяет, следует ли увеличить, снизить или сохранить неизменной скорость на основе информации управления, принятой от базовой станции.
Приведенное выше описание может быть выражено, как представлено ниже в уравнении (4).
TPRCB{ACID(N)} - TPRCB{ACID(P)} + Delta (4)
То есть скорость пакетных данных текущей передачи увеличивается или уменьшается на Delta на основе скорости кадра пакетных данных, соответствующего тому же самому ACID из кадров пакетных данных предыдущих передач. Здесь «Delta» обозначает значение, увеличенное или уменьшенное на основе информации управления, принятой от базовой станции.
Как следует из приведенного выше описания, мобильная станция применяет RCB на основе скорости, использованной, когда базовая станция формирует RCB, тем самым исключая ошибку управления скоростью передачи обратной линии связи, обусловленную задержкой обработки между базовой станцией и мобильной станцией. Поэтому при использовании способа чередующегося управления скоростью, соответствующего настоящему изобретению, мобильная станция с высокой точностью применяет скорость, вычисленную в процессе планирования базовой станцией, тем самым обеспечивая эффективное управление скоростями передачи обратной линии связи.
Хотя настоящее изобретение показано и описано со ссылками на некоторый предпочтительный вариант его осуществления, специалистам в данной области техники должно быть понятно, что различные изменения по форме и в деталях могут быть осуществлены без отклонения от сущности и объема настоящего изобретения, как определено в формуле изобретения.

Claims (32)

1. Способ управления скоростью передачи данных кадра пакетных данных обратной линии связи в мобильной станции системы мобильной связи, содержащий этапы приема информации управления обратной линии связи для определения скорости передачи данных кадра пакетных данных обратной линии связи следующей передачи; определения скорости передачи данных кадра пакетных данных обратной линии связи следующей передачи посредством информации управления обратной линии связи и скорости передачи данных ранее переданного кадра пакетных данных обратной линии связи, определяемого предварительно заданной задержкой управления скоростью; и передачи кадра пакетных данных обратной линии связи с полученной скоростью передачи данных.
2. Способ по п.1, в котором информация управления обратной линии связи включает в себя информацию для выполнения увеличения, или снижения, или сохранения неизменной скорости передачи данных.
3. Способ по п.2, в котором информация управления обратной линии связи для выполнения увеличения, или снижения, или сохранения неизменной скорости передачи данных основана на скорости передачи данных для временного интервала, который возникает с предварительно заданной задержкой управления скоростью перед текущим временным интервалом.
4. Способ по п.3, в котором предварительно заданная задержка управления скоростью определяется на покадровой основе с учетом времени, в течение которого базовая станция генерирует информацию управления обратной линии связи и передает информацию управления обратной линии связи, а мобильная станция принимает информацию управления обратной линии связи и определяет скорость передачи данных в соответствии с принятой информацией управления обратной линии связи.
5. Способ по п.1, в котором информация управления обратной линии связи представляет собой бит управления скоростью (RCB, БУС).
6. Способ по п.1, в котором предварительно заданная задержка управления скоростью представляет собой предварительно заданную временную задержку относительно опорного времени, когда мобильная станция применяет бит управления скоростью (RCB, БУС).
7. Способ по п.1, в котором информация управления обратной линии связи принимается по прямому каналу управления скоростью (F-RCCH, ПКУС).
8. Способ по п.1, в котором кадр пакетных данных следующей передачи передается по обратному каналу пакетных данных (R-PDCH, ОКПД).
9. Способ управления скоростью передачи данных кадра пакетных данных обратной линии связи в мобильной станции системы мобильной связи, содержащий этапы приема квитирования от базовой станции, указывающего, был ли успешным прием кадра пакетных данных обратной линии связи; если прием кадра пакетных данных обратной линии связи был успешным, то прием информации управления обратной линии связи для определения скорости передачи данных кадра пакетных данных обратной линии связи следующей передачи; определения скорости передачи данных кадра пакетных данных обратной линии связи следующей передачи на основе предварительно заданной задержки управления скоростью и
передачи кадра пакетных данных обратной линии связи с определенной скоростью передачи.
10. Способ по п.9, в котором информация управления обратной линии связи включает в себя информацию для выполнения увеличения, или снижения, или сохранения неизменной скорости передачи данных.
11. Способ по п.9, дополнительно содержащий этап повторной передачи кадра пакетных данных обратной линии связи, если прием кадра пакетных данных обратной линии связи был безуспешным.
12. Способ по п.11, в котором повторно переданный кадр пакетных данных обратной линии связи объединяется с кадром пакетных данных обратной линии связи, ранее переданным базовой станцией, таким образом, что объединенный пакет имеет меньшую энергию, чем энергия ранее переданного кадра пакетных данных обратной линии связи.
13. Способ по п.9, в котором информация управления обратной линии связи включает в себя бит управления скоростью.
14. Способ по п.9, в котором предварительно заданная задержка управления скоростью представляет собой предварительно заданную временную задержку относительно опорного времени, когда мобильная станция применяет бит управления скоростью (RCB, БУС).
15. Устройство для управления скоростью передачи данных кадра пакетных данных обратной линии связи в мобильной станции системы мобильной связи, содержащее приемник для приема информации управления обратной линии связи для управления скоростью передачи данных кадра пакетных данных обратной линии связи следующей передачи;
контроллер для определения скорости передачи данных кадра пакетных данных обратной линии связи следующей передачи посредством информации управления обратной линии связи и скорости передачи данных ранее переданного кадра пакетных данных обратной линии связи, определяемого предварительно заданной задержкой управления скоростью; и
передатчик для передачи кадра пакетных данных обратной линии связи к базовой станции в соответствии с полученной скоростью передачи данных.
16. Устройство по п.15, в котором информация управления обратной линии связи включает в себя информацию для выполнения увеличения, или снижения, или сохранения неизменной скорости передачи данных.
17. Устройство по п.16, в котором информация управления обратной линии связи для выполнения увеличения, или снижения, или сохранения неизменной скорости передачи данных основана на скорости передачи данных для временного интервала, который возникает с предварительно заданной задержкой управления скоростью перед текущим временным интервалом.
18. Устройство по п.15, в котором предварительно заданная задержка управления скоростью определяется на покадровой основе с учетом времени, в течение которого базовая станция генерирует информацию управления обратной линии связи и передает информацию управления обратной линии связи, а мобильная станция принимает информацию управления обратной линии связи и определяет скорость передачи данных в соответствии с принятой информацией управления обратной линии связи.
19. Устройство по п.16, в котором контроллер определяет скорость передачи данных ранее переданного кадра пакетных данных обратной линии связи, который определяется предварительно заданной задержкой управления скоростью перед текущим временным интервалом, и скорость передачи данных кадра пакетных данных обратной линии связи, подлежащего передаче в текущий момент, которая определяется увеличением, уменьшением и сохранением неизменной исходя из информации управления обратной линии связи и скоростью передачи данных ранее переданного кадра пакетных данных.
20. Устройство по п.15, в котором информация управления обратной линии связи представляет собой бит управления скоростью.
21. Устройство по п.15, в котором предварительно заданная задержка управления скоростью представляет собой предварительно заданную временную задержку относительно опорного времени, когда мобильная станция применяет бит управления скоростью (RCB, БУС).
22. Устройство по п.15, в котором скорость передачи данных кадра пакетных данных следующей передачи определяется применением информации управления обратной линии связи к скорости передачи данных ранее переданного кадра пакетных данных обратной линии связи, определяемого предварительно заданной задержкой управления скоростью.
23. Устройство по п.15, в котором информация управления обратной линии связи принимается по прямому каналу управления скоростью (F-RCCH, ПКУС).
24. Устройство по п.15, в котором кадр пакетных данных следующей передачи передается по обратному каналу пакетных данных (R-PDCH, ОКПД).
25. Способ управления скоростью передачи данных кадра пакетных данных обратной линии связи в мобильной станции системы мобильной связи, содержащий этапы приема команды управления скоростью от базовой станции по прямому каналу управления скоростью; определения скорости передачи данных кадра пакетных данных следующей передачи посредством принятой команды управления скоростью и скорости передачи данных ранее переданного кадра пакетных данных, соответствующего тому же самому индикатору канала запроса автоматического повторения передачи (ACID, ИКЗАПП); и передачи кадра пакетных данных по обратному каналу пакетных данных с полученной скоростью передачи данных.
26. Способ по п.25, дополнительно содержащий этап анализа принятой команды управления скоростью.
27. Способ по п.26, в котором этап анализа принятой команды управления скоростью указывает на увеличение, снижение или сохранение неизменной скорости передачи данных.
28. Способ по п.25, в котором скорость передачи данных кадра пакетных данных следующей передачи определяется как
TPRCB{ACID(N)}=TPRCB{ACID(P)}+Delta,
где TPRCB{ACID(P)} обозначает бит управления отношением сигнала графика к пилот-сигналу (TPRCB, БУОТП), соответствующий скорости передачи данных кадра пакетных данных предыдущей передачи, соответствующего индикатору ИКЗАПП
TPRCB{ACID(N)} обозначает БУОТП, соответствующий скорости передачи данных кадра пакетных данных следующей передачи, имеющего индикатор ИКЗАПП; и
Delta - значение, указывающее на увеличение, снижение или сохранение неизменной скорости передачи данных в соответствии с командой управления скоростью.
29. Устройство мобильной станции для управления скоростью передачи данных кадра пакетных данных обратной линии связи в мобильной станции системы мобильной связи, содержащее приемник прямого канала управления скоростью (F-RCCH, ПКУС) для приема команды управления скоростью от базовой станции по прямому каналу управления скоростью;
контроллер скорости для определения скорости передачи данных кадра пакетных данных следующей передачи посредством принятой команды управления скоростью и скорости передачи данных ранее переданного кадра пакетных данных, соответствующего тому же самому индикатору канала запроса автоматического повторения передачи (ACID, ИКЗАПП); и
передатчик обратного канала пакетных данных (R-PDCH, ОКПД) для передачи кадра пакетных данных по обратному каналу пакетных данных со скоростью передачи данных, полученной контроллером скорости.
30. Устройство мобильной станции по п.29, в котором контроллер скорости анализирует принятую команду управления скоростью.
31. Устройство мобильной станции по п.30, в котором контроллер скорости определяет, указывает ли принятая команда управления скоростью на увеличение, снижение или сохранение неизменной скорости передачи данных.
32. Устройство мобильной станции по п.29, в котором контроллер скорости определяет скорость передачи данных кадра пакетных данных следующей передачи в соответствии со следующим уравнением:
TPRCB{ACID(N)}=TPRCB{ACID(P)}+Delta,
где TPRCB{ACID(P)} обозначает бит управления отношением сигнала трафика к пилот-сигналу (TPRCB, БУОТП), соответствующий скорости передачи данных кадра пакетных данных предыдущей передачи, соответствующего индикатору ИКЗАПП;
TPRCB{ACID(N)} обозначает БУОТП, соответствующий скорости передачи данных кадра пакетных данных следующей передачи, имеющего индикатор ИКЗАПП; и Delta - значение, указывающее на увеличение, снижение или сохранение неизменной скорости передачи данных в соответствии с командой управления скоростью.
RU2005127600A 2003-03-05 2004-03-05 Способ и устройство для управления скоростью трафика обратной линии связи в системе мобильной связи RU2302694C2 (ru)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20030013838 2003-03-05
KR10-2003-0013838 2003-03-05
KR20030060631 2003-08-30
KR10-2003-0060631 2003-08-30

Publications (2)

Publication Number Publication Date
RU2005127600A RU2005127600A (ru) 2006-01-27
RU2302694C2 true RU2302694C2 (ru) 2007-07-10

Family

ID=36383856

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005127600A RU2302694C2 (ru) 2003-03-05 2004-03-05 Способ и устройство для управления скоростью трафика обратной линии связи в системе мобильной связи

Country Status (12)

Country Link
US (3) US20040174846A1 (ru)
EP (1) EP1455492B1 (ru)
JP (1) JP4308206B2 (ru)
KR (1) KR100640331B1 (ru)
AT (1) ATE527782T1 (ru)
AU (1) AU2004217203C1 (ru)
BR (1) BRPI0408084B1 (ru)
CA (1) CA2513455C (ru)
DK (1) DK1455492T3 (ru)
PL (1) PL1455492T3 (ru)
RU (1) RU2302694C2 (ru)
WO (1) WO2004079944A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2486713C2 (ru) * 2009-02-09 2013-06-27 Телефонактиеболагет Лм Эрикссон (Пабл) Способ и устройство в системе беспроводной связи
RU2510598C2 (ru) * 2009-02-09 2014-03-27 Телефонактиеболагет Л М Эрикссон (Пабл) Способ и устройство в системе беспроводной связи

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1698291A (zh) * 2003-05-10 2005-11-16 三星电子株式会社 在移动通信系统中控制反向话务速率的装置和方法
JP2006525698A (ja) * 2003-10-15 2006-11-09 サムスン エレクトロニクス カンパニー リミテッド 移動通信システムにおけるパケットデータ送信率制御方法
EP1748591A4 (en) * 2004-04-30 2008-11-12 Sharp Kk RADIO COMMUNICATION SYSTEM
US20060039282A1 (en) * 2004-08-23 2006-02-23 Lucent Technologies, Inc. Outer loop power control for high speed data transmissions
US7881339B2 (en) * 2004-10-06 2011-02-01 Qualcomm, Incorporated Method and apparatus for assigning users to use interlaces in a wireless cellular communication system
US7292825B2 (en) * 2004-10-19 2007-11-06 Ipwireless, Inc. Retransmission scheme in a cellular communication system
JP4589711B2 (ja) 2004-12-14 2010-12-01 富士通株式会社 無線通信システム及び無線通信装置
US8588802B2 (en) 2005-02-14 2013-11-19 Ntt Docomo, Inc. Transmission rate control method, and mobile station
JP4516880B2 (ja) * 2005-03-29 2010-08-04 株式会社エヌ・ティ・ティ・ドコモ 伝送速度制御方法、移動局及び無線基地局
JP4643354B2 (ja) * 2005-05-02 2011-03-02 株式会社エヌ・ティ・ティ・ドコモ 伝送速度制御方法、移動局及び無線基地局
KR100800794B1 (ko) * 2005-07-01 2008-02-04 삼성전자주식회사 패킷망을 통해 음성 서비스를 지원하는 이동통신시스템에서 음성 서비스의 전송률을 제어하는 방법 및 장치
KR100763012B1 (ko) * 2005-08-19 2007-10-02 가부시키가이샤 엔.티.티.도코모 전송 속도 제어 방법, 이동국, 무선 기지국 및 무선네트워크 제어국
US8098613B2 (en) * 2005-12-28 2012-01-17 Alcatel Lucent Method of managing transmission delay in a wireless communication system
US7653355B2 (en) * 2006-01-09 2010-01-26 At&T Intellectual Property Ii, L.P. Signal strength guided intra-cell upstream data forwarding
US7788566B2 (en) * 2006-01-18 2010-08-31 Alcatel-Lucent Usa Inc. System and method for dynamically adjusting hybrid ARQ transmissions
US8005116B2 (en) * 2006-11-16 2011-08-23 Cisco Technology, Inc. System and method for mitigating the effects of bit insertion in a communications environment
KR100884384B1 (ko) * 2007-07-03 2009-02-17 한국전자통신연구원 전송 방식 변경 방법, 패킷 재전송 요구 방법 및 패킷재전송 방법
CN101399796B (zh) * 2007-09-28 2012-05-09 展讯通信(上海)有限公司 时分系统接收帧处理方法和设备
CN101400120B (zh) * 2007-09-28 2011-03-09 展讯通信(上海)有限公司 时分系统控制信息模式配置方法、接收帧处理方法和设备
JP5164512B2 (ja) * 2007-10-05 2013-03-21 株式会社エヌ・ティ・ティ・ドコモ 無線通信システム、無線通信方法及び基地局
US8737383B2 (en) * 2008-07-07 2014-05-27 Intel Corporation Techniques for enhanced persistent scheduling with efficient link adaptation capability
US8203947B1 (en) * 2009-01-09 2012-06-19 Sprint Spectrum L.P. Interlaced control channel
US8254930B1 (en) 2009-02-18 2012-08-28 Sprint Spectrum L.P. Method and system for changing a media session codec before handoff in a wireless network
US9374306B1 (en) 2009-03-04 2016-06-21 Sprint Spectrum L.P. Using packet-transport metrics for setting DRCLocks
US9467938B1 (en) 2009-04-29 2016-10-11 Sprint Spectrum L.P. Using DRCLocks for conducting call admission control
US8310929B1 (en) 2009-06-04 2012-11-13 Sprint Spectrum L.P. Method and system for controlling data rates based on backhaul capacity
US8363564B1 (en) 2010-03-25 2013-01-29 Sprint Spectrum L.P. EVDO coverage modification based on backhaul capacity
US8515434B1 (en) * 2010-04-08 2013-08-20 Sprint Spectrum L.P. Methods and devices for limiting access to femtocell radio access networks
US9106575B2 (en) * 2013-01-31 2015-08-11 Apple Inc. Multiplexing multiple serial interfaces
US9686063B2 (en) * 2013-04-04 2017-06-20 Qualcomm Incorporated TPR management for EPDCCH in LTE
US9265012B2 (en) * 2013-06-07 2016-02-16 Broadcom Corporation Transmission power adaptation for wireless communication
CN105828391B (zh) * 2015-01-22 2020-03-20 中国移动通信集团公司 调整业务速率的方法、用户设备及基站
CN109643181B (zh) * 2016-08-31 2021-03-30 华为技术有限公司 一种基于压力触控的通信增强方法

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5396516A (en) * 1993-02-22 1995-03-07 Qualcomm Incorporated Method and system for the dynamic modification of control paremeters in a transmitter power control system
JP2503888B2 (ja) * 1993-06-30 1996-06-05 日本電気株式会社 移動無線通信におけるデ―タ伝送方式
US5603096A (en) * 1994-07-11 1997-02-11 Qualcomm Incorporated Reverse link, closed loop power control in a code division multiple access system
US5828677A (en) * 1996-03-20 1998-10-27 Lucent Technologies Inc. Adaptive hybrid ARQ coding schemes for slow fading channels in mobile radio systems
FI103555B1 (fi) * 1996-06-17 1999-07-15 Nokia Mobile Phones Ltd Lähetystehon säätö langattomassa pakettidatasiirrossa
JPH1079701A (ja) * 1996-09-03 1998-03-24 Fujitsu Ltd 移動通信端末及びその送信電力制御方式
US6173162B1 (en) * 1997-06-16 2001-01-09 Telefonaktiebolaget Lm Ericsson (Publ) Multiple code channel power control in a radio communication system
US5982760A (en) * 1997-06-20 1999-11-09 Qualcomm Inc. Method and apparatus for power adaptation control in closed-loop communications
JP3397677B2 (ja) * 1998-02-10 2003-04-21 松下電器産業株式会社 送信電力制御装置及び無線通信装置
US6597705B1 (en) 1998-09-10 2003-07-22 Qualcomm Incorporated Method and apparatus for distributed optimal reverse link scheduling of resources, such as a rate and power in a wireless communication system
DE69941331D1 (de) 1999-07-09 2009-10-08 Sony Deutschland Gmbh Zellreichweiten-Erweiterung in Radiokommunikationssystemen mit Leistungsregelung der Abwärtsrichtung
US6658262B1 (en) * 1999-12-27 2003-12-02 Telefonaktiebolget Lm Ericsson (Publ) Method and system for power control order message management
US7068627B2 (en) * 2000-10-19 2006-06-27 Samsung Electronics Co., Ltd. Device and method for transmitting data with different qualities in mobile communication system
DE60135430D1 (de) * 2000-11-17 2008-10-02 Lg Electronics Inc Verfahren zur blinder Verbindungsanpassung unter Verwendung von Rückquittierungsnachrichten in ARQ-Übertragungssystem
US6741862B2 (en) 2001-02-07 2004-05-25 Airvana, Inc. Enhanced reverse-link rate control in wireless communication
JP3485097B2 (ja) * 2001-03-13 2004-01-13 日本電気株式会社 移動無線通信における適応再送要求制御方式、及び適応再送要求制御装置
US7116682B1 (en) * 2001-03-19 2006-10-03 Cisco Technology, Inc. Methods and apparatus for dynamic bandwidth adjustment
ATE488064T1 (de) 2001-03-21 2010-11-15 Lg Electronics Inc Wiederübertragung von daten durch eine rückwärtsverbindung in einem paketdatenübertragungssystem mit automatischer wiederholungsaufforderung
BR0208449A (pt) 2001-03-26 2004-03-02 Samsung Electronics Co Ltd Método para controlar a transmissão reversa em um sistema de comunicação móvel
KR100800884B1 (ko) * 2001-03-29 2008-02-04 삼성전자주식회사 이동통신 시스템에서 역방향 링크의 송신 제어 방법
US7158504B2 (en) * 2001-05-21 2007-01-02 Lucent Technologies, Inc. Multiple mode data communication system and method and forward and/or reverse link control channel structure
US7027420B2 (en) * 2001-07-24 2006-04-11 Nokia Mobile Phones Ltd. Method for determining whether to perform link adaptation in WCDMA communications
US20030054807A1 (en) * 2001-09-17 2003-03-20 Liangchi Hsu Apparatus, and associated method, for facilitating multicast and broadcast services in a radio communication system
AU2002362426B2 (en) * 2001-09-29 2008-09-11 Lg Electronics Inc. Method for transferring and/or receiving data in communication system and apparatus thereof
US6700867B2 (en) * 2001-12-20 2004-03-02 Motorola, Inc. Method and system for reduced memory hybrid automatic repeat request
KR100850989B1 (ko) * 2002-01-05 2008-08-12 엘지전자 주식회사 자동 반복 요청(arq)시스템에서응답정보(ack/nack)신호에 대한 전력제어 방법
US7539165B2 (en) * 2002-05-24 2009-05-26 Antti Toskala Method and apparatus for distributed signaling for uplink rate control
US7155249B2 (en) * 2003-01-10 2006-12-26 Qualcomm Incorporated Modified power control for hybrid ARQ on the reverse link
JP2006515736A (ja) 2003-01-10 2006-06-01 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 無線通信網用の一般化レート制御
US20040160922A1 (en) 2003-02-18 2004-08-19 Sanjiv Nanda Method and apparatus for controlling data rate of a reverse link in a communication system
US20040179557A1 (en) * 2003-03-14 2004-09-16 Wen Tong Channel structures, systems, and methods to support high speed communication channels
CN1698291A (zh) 2003-05-10 2005-11-16 三星电子株式会社 在移动通信系统中控制反向话务速率的装置和方法
US7161916B2 (en) * 2003-08-20 2007-01-09 Qualcomm Incorporated Method and apparatus for uplink rate selection in the presence of multiple transport channels in a wireless communication system
JP2006525698A (ja) 2003-10-15 2006-11-09 サムスン エレクトロニクス カンパニー リミテッド 移動通信システムにおけるパケットデータ送信率制御方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2486713C2 (ru) * 2009-02-09 2013-06-27 Телефонактиеболагет Лм Эрикссон (Пабл) Способ и устройство в системе беспроводной связи
RU2510598C2 (ru) * 2009-02-09 2014-03-27 Телефонактиеболагет Л М Эрикссон (Пабл) Способ и устройство в системе беспроводной связи

Also Published As

Publication number Publication date
US9967899B2 (en) 2018-05-08
JP2006514515A (ja) 2006-04-27
EP1455492B1 (en) 2011-10-05
WO2004079944A1 (en) 2004-09-16
ATE527782T1 (de) 2011-10-15
KR100640331B1 (ko) 2006-10-30
US20090262720A1 (en) 2009-10-22
AU2004217203B2 (en) 2007-11-01
EP1455492A3 (en) 2010-04-07
CA2513455C (en) 2013-12-03
AU2004217203C1 (en) 2008-07-24
CA2513455A1 (en) 2004-09-16
RU2005127600A (ru) 2006-01-27
DK1455492T3 (da) 2012-01-16
KR20040079326A (ko) 2004-09-14
PL1455492T3 (pl) 2012-03-30
US20040174846A1 (en) 2004-09-09
BRPI0408084B1 (pt) 2017-11-21
AU2004217203A1 (en) 2004-09-16
BRPI0408084A (pt) 2006-02-14
US20090215485A1 (en) 2009-08-27
EP1455492A2 (en) 2004-09-08
JP4308206B2 (ja) 2009-08-05

Similar Documents

Publication Publication Date Title
RU2302694C2 (ru) Способ и устройство для управления скоростью трафика обратной линии связи в системе мобильной связи
EP1233564B1 (en) Rate adaptation in a wireless communication system
US7903559B2 (en) Apparatus and method for transmitting reverse packet data in mobile communication system
KR101009861B1 (ko) 이동통신 시스템에서의 데이터 전송 방법과 전송률 할당 방법 및 이를 위한 장치
US7283482B2 (en) Reverse data transmission apparatus and method in a mobile communication system
CN1215672C (zh) 通信系统中重传信号的装置
US7088701B1 (en) Method and apparatus for adaptive transmission control in a high data rate communication system
KR100704355B1 (ko) 이동국, 이동 통신 시스템 및 이동 통신 방법
US7555269B2 (en) Adaptive modulation scheme and coding rate control method
US20090300458A1 (en) Reverse link automatic repeat request
CA2503821A1 (en) Method for scheduling mobile station uplink transmissions
CN1253682A (zh) 移动通信系统里传输分组交换数据的方法
CN1476694A (zh) 在通信系统中选通ack/nak信道的方法和装置
US6157628A (en) Retransmission control method of CDMA mobile communication
JP2002077093A (ja) 基地局装置および無線通信方法
KR100938067B1 (ko) 복합 자동 재전송 방식 이동통신 시스템에서 트래픽데이터 재전송 장치 및 방법
CN1757174B (zh) 移动通信系统中控制反向业务速率的方法及装置
AU2008200498B2 (en) Method and apparatus for controlling a reverse traffic rate in a mobile communication system
KR20040064575A (ko) 이동통신 시스템에서 역방향 제어채널 데이터 송수신 장치및 방법
KR20050013038A (ko) 복합 자동 재전송 방식을 지원하는 이동통신 시스템에서역방향 데이터의 송수신 방법 및 장치
KR20060053077A (ko) 이동통신시스템에서 압축 모드를 고려하여 스케쥴링을수행하는 방법 및 시스템
KR20040071554A (ko) 복합 자동 재전송 방식을 지원하는 이동통신 시스템에서역방향 전력 제어 장치 및 방법